

Justyna Łagoda

Outline

- Water Cherenkov detectors in Japan
- Hyper-Kamiokande technical design
- physics program
 - beam neutrinos
 - atmospheric neutrinos
 - solar neutrinos
 - supernova neutrinos
 - nucleon decay searches
- summary

Water Cherenkov detectors in Japan

- Kamiokande 4.5 (0.68) kton (1983-1996) PMT coverage 20%
 neutrinos from SN1987a, deficit of atmospheric neutrinos
 Super-Kamiokande 50 (22.5) kton (1996-) PMT coverage 40%
 - oscillations of solar and atmospheric neutrinos
 - world leading limit on proton lifetime
 - v_e appearance
- mature, known, scalable technology
- Hyper-Kamiokande 260 (188) kton (~2027-) PMT coverage 40%

68 m

HK history

- LOI: 2011 (arXiv:1109.3262)
- proto-collaboration formed January 2015
 - ~300 people, ~80 institutes
- MEXT Large Projects Roadmap:2017
- design report: 2018
- seed funding: 2018
- approval: early 2020

12/February/2020

The University of Tokyo

High Energy Accelerator Research Organization (KEK) Japan Proton Accelerator Research Complex (J-PARC) Center

Hyper-Kamiokande (HK or Hyper-K) project is the world-leading international scientific research project hosted by Japan aiming to elucidate the origin of matter and the Grand Unified Theory of elementary particles. The project consists of the Hyper-K detector, which has an 8.4 times larger fiducial mass than its predecessor, Super-Kamiokande, equipped with newly developed high-sensitivity photosensors and a highintensity neutrino beam produced by an upgraded J-PARC accelerator facility.

The supplementary budget for FY2019 which includes the first-year construction budget of 3.5 billion yen for the Hyper-Kamiokande project was approved by the Japanese Diet. The Hyper-K project has officially started. The operations will begin in 2027.

Location

- candidate site 8 km south of Super-Kamiokande
- Tochibora mine
 - under Mt. Nijugo-yama
 - overburden ~650m (~1755m.w.e.)
 - geological conditions: detailed survey performed

Cavern and tank

Tank size	H 72 m × Φ 68 m		
Water height	71 m		
ID volume	217.0 kt		
Fiducial volume	188.4 kt		
ID surface	19991.1 m ²		

total mass 260 kt

into Hyper-K

- cavern can be built with existing technologies
- outer detector to constrain the external background

Barrel region 1m thick endcaps 2m thick

The photodetectors – basic design

- new Hamamatsu 50 cm B&L PMT with improved dynode
 - quantum efficiency 30% at 390 nm (~1.4xSK)
 - collection efficiency 95% at 10⁷ gain (~1.3xSK)
 - improved charge and timing resolution (~1 ns)
 → almost 2x better overall photon efficiency
 - lower dark rate
 - new glass: lower radioactivity, higher pressure tolerance
- 40 000 in the ID \rightarrow 40% photocoverage

The photodetectors

- acrylic covers to protect PMT from sudden pressure changes
- other considered solutions
 - multiPMT arrays of 19 smaller (8 cm) PMTs
 - increase of photocathode area
 - superior photon counting
 - improved angular acceptance
 - extension of dynamic range
 - intrinsic directional sensitivity
 - local coincidences
 - possible light collection devices (reflectors, photon traps etc.)
- outer detector: 10-20k PMT of 20 cm diameter, 1% coverage

Electronics and DAQ

- front-end electronics
 - submerged in the water
 - shorter cables → less weight and no degradation of the signal
 - inability to do repairs → redundant, fail-safe system and careful design to avoid failures and lost of region of the detector
 - watertight front-end boxes (24 channels) and watertight fibre optic connectors
 - low power consumption (<1 W/channel)

- trigger for the total number of hits seen in a sliding time-window exceeding a certain threshold
- no dead time
- delayed energy depositions after triggered event
- large amount of events in short time (supernova burst)

Calibration

- PMT response, readout electronics, the optical properties of detector material, e.g. water, PMT (glass bulb and housing material), black sheet, and tyvek sheet
 - "relative" photo-detection efficiency (quantum efficiency x collection efficiency) of each single PMT for single photon level of light → important for the low energy physics
 - PMT/electronics linearity for the full dynamic range → important for highenergy physics
 - water optical properties, absorption and scattering of light \rightarrow all analyses
- various calibration sources:
 - light sources (laser, laser diodes)
 - radioactive sources
 - neutron generators
 - linear accelerator
 - off-timing hits sources
 - physics events such as cosmic rays, Michel electrons etc.

