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Gravitational Waves

@ Predicted by Poincaré (1905).

@ Einstein provided a firm theoretical ground for them (1916).
Ohy = —167GT,,
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Revisiting Gertsenhstein’s ideas

SOVIET PHYSICS JETP 'VOLUME 16, NUMBER 2 FEBRUARY, 1963
Co : Terrestrial
ON THE DETECTION OF LOW FREQUENCY GRAVITATIONAL WAVES . elrestrid
: N . interferometers
M. E. GERTSENSHTEIN and V. L PUSTOVOIT ¢ .

Submitted to JETP editor March 3, 1962
J. Exptl. Theoret! Phys. (U.S.S.R.) 43, 605-607 (August, 1962)

It is' shown that the sensitivity of the eléctromechanical experiments for detecting gravita-
tional,waves by means of piezocrystals is .ten orders of magnitude worse than that estimated
by Weber. 1] In the low frequency rangé’it should be possible to detect gravitational waves

by the, shift of the bands in an optical interferometer. The sensitivity’ of this method is.inr
§

vestigated.
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The Gertsenhstein Effect

The conversion of gravitational
waves into electromagnetic waves
IS a classical process.

(Its rate does not involve h)
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Cosmic Magnetic Fields in 2020

Domcke,CGC 2020 PHYSICAL REVIEW LETTERS 123, 021301 (2019)

Stringent Limit on Primordial Magnetic Fields from the
Cosmic Microwave Background Radiation
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CMB

Primordial magnetic fields (PMFs), being present before the epoch of cosmic recombination, induce
small-scale baryonic density fluctuations. These inhomogeneities lead to an inhomogeneous recombination
process that alters the peaks and heights of the large-scale anisotropies of the cosmic microwave
background (CMB) radiation. Utilizing numerical compressible MHD calculations and a Monte Carlo
Markov chain analysis, which compares calculated CMB anisotropies with those observed by the WMAP
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Primordial magnetic fields (PMFs), being present before the epoch of cosmic recombination, induce
small-scale baryonic density fluctuations. These inhomogeneities lead to an inhomogeneous recombination
process that alters the peaks and heights of the large-scale anisotropies of the cosmic microwave
background (CMB) radiation. Utilizing numerical compressible MHD calculations and a Monte Carlo
Markov chain analysis, which compares calculated CMB anisotropies with those observed by the WMAP
and Planck satellites, we derive limits on the magnitude of putative PMFs. We find that the fotal remaining
present day field, integrated over all scales, cannot exceed 47 pG for scale-invariant PMFs and 8.9 pG for
PMFs with a violet Batchelor spectrum at 95% confidence level. These limits are more than one order of
magnitude more stringent than any prior stated limits on PMFs from the CMB, which have not accounted
for this effect.
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Evidence for Strong Extragalactic Magnetic Fields from
Fermi Observations of TeV Blazars

Andrii Neronov”, levgen Vovk

+ See all authors and affiliations
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Science 02 Apr 2010:
Vol. 328, Issue 5974, pp. 73-75
DOI: 10.1126/science. 1184192
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Abstract

Magnetic fields in galaxies are produced via the amplification of seed magnetic fields of
unknown nature. The seed fields, which might exist in their initial form in the intergalactic
medium, were never detected. We report a lower haund B > 3 x 10°18 gauss on the strength of.
intergalactic magnetic fields, which stems from the nonobservation of GeV gamma-ray
emission from electromaanetic cascade initiated by tera—electron volt gamma rays in
Jintergalactic medium.The bound improves as Ag~"/2 if magnetic field correlation length, Ag, is
much smaller than a megaparsec. This lower bound constrains models for the origin of
cosmic magnetic fields.
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Primordial magnetic fields (PMFs), being present before the epoch of cosmic recombination, induce
small-scale baryonic density fluctuations. These inhomogeneities lead to an inhomogeneous recombination
process that alters the peaks and heights of the large-scale anisotropies of the cosmic microwave
background (CMB) radiation. Utilizing numerical compressible MHD calculations and a Monte Carlo
Markov chain analysis, which compares calculated CMB anisotropies with those observed by the WMAP
and Planck satellites, we derive limits on the magnitude of putative PMFs. We find that the fotal remaining
present day field, integrated over all scales, cannot exceed 47 pG for scale-invariant PMFs and 8.9 pG for
PMFs with a violet Batchelor spectrum at 95% confidence level. These limits are more than one order of
magnitude more stringent than any prior stated limits on PMFs from the CMB, which have not accounted
for this effect.
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much smaller than a megaparsec. This lower bound constrains models for the origin of
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CMB distortions in 2020
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« Largely unexplored,  with upcoming
advances in radio astronomy probing it in
the near future.
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 Largely unexplored, with  upcoming
advances in radio astronomy probing it in
the near future. (EDGES)

« They may conceivably push these bounds
below the Neff constraint.
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c) 0.75 m interferometer Akutsu'08

d) magnon detector Ito, Soda ‘04
e) magnetic conversion detector cryise et al ‘12
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Conclusions

* The Gertsenshtein effect during the dark ages provides a
powerful way to probe GWs in the MHz-GHz range from
distortions of the Rayleigh-Jeans CMB tall.

* With upcoming advances in 21cm astronomy targeting precisely
this frequency range with increasing accuracy, it becomes
conceivable to push the limits derived from radio telescopes
below the cosmological bound constraining the total energy in
GWs.
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