

New results on the

laser-accessible nuclear transition in Thorium-229

Thorsten Schumm

Institute for Atomic and Subatomic Physics
University of Technology, Vienna
www.quantummetrology.at

New results on ²²⁹Th Outline

Introduction: nuclear physics with a laser?

- The low-energy nuclear transition in ²²⁹Thorium
- On nuclear clocks and fundamental constants

New results on ²²⁹Th Outline

Energy input E Absorber Magnetic field B Sensor Weak thermal link G Heat bath

Introduction: nuclear physics with a laser?

- The low-energy nuclear transition in ²²⁹Thorium
- On nuclear clocks and fundamental constants

Experiment 1: Gamma measurements

- A brief history of the ²²⁹Th isomer energy
- The 2007 Beck et al. gamma measurement
- The 2020 measurement: isomer energy + branching ratio

Experiment 2: IC measurements

- The 2017 LMU measurement: proof of existence
- The 2018 PTB + LMU measurement: optical transitions
- The 2019 measurement: isomer energy

Experiment 3: X-ray pumping

- The 2019 SPring-8 experiment: isomer pumping
- + isomer energy + branching ratio

New (?) results on ²²⁹Th **Outline**

Energy input E Weak thermal link

Introduction: nuclear physics with a laser?

- The low-energy nuclear transition in ²²⁹Thorium
- On nuclear clocks and fundamental constants

Experiment 1: Gamma measurements

- The 2020 measurement: isomer The 2007 Beck et al. gamma measurement 2.10 measurement: isomer energy to branching ratio

Experiment 2: IC measurements

• The 2018 Energy of the 229 Th nuclear clock transition

Experiment 3: X-ray pumping

- The 2019 SPri LETTER
- + ISOMET ENERGY

 X-ray pumping of the 229Th nuclear clock isom

 X-ray pumping of the 1229Th nuclear clock isom

 Takahiko Masuda¹, Akhiro Yoshimi¹, Akira Fujieda¹, Hiroyak Fujimota², Hiromitsu Haba², Hideaki Hara¹, Takahi

 Takahiko Masuda¹, Akhiro Yoshimi¹, Akira Fujieda¹, Hiroyak Fujimota², Koria Suzuki², Simon Stelliner^{2,0}, Kenji Suzuki², S

New results on Th

State of the State of State O

New results on ²²⁹Th **Questions** ???

New results on ²²⁹Th Outline

Absorber Magnetic field 8 Absorber Read-out Sensor Weak thermal link G

Introduction: nuclear physics with a laser?

- The low-energy nuclear transition in ²²⁹Thorium
- On nuclear clocks and fundamental constants

Experiment 1: Gamma measurements

- A brief history of the ²²⁹Th isomer energy
- The 2007 Beck et al. gamma measurement
- The 2020 measurement: isomer energy + branching ratio

Experiment 2: IC measurements

- The 2017 LMU measurement: proof of existence
- The 2018 PTB + LMU measurement: optical transitions
- The 2019 measurement: isomer energy

Experiment 3: X-ray pumping

- The 2019 SPring-8 experiment: isomer pumping
- + isomer energy + branching ratio

Nuclear physics with a laser? The gap between atomic and nuclear physics

Atomic physics

main tool of study: laser spectroscopy

Atomic spectroscopy for metrology

- · provides a frequency standard
- 1s = 9.192.631.770 oscillations in Cs
- crucial for fundamental research
- applications: GPS, communication
- miniaturization possible

Nuclear physics with a laser? The gap between atomic and nuclear physics

Atomic physics

main tool of study: laser spectroscopy

Atomic spectroscopy for metrology

- provides a frequency standard
- 1s = 9.192.631.770 oscillations in Cs
- crucial for fundamental research
- applications: GPS, communication
- miniaturization possible

Nuclear physics

main tool of study: particle accelerators

Nuclear spectroscopy for metrology

- no frequency standard (although suited!)
- used in fundamental research
- (Mössbauer spectroscopy, dating)
- no direct metrology applications
- no miniaturization

Nuclear physics with a laser? The gap between atomic and nuclear physics

main tool
of study:
laser
spectroscopy

Nuclear physics

main tool of study: particle accelerators

Atomic spectroscopy for metrology

- provides a frequency standard
- 1s = 9.192.631.770 oscillations in Cs
- crucial for fundamental research
- applications: GPS, communication
- miniaturization possible

Nuclear spectroscopy for metrology

- NEW frequency standards?
- new fundamental research possible!
- (Mössbauer spectroscopy, dating)
- miniaturization possible
- applications ahaid?