Calibration - LINAC

- to calibrate the absolute energy scale, energy resolution, vertex and direction resolution of low energy electrons
- NCBJ Accelerator Division involved

Timeline

Physics program

- neutrino oscillations
 - with beam and atmospheric neutrinos
 - CP violation
 - precise measurement of θ_{23}
 - mass hierarchy determination
- neutrino astrophysics
 - precise measurement of solar neutrinos, sensitivity to address solar and reactor neutrinos discrepancy.
 - supernova burst and relic supernova neutrinos
- searching for nucleon decay
 - sensitivity 10x better than Super-K (10³⁵ years)
 - all visible modes can be advanced
- other: indirect Dark Matter search, geophysics, neutrinos from solar flares etc.

J-PARC

Beam neutrinos (T2HK)

- the same baseline (295 km) and off-axis angle (2.5°) as Super-K
- narrow band beam at ~600MeV
- neutrino or antineutrino beam mode
- upgrade of beam power
 - 0.75 MW upgrade starting in 2021 (currently ~515 kW)
 - increasing repetition rate from
 0.4 to 0.86 Hz → 1.326 MW by 2026
 - 3.2e14 protons per pulse (now 2.45·10¹⁴ ppp)
- upgrade power supplies for horns
 - design current of 320 kA (wrt 250 kA)
 - +~20% higher neutrino flux.
 - reduction of wrong-sign neutrino contamination by 5-10%.

Near detectors

- near detector upgraded complex and fitting method inherited from T2K
 - <u>common</u> systematic uncertainties on neutrino interaction processes constrained by ND280 have been reduced to 3% on the (SK) predicted event rates

Muons in TPC or stopping in SuperFGD

04

true cos f

- weaknesses of current ND280 setup:
 - angular efficiency (difference in acceptance)
 - low efficiency for low energy hadrons
 ND280 upgrade

existing tracke

surrounded by TOF

new tracker

PC

D

SuperFGD

- different target nucleus than in far detector
- near and far detectors do not sample the same neutrino spectrum
 - off-axis coverage

oscillations

Intermediate Water Cherenkov Detector (IWCD) 15

IWCD

- kiloton size detector to contain ~1GeV muons
- distance 1-2 km to
 - minimize pile-up
 - keep high number of events
 - nearly identical (unoscillated) flux as in the far detector
- Gd loading for neutron tagging
- off-axis angle spanning coverage (1-4°)
 - energy dependence of neutrino interactions
 - higher intrinsic $v_{_{\rm e}}$ component at higher angles \rightarrow relative $v_{_{\rm e}}$ cross-section measurement
- complementary measurements to ND280 magnetised tracking detector

IWCD

- tank: 8m high, 10m diameter, 628 tons
 - Inner Detector 6m high, 8m diameter
 - Outer Detector 1m thick
- mPMT modules in ID
- instrumented part of the detector can be moved in ~50 shaft by hydraulics/guide rails
- additional physics program
 - cross section measurements
 - search for sterile neutrinos
 - independent supernova alert
- initial phase: detector on the surface near the ND280 at off-axis angle of 6-12°
 - beam tests planned at CERN with 3-4m diameter prototype

Expected systematics

 based on T2K experience with some assumptions on better knowledge of the neutrino beam, interactions and detector

		Flux & ND-constrained	ND-independent	Far detector	Total
		cross section	cross section		Total
ν mode	Appearance	3.0%	0.5%	0.7%	3.2%
	Disappearance	3.3%	0.9%	1.0%	3.6%
$\overline{\nu}$ mode	Appearance	3.2%	1.5%	1.5%	3.9%
	Disappearance	3.3%	0.9%	1.1%	3.6%

