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Outline

● Water Cherenkov detectors in Japan
● Hyper-Kamiokande technical design
● physics program

– beam neutrinos
– atmospheric neutrinos
– solar neutrinos
– supernova neutrinos
– nucleon decay searches

● summary
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Water Cherenkov detectors in Japan
● Kamiokande 4.5 (0.68) kton

(1983-1996) PMT coverage 20%
– neutrinos from SN1987a, deficit of atmospheric

neutrinos
● Super-Kamiokande 50 (22.5) kton

(1996- ) PMT coverage 40%
– oscillations of solar and

atmospheric neutrinos
– world leading limit on proton lifetime
– ν

e
 appearance

● mature, known, scalable technology

● Hyper-Kamiokande 260 (188) kton
(~2027- ) PMT coverage 40%

72

68 m

40 m

40 m
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HK history
● LOI: 2011 (arXiv:1109.3262)

● proto-collaboration formed
January 2015
– ~300 people, ~80 institutes

● MEXT Large Projects
Roadmap:2017

● design report: 2018
● seed funding: 2018
● approval:

early 2020
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Location
● candidate site 8 km south

of Super-Kamiokande
● Tochibora mine

– under Mt. Nijugo-yama
– overburden ~650m (~1755m.w.e.)
– geological conditions:

detailed survey performed

 the same baseline (295 km)
 and off-axis angle wrt J-PARC
 as Super-Kamiokande

Japan

Korea
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Cavern and tank

● total mass 260 kt
● cavern can be built with

existing technologies
● outer detector to constrain

the external background

● possibility of loading gadolinium
into Hyper-K Barrel region 1m thick

endcaps 2m thick

Outer Detector
veto region

Inner detector
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The photodetectors – basic design
● new Hamamatsu 50 cm B&L PMT with improved dynode

– quantum efficiency 30% at 390 nm (~1.4xSK)
– collection efficiency 95% at 107 gain (~1.3xSK)
– improved charge and timing resolution (~1 ns)

→ almost 2x better overall photon efficiency
– lower dark rate
– new glass: lower radioactivity, higher pressure

tolerance
● 40 000 in the ID → 40% photocoverage
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The photodetectors
● acrylic covers to protect PMT from sudden pressure changes

● other considered solutions
– multiPMT – arrays of 19 smaller (8 cm) PMTs

● increase of photocathode area
● superior photon counting
● improved angular acceptance
● extension of dynamic range
● intrinsic directional sensitivity
● local coincidences

– possible light collection devices
(reflectors, photon traps etc.)

● outer detector: 10-20k PMT
of 20 cm diameter, 1% coverage

pressure vessel
frontend electronics

acrylic cover
19 PMTs
+ reflectors
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Electronics and DAQ
● front-end electronics

– submerged in the water
● shorter cables → less weight and no

degradation of the signal
● inability to do repairs → redundant, fail-safe

system and careful design to avoid
failures and lost of region of the detector

● watertight front-end boxes (24 channels)
and watertight fibre optic connectors

– low power consumption (<1 W/channel)

● DAQ system above water has to be able to record:
– trigger for the total number of hits seen in a sliding time-window 

exceeding a certain threshold
– no dead time
– delayed energy depositions after triggered event
– large amount of events in short time (supernova burst)
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Calibration
● PMT response, readout electronics, the optical properties of detector 

material, e.g. water, PMT (glass bulb and housing material), black 
sheet, and tyvek sheet
– “relative" photo-detection efficiency (quantum efficiency x collection efficiency) 

of each single PMT for single photon level of light → important for the 
low energy physics

– PMT/electronics linearity for the full dynamic range → important for high-
energy physics

– water optical properties, absorption and scattering of light → all analyses
● various calibration sources:

– light sources (laser, laser diodes)
– radioactive sources
– neutron generators
– linear accelerator
– off-timing hits sources
– physics events such as cosmic rays, Michel electrons etc.
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Calibration - LINAC
● to calibrate the absolute energy scale, energy resolution, vertex and 

direction resolution of low energy electrons
● NCBJ Accelerator Division involved

● first assumptions of HK linac parameters:
– energy range 4-20 MeV
– much longer beam pipe

in comparison to SK
– bending of the beam

at the end of beam pipe
● multi direction head
● dipole magnet limited by port

– one electron/pulse

yoke

coil
magnet pole

vacuum
chamber

water

linac
tank
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Timeline
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Physics program
● neutrino oscillations

– with beam and atmospheric neutrinos
– CP violation
– precise measurement of θ

23

– mass hierarchy determination
● neutrino astrophysics

– precise measurement of solar neutrinos, 
sensitivity to address solar and reactor
neutrinos discrepancy. 