Expected numbers of events

Precise measurements of θ_{23}

for non-maximal θ₂₃ the reactor constraint breaks octant degeneracy₂₀

CPV sensitivity

- exclusion of $\sin \delta_{CP} = 0$ with
 - ~8 σ if true δ_{CP} = ±90°
 - > 5 σ for 57% of δ_{CP} values
 - > 3 σ for 76% of δ_{CP} values
- δ_{CP} resolution
 - 22° precision at $\delta_{CP} = \pm 90^{\circ}$
 - 7° precision at $\delta_{CP} = 0^{\circ}$ or 180°
- combination with atmospheric data enhances the sensitivity

Second tank: T2HKK?

- 2nd tank would improve sensitivities for all HK physics goals
- for beam neutrinos location outside Japan is particularly interesting
- under investigation: build 2nd tank in Korea
 - 1000-1200km baseline
 - 1.3-3.0° off-axis beam
 - enhances sensitivity to mass hierarchy and CP violation

Situation with one tank in Korea

- 1st and 2nd oscillation maxima covered
 - CP asymmetry for v_e/\bar{v}_e appearance is 3x larger than at 1st maximum
 - larger CP effect \rightarrow less sensitive to systematic errors
- larger matter effect for longer baseline
 - better sensitivity for mass hierarchy
- smaller number of events because of flux reduction

Sensitivities

Atmospheric neutrinos

flux of electron neutrinos – affected by matter effects

- presence of a resonance in multi-GeV region → mass hierarchy
- magnitude of the resonance $\rightarrow \theta_{23}$ octant
- scale and direction of the effect at 1 GeV $\rightarrow \delta_{CP}$

Atmospheric neutrinos

• single tank after 10 years (1.9 Mton year exposure)

Atmospheric+beam neutrinos

- complementary measurement \rightarrow improved performance
- 3σ ability to reject the incorrect mass hierarchy after 5 years

wrong octant rejection 3σ if $|\theta_{23} - 45^{\circ}| \ge 2.3^{\circ}$

Solar neutrinos

- threshold for CC reaction $v_e^{+16}O \rightarrow e^{-} + {}^{16}F$: 18 MeV
- oscillations of solar neutrinos: matter effects in the Sun, θ_{12} , Δm_{21}^2
 - sector 1-2 is also studied with reactor neutrinos (KamLAND)

Solar neutrino spectrum upturn

- transition region between the vacuum oscillations and matterdominated energy regions
- precise measurement of the spectrum shape allows to distinguish the usual neutrino oscillation scenario from exotic models
- HK can measure the solar upturn to ~5σ (3σ) after 10 years with 3.5 MeV (4.5 MeV) threshold

- 2.7x higher spallation background than in SK

Solar neutrinos

- mixing angle is consistent between solar and reactor experiments
- tension ~2σ between Kamland and global solar analysis in Δm²₂₁
 - from the Super-K 3σ indication of the solar neutrino day-night asymmetry and energy spectrum shape
 - day-night asymmetry caused by electron component regeneration in Earth
 - \rightarrow few percent higher event rate at night

Solar neutrinos

- goal: precise measurement of Δm²₂₁ and day-night asymmetry
 - expected >5σ sensitivity
- new physics needed if the tension is a real effect
- other planned measurements:
 - time variation measurement (with rate of 200v/day)
 → monitoring of the Sun core temperature
 - first measurement of *hep* component ($\sim 2-3\sigma$)
 - more information on the Sun interior around the core
 - solar abundance (chemical composition)

Supernova neutrinos

- reminder:
 - neutrinos carry away 99% of supernova energy
 - two components: short (10ms) neutronization burst

 $e + p \rightarrow v_e + n$

- detected by elastic scattering on electrons
- directional information, accuracy 1-1.3° expected for supernova at 10kpc
- accretion phase (<1s) and cooling phase (several s) → thermal neutrinos