– supernova burst and relic supernova neutrinos
● searching for nucleon decay

– sensitivity 10x better than Super-K
(1035 years)

– all visible modes can be advanced
● other: indirect Dark Matter search, geophysics,

neutrinos from solar flares etc.

J-PARC
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Beam neutrinos (T2HK)
● the same baseline (295 km) and

off-axis angle (2.5º) as Super-K
● narrow band beam at ~600MeV
● neutrino or antineutrino beam mode
● upgrade of beam power

– 0.75 MW upgrade starting in 2021
(currently ~515 kW)

– increasing repetition rate from
0.4 to 0.86 Hz → 1.326 MW by 2026

– 3.2e14 protons per pulse
(now 2.45·1014 ppp)

● upgrade power supplies for horns
– design current of 320 kA (wrt 250 kA)
– +~20% higher neutrino flux.
– reduction of wrong-sign neutrino

contamination by 5-10%.

SKHK

J-PARC
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Near detectors

– angular efficiency (difference in 
acceptance)

– low efficiency for low energy 
hadrons

existing tracker

new tracker
TPC

TPC

SuperFGD

surrounded by TOF

– different target nucleus than in
far detector

– near and far detectors do not 
sample the same neutrino 
spectrum
– off-axis coverage
– oscillations

● near detector upgraded complex and fitting method inherited from 
T2K
– common systematic uncertainties on neutrino interaction processes 

constrained by ND280 have been reduced to 3% on the (SK) predicted 
event rates

● weaknesses of current ND280 setup:

Intermediate Water
Cherenkov Detector

(IWCD)

ND280 upgrade
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IWCD
● kiloton size detector to contain ~1GeV muons
● distance 1-2 km to

– minimize pile-up
– keep high number of events
– nearly identical (unoscillated)

flux as in the far detector
● Gd loading for neutron tagging
● off-axis angle spanning coverage

(1-4º)
– energy dependence of

neutrino interactions
– higher intrinsic ν

e
 component at higher angles → relative ν

e
 cross-

section measurement
● complementary measurements to ND280 magnetised tracking 

detector
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IWCD
● tank: 8m high, 10m diameter, 628 tons

– Inner Detector 6m high, 8m diameter
– Outer Detector 1m thick

● mPMT modules in ID
● instrumented part of the detector can be

moved in ~50 shaft by hydraulics/guide rails
● additional physics program

– cross section measurements
– search for sterile neutrinos
– independent supernova alert

● initial phase: detector
on the surface near the ND280
at off-axis angle of 6-12º
– beam tests planned at CERN

with 3-4m diameter prototype
50
m

10m
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Expected systematics
● based on T2K experience

with some assumptions
on better knowledge of
the neutrino beam,
interactions and
detector
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Expected numbers of events
● 10 years exposure

– 2.7·1022 POT
– ν:ν data taking 1:3

● ν
e
 appearance

– shape information
can be used to
distinguish different 
values of δ

CP

● ν
μ
 disappearance

– -90°
– +90°
– 180°

δ
CP

 = 0 right-sign 
ν

μ
 → ν

e
 

CC

wrong sign
ν

μ
 → ν

e
 

CC

ν
μ
, ν

μ
 

CC
intrinsic 
beam 

ν
e
 

NC T2K 
2019 
data

ν beam 1643 15 7 259 134 90

ν beam 1183 206 4 317 196 15

ν
μ
 + ν

μ
 

CCQE

ν
μ
 CC

nonQE
other

ν beam
(T2K:243) 6391 3175 515

ν beam
(140) 8798 4315 614
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Precise measurements of θ23