 $e^+ + e^- \rightarrow Z^0 \rightarrow v_x + \overline{v}_x$

- \overline{v}_{e} detected by inverse beta decay (IBD) $\overline{v}_{e} + p \rightarrow e^{+} + n$
- good localization in time \rightarrow
 - low radioactive background
 - energies even down to 3 MeV
 - increased FV can be used

Supernova v event rate

- in simulation the oscillations have to be taken into account
 - MSW effect through the stellar medium, hierarchy dependant
 - also collective effects in high-density core
- expected number of events:
 - 54-90k events (@ 10kpc)
 - 2-3.6k (@ SN1987a)
 - for comparison 25 neutrinos (in total) observed from SN1987a
- peak event rate of IBD events may reach about 50 kHz at 10 kpc
 - Betelgeuse $\rightarrow \sim MHz$
- early warning for optical and x-ray telescopes
 - directional accuracy 1-1.3° at 10kpc

Supernova v time and spectrum

- simulations for 10 kpc
- arrival time → sharp rise → neutrino mass, shape mass hierarchy, multidimensional dynamics of the core-collapse supernovae
- energy spectra (extracted from visible energy)
 - ΔE/E ~20% at 10-20MeV

34

Supernova relic neutrinos

or diffuse supernova neutrino background

- expected flux few tens/cm²/sec
- history of heavy elements synthesis
- search limited by small flux and background:
 - 0.8-5 IBDs/year above 10 MeV in SK
 - spallation for low energies
 - atmospheric neutrinos for higher energies (decay electrons from under-threshold muons)
- first measurement may be done by SK-Gd with tagging of neutron produced in IBD
 - energy range 10-20 MeV
 - neutron capture efficiency 90% with 0.1% of Gd

Supernova relic neutrinos in HK

- higher statistics expected in HK
 - possibility to measure spectrum
- neutron tagging by
 n + p → d + γ(2.2 MeV)
 with 70% efficiency
- different search window (~16-30 MeV),
 - complementary to SK-Gd searches (10-20 MeV)
 - contribution of extraordinary supernova bursts (like black hole formation, BH): provides information on the star formation history and metallicity

Nucleon decays in GUTs

Search for $p \rightarrow e^+\pi^0$ decay

• decay mode $p \rightarrow e^+\pi^0$ is favoured by many GUTs

 e^+ and photons detected as e-like rings \rightarrow final state fully reconstructed (practically background free)

- possible to fully reconstruct the proton mass
- background coming from atmospheric neutrinos
 - producing pions directly or in the secondary interactions
 - often accompanied by neutrons
- analysis similar as in SK but with neutron tagging (veto) thanks to improved PMTs

Search for $p \rightarrow e^+\pi^0$ decay

- neutron tagging for background rejection
 - neutron capture in water: n (p,d) γ (2.2 MeV)
 - efficient tagging of prompt γ from residual nuclei deexcitation
 - ~50% reduction of atmospheric background
- water: 2 free protons (no nuclear effects) + 8 bound protons

Search for $p \rightarrow e^+\pi^0$ decay

- > 10³⁵ years: 3σ discovery with 4.0 Mton yr
- if proton lifetime is at current Super-K limit (1.7·10³⁴ y) Hyper-K will observe a signal
 - at 3σ after 2 years
 - at 9σ after ~15 years

$0 < p_{tot}$	$< 100 { m ~MeV}/c$	$100 < p_{tot} < 250~{\rm MeV}/c$		
ϵ_{sig} [%]	Bkg $[/Mton \cdot yr]$	ϵ_{sig} [%]	Bkg [/Mton·yr]	
18.7 ± 1.2	0.06 ± 0.02	19.4 ± 2.9	0.62 ± 0.20	

Search for $p \rightarrow \overline{v}K^+$ decay

Prompt γ		$\pi^+\pi^0$		p_{μ} Spectrum	
ϵ_{sig} [%]	Bkg $[/Mton \cdot yr]$	ϵ_{sig} [%]	$Bkg ~[/Mton \cdot yr]$	ϵ_{sig} [%]	Bkg $[/Mton \cdot yr]$
12.7 ± 2.4	0.9 ± 0.2	10.8 ± 1.1	0.7 ± 0.2	31.0	1916.0