● joint fit of ν
μ
 and ν

e
 samples allows to

precisely measure sin2θ
23

 and Δm2
32

● expected precision
– ~0.017 at sin2θ

23
 = 0.5

– ~0.006 at sin2θ
23

 = 0.45

● for non-maximal θ
23

 the reactor constraint breaks octant degeneracy

True sin2θ
23

 =0.5 (maximal
mixing case)

With a constraint on sin2 213 from 
the reactor experiments, Hyper-K 
measurements can resolve the 
octant degeneracy and precisely 
determine sin2 23.

non-maximal mixing case
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CPV sensitivity
● exclusion of sinδ

CP 
= 0 with

– ~8σ if true δ
CP 

= ±90°

– > 5σ for 57% of δ
CP

 values

– > 3σ for 76% of δ
CP

 values

● δ
CP

 resolution

– 22° precision at δ
CP 

= ±90º

– 7° precision at δ
CP 

= 0º or 180º

● combination with atmospheric data
enhances the sensitivity

It is expected by the time Hyper-K will start
its operation, around the year 2025, the mass
hierarchy could be determined at (3-4) or 
more

expected signicance to 
exclude sinδ

CP
 = 0
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Second tank: T2HKK?
● 2nd tank would improve sensitivities for all HK physics goals

● for beam neutrinos location outside Japan is particularly interesting
● under investigation: build 2nd tank in Korea

– 1000-1200km baseline
– 1.3-3.0º off-axis beam
– enhances sensitivity

to mass hierarchy
and CP violation
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Situation with one tank in Korea
● 1st and 2nd oscillation maxima covered

– CP asymmetry for ν
e
/ν

e
 appearance is 3x larger than at 1st maximum

– larger CP effect → less sensitive to systematic errors
● larger matter effect for longer baseline

– better sensitivity for mass hierarchy
● smaller number of events because of flux reduction
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Sensitivities
mass hierarchy
– for 1.5° off-axis

6-8σ    (true NH)
5.5-7σ (true IH)
for all δ

CP

                                                      CP violation
–                                                        – known hierarchy

–                                                        – unknown hierarchy

true NH true IH

– HKx2
– HK+KD at 2.5°
– HK+KD at 2.0°
– HK+KD at 1.5°
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Atmospheric neutrinos
● flux of electron neutrinos – affected by matter effects

● presence of a resonance in multi-GeV region → mass hierarchy
● magnitude of the resonance → θ

23
 octant

● scale and direction of the effect at 1 GeV → δ
CP

ν
e
 flux

relative to no
oscillations
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Atmospheric neutrinos
● single tank after 10 years (1.9 Mton year exposure)

mass hierarchy sensitivity θ
23

 octant sensitivity
 as a function of true θ

23

2.2σ-4.9σ

Normal hierarchy
Inverted hierarchy

wrong octant rejection
3σ if |θ

23
 – 45°| ≥ 4°

width = uncertainty from CP
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Atmospheric+beam neutrinos
● complementary measurement → improved performance 
● 3σ ability to reject the incorrect mass hierarchy after 5 years

3.8σ-6.2σ

wrong hierarchy
rejection

wrong octant rejection
3σ if |θ

23
 – 45°| ≥ 2.3°
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Solar neutrinos
● reminder:

● detection by elastic scattering
ν + e → ν + e
(x-sec for ν

e
 7x larger than for other flavours)

– threshold for CC reaction ν
e
 + 16O → e– + 16F: 18 MeV

● oscillations of solar neutrinos: matter effects in the Sun, θ
12

, Δm2
21

– sector 1-2 is also studied with reactor neutrinos (KamLAND)
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Solar neutrino spectrum upturn
● transition region between the vacuum oscillations and matter-

dominated energy regions

● precise measurement
of the spectrum shape
allows to distinguish
the usual neutrino oscillation
scenario from exotic models