Search for $p \rightarrow VK^+$ decay

- discovery potential higher in liquid Argon
- if proton lifetime at current Super-K limit (6.6·10³³ y) Hyper-K will observe a signal at 8.6σ after ~15 years

- 90% sensitivity for 10 y exposure
 - 7.8 \cdot 10³⁴ years for p $\rightarrow \pi^0 e^+$
 - 3.2·10³⁴ years for $p \rightarrow vK^+$
- basically one order of magnitude improvement for many other modes

Conclusions

- Hyper-Kamiokande is multi-purpose project with long term, wide physics program
 - high sensitivity to CP violation and other oscillation measurements
 - neutrino astrophysics
 - sensitivity to nucleon decay over 5 times higher than current limits
- construction to start in April 2020 (data taking in ~2027)
 - plan to build a second tank in the future (in Korea?)
- an updated TDR in preparation (ready soon)

Water Cherenkov detectors in Japan

4.5 (0.68) kton

- Kamiokande 4.5 (0.6 (1983-1996) PMT coverage 20%
 - neutrinos from SN1987a, deficit of atmospheric neutrinos
 - Super-Kamiokande 50 (22.5) kton (1996-) PMT coverage 40%
 - oscillations of solar and atmospheric neutrinos
 - world leading limit on proton lifetime
 - v_e appearance
 - mature, known, scalable technology
 - Hyper-Kamiokande 260 (188) kton (~2027-) PMT coverage 40%

68 |

Beam spectrum

expected beam power:

Flux [/(50 MeV· cm²· 1e21 POT)]

 10°

 10^{5}

 10^{4}

 10^{3}

 10^{2}

- upgrade power supplies for horns
 - design current of 320 kA (wrt 250 kA)
 - +~20% higher neutrino flux.
 - reduction of wrong-sign neutrino contamination by 5-10%.

thin target data from NA61/SHINE are applicable to the flux calculation, while replica target data may be used if the target geometry does not change signicantly.

What so special about
$$v_{\mu} \rightarrow v_{e}$$
 channel?

• allows for CP violation studies

$$P(v_{\mu} \rightarrow v_{e}) = 4 c_{13}^{2} s_{13}^{2} s_{23}^{2} \sin^{2} \Delta_{31} \quad \text{dominant term} \\ + 8 c_{13}^{2} s_{12} s_{13} s_{23} (c_{12} c_{23} \cos \delta_{CP} - s_{12} s_{13} s_{23}) \cos \Delta_{32} \sin \Delta_{31} \sin \Delta_{21} \\ - 8 c_{13}^{2} c_{12} c_{23} s_{12} s_{13} s_{23} (s_{10} \delta_{CP} \sin \Delta_{32} \sin \Delta_{31} \sin \Delta_{21} \quad \text{CP violation} \\ + 4 s_{12}^{2} c_{13}^{2} (c_{12}^{2} c_{23}^{2} + s_{12}^{2} s_{23}^{2} s_{13}^{2} - 2 c_{12} c_{23} s_{12} s_{23} s_{13} \cos \delta_{CP}) \sin^{2} \Delta_{21} \\ - 8 c_{13}^{2} s_{13}^{2} s_{23}^{2} \frac{a L}{4 E_{\nu}} (1 - 2 s_{13}^{2}) \cos \Delta_{32} \sin \Delta_{31} + 8 c_{13}^{2} s_{13}^{2} s_{23}^{2} \frac{a}{\Delta m_{31}^{2}} (1 - 2 s_{13}^{2}) \sin^{2} \Delta_{31} \\ \text{for } \bar{\nu} \\ \delta_{CP} \rightarrow -\delta_{CP} \\ a \rightarrow -a \quad a = 2 \sqrt{2} G_{F} n_{e} E_{\nu} \\ n_{e} \text{ related to matter density} \\ \text{subleading effect,} \\ \text{can be as large as 30\%} \\ \text{of dominant} \quad \text{subleading effect,} \\ \text{can be as large as 30\%} \\ \text{of dominant} \quad \text{for } V \\ e_{N} (\text{GeV}) \stackrel{2}{=} 47$$