● HK can measure
the solar upturn to
~5σ (3σ) after 10 years
with 3.5 MeV (4.5 MeV)
threshold
– 2.7x higher spallation background than in SK
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Solar neutrinos
● mixing angle is consistent

between solar and reactor
experiments

● tension ~2σ between Kamland
and global solar analysis in Δm2

21

– from the Super-K 3σ indication
of the solar neutrino day-night
asymmetry
and energy spectrum shape

– day-night asymmetry caused
by electron component regeneration
in Earth

– → few percent higher event rate at night

solar

reactor
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Solar neutrinos
● goal: precise measurement of

Δm2
21

 and day-night asymmetry

– expected >5σ sensitivity
● new physics needed

if the tension is a real effect

● other planned measurements:
– time variation measurement

(with rate of 200ν/day)
→ monitoring of the Sun
core temperature

– first measurement of hep component (~2-3σ)
● more information on the Sun interior around the core
● solar abundance (chemical composition)

Non-zero asymmetry 
significance

vs KamLAND best fit
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Supernova neutrinos
● reminder:

– neutrinos carry away 99% of supernova energy
– two components: short (10ms) neutronization burst

 e + p → ν
e
 + n

● detected by elastic scattering on electrons
● directional information, accuracy 1-1.3°

expected for supernova at 10kpc
– accretion phase (<1s) and cooling phase

(several s) → thermal neutrinos
 e+ + e– → Z0 → ν

x
 + ν

x

● ν
e
 detected by inverse beta decay (IBD)

ν
e
 + p → e+ + n

● good localization in time →
– low radioactive background
– energies even down to 3 MeV
– increased FV can be used



33

Supernova ν event rate
● in simulation the oscillations have to be taken into account

– MSW effect through the stellar medium, hierarchy dependant
– also collective effects in high-density core 

● expected number of events:
– 54-90k events (@ 10kpc)
– 2-3.6k (@ SN1987a)

● for comparison – 25 neutrinos (in total)
observed from SN1987a

● peak event rate of IBD events
may reach about 50 kHz at 10 kpc
– Betelgeuse → ~MHz

● early warning for optical and x-ray
telescopes
– directional accuracy 1-1.3º at 10kpc
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Supernova ν time and spectrum
● simulations for 10 kpc
● arrival time → sharp rise → neutrino mass, shape – mass hierarchy, 

multidimensional dynamics of the core-collapse supernovae
● energy spectra (extracted from visible energy)

– ΔE/E ~20% at 10-20MeV
time profile visible energy spectra
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Supernova relic neutrinos
or diffuse supernova neutrino background

● expected flux few tens/cm2/sec
● history of heavy elements synthesis
● search limited by small flux and background:

– 0.8-5 IBDs/year above 10 MeV in SK
– spallation for low energies
– atmospheric neutrinos for higher energies

(decay electrons from under-threshold muons)

● first measurement may be done
by SK-Gd with tagging of neutron
produced in IBD
– energy range 10-20 MeV
– neutron capture efficiency 90%

with 0.1% of Gd
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Supernova relic neutrinos in HK
● higher statistics expected in HK

– possibility to measure spectrum
● neutron tagging by

n + p → d + γ(2.2 MeV)
with 70% efficiency

● different search window
(~16-30 MeV),
– complementary to SK-Gd searches

(10-20 MeV)
– contribution of extraordinary

supernova bursts (like black hole
formation, BH): provides information
on the star formation history and
metallicity

expected inverse beta decay events

ν temperature
8 MeV for BH formation

ν temperature
6 MeV
8 MeV for BH

range of
search in HK

spallation bkg

atmospheric bkg
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Nucleon decays in GUTs
Baryon number violation has never been experimentally observed

 lifetime limits greatly restrict
allowable Grand Unified theories



38

Search for p→e+π0 decay
● decay mode p →e+π0 is favoured by many GUTs

● possible to fully reconstruct the proton
mass

● background coming from atmospheric
neutrinos
– producing pions directly or in the

secondary interactions
– often accompanied by neutrons

● analysis similar as in SK but
with neutron tagging (veto)
thanks to improved PMTs

e+ and photons detected as e-like rings 
→ final state fully reconstructed
(practically background free)
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Search for p→e+π0 decay
● neutron tagging for background rejection

– neutron capture in water: n (p,d) γ (2.2 MeV)
– efficient tagging of prompt γ from residual nuclei deexcitation
– ~50% reduction of atmospheric background

● water: 2 free protons (no nuclear effects) + 8 bound protons
 → very low total momentum
 (very small atmospheric background) MC: 10 year exposure

lifetime 1.7e34 y

low momentum

high momentum Reconstructed
invariant mass
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Search for p→e+π0 decay
● > 1035 years: 3σ discovery

with 4.0 Mton yr

● if proton lifetime is at current
Super-K limit (1.7·1034 y)
Hyper-K will observe a signal
– at 3σ after 2 years
– at 9σ after ~15 years

3σ discovery
potential

Liquid Argon
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● final state containing second generation
quarks favored by SUSY GUTs

● kaon (340 MeV/c) below Cherenkov
threshold (749 MeV/c)
→ reconstructed from decay products
– K+→μ+ν (BR 64%)

● monochromatic muon (236 MeV)
+prompt deexcitation photon (6.3 MeV)

● excess in muon spectrum
– K+→π0π+ decay (BR 21%)

● p
π+

 = 205 MeV/c (slightly above

the threshold, difficult to reconstruct)

● benefits from enhanced light collection

Search for p→νK+ decay
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● discovery potential higher in liquid Argon
● if proton lifetime at current Super-K limit (6.6·1033 y) Hyper-K will 

observe a signal at 8.6σ after ~15 years

● 90% sensitivity for 10 y exposure
– 7.8·1034 years for p → π0e+

– 3.2·1034 years for p → νK+

● basically one order of magnitude improvement for many other modes

Search for p→νK+ decay

3σ discovery
potential
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Conclusions
● Hyper-Kamiokande is multi-purpose project with long term, wide 

physics program
– high sensitivity to CP violation and other oscillation measurements
– neutrino astrophysics
– sensitivity to nucleon decay over 5 times higher than current limits

● construction to start in April 2020 (data taking in ~2027)
– plan to build a second tank in the future (in Korea?)

● an updated TDR in preparation (ready soon)

?

J.Kameda
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Backup slides
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Water Cherenkov detectors in Japan
● Kamiokande 4.5 (0.68) kton

(1983-1996) PMT coverage 20%
– neutrinos from SN1987a, deficit of atmospheric

neutrinos
● Super-Kamiokande 50 (22.5) kton

(1996- ) PMT coverage 40%
– oscillations of solar and

atmospheric neutrinos
– world leading limit on proton lifetime
– ν

e
 appearance

● mature, known, scalable technology

● Hyper-Kamiokande 260 (188) kton
(~2027- ) PMT coverage 40%

72

68 m

40 m

40 m
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Beam spectrum
● expected beam power:

● upgrade power supplies for horns
– design current of 320 kA (wrt 250 kA)
– +~20% higher neutrino flux.
– reduction of wrong-sign neutrino

contamination by 5-10%.

thin target data from NA61/SHINE are applicable to the flux calculation, while replica 
target data may be used if the target geometry does not change signicantly.
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● allows for CP violation studies

What so special about ν
μ
 → ν

e
 channel? 

for ν
δCP→−δCP
a→−a a=2√2GF ne Eν

P (νμ →νe )=4 c13
2 s13

2 s23
2 sin2Δ31

+8c13
2 s12 s13 s23(c12 c23cosδCP−s12 s13 s23)cosΔ32 sinΔ31sinΔ21

−8c13
2 c12 c23 s12 s13 s23 sinδCPsinΔ32sinΔ31sinΔ21

+4 s12
2 c13

2
(c12
2 c23

2
+s12

2 s23
2 s13

2
−2c12 c23 s12 s23 s13 cosδCP )sin

2
Δ21

−8c13
2 s13

2 s23
2 a L
4 Eν

(1−2 s13
2 )cosΔ32sinΔ31+8c13

2 s13
2 s23

2 a

Δm31
2

(1−2s13
2 )sin2Δ31

dominant term

matter

CP violation

subleading effect,
can be as large as 30%
of dominant

ne related to matter density
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