Isotopes with low-lying excited states:

Tc-99	2150	eV	
Hg-201	1561	eV	
W-183	544	eV	
U-235	76	eV	≈ 17 nm
Th-229	~8	eV	≈ 150 nm

Isotopes with low-lying excited states:

Tc-99	2150	eV	
Hg-201	1561	eV	
W-183	544	eV	
U-235	76	eV	≈ 17 nm
Th-229	~8	eV	≈ 150 nm

²²⁹Thorium facts:

- radio isotope: half life 7880 years, very rare, totally artificial substance
- ionization energies: 6.1 eV, 11.5 eV, 20 eV → need to work with the ion
- \odot low scattering cross section (estimated $\sigma \approx 10^{-21}$ cm²)

(a single Rb Atom has 10⁻⁹ cm²)

(vulv) no easy (tunable) excitation source at 150 nm (vulv)

²²⁹Thorium facts:

- radio isotope: half life 7880 years, very rare, totally artificial substance
- ionization energies: 6.1 eV, 11.5 eV, 20 eV → need to work with the ion
- \odot low scattering cross section (estimated $\sigma \approx 10^{-21}$ cm²)

(a single Rb Atom has 10⁻⁹ cm²)

- (vulv) no easy (tunable) excitation source at 150 nm (vulv)
- narrow transition for a frequency standard
- © robust nuclear transition
- © can be embedded in a crystal

a solid-state
_ "nuclear"
clock ?

²²⁹Thorium facts:

- radio isotope: half life 7880 years, very rare, totally artificial substance
- ionization energies: 6.1 eV, 11.5 eV, 20 eV → need to work with the ion
- \odot low scattering cross section (estimated $\sigma \approx 10^{-21}$ cm²)

(a single Rb Atom has 10⁻⁹ cm²)

- no easy (tunable) excitation source at 150 nm (VUV)
- narrow transition for a frequency standard
- © robust nuclear transition
- can be embedded in a crystal
- © very high sensitivity to the fine structure constant

a solid-state – "nuclear" clock ?

search for drifts in fundamental constants?

Nuclear physics with a laser? Why a "nuclear clock"? – figure of merit

Ideal atomic clock: unperturbed atomic transition frequency \mathbf{v}_{o} (at v = 0, T = 0)

what makes a good "clock transition"?

 Δv : linewidth, ideally Fourier limited ~1/ $T_{exc...}$ requires stable atomic levels

Δp: measurement noise, ideally projection noise/Fourier limited

Quality factor of a clock transition:

$$Q = \frac{v_0}{\Delta v}$$

Nuclear physics with a laser? Why a "nuclear clock"? - figure of merit

Ideal atomic clock: unperturbed atomic transition frequency v_0 (at v = 0, T = 0)

what makes a good "clock transition"?

 Δv : linewidth, ideally Fourier limited ~1/ $T_{exc...}$ requires stable atomic levels

 Δp : measurement noise, ideally projection noise/Fourier limited

Quality factor of a clock transition:

$$Q = \frac{v_0}{\Delta v}$$

Standard quantum limit: $\Delta v \approx 1/\sqrt{NT_{\rm int}}\tau_{av}$

$$\Delta v \approx 1/\sqrt{NT_{\rm int}\tau_{av}}$$

for $T_{exc} >> T_{int}, \tau_{av}$

to build a good clock...

- use high transition frequency v_0
- use narrow transition (small Δv)
- have many oscillators (large N)
- have long interrogation time T_{int}

ideal: solid-state nuclear

Figure of merit*:

$$F = Q\sqrt{N}$$

assuming $\Delta v \approx 1 / (T_{int} \tau_{av})^{-1/2}$ independent of N

Nuclear physics with a laser? What about "fundamental constants"?

PRL 97, 092502 (2006)

PHYSICAL REVIEW LETTERS

week ending 1 SEPTEMBER 2006

Enhanced Effect of Temporal Variation of the Fine Structure Constant and the Strong Interaction in ²²⁹Th

V. V. Flambaum

School of Physics, The University of New South Wales, Sydney NSW 2052, Australia (Received 24 April 2006; revised manuscript received 29 June 2006; published 31 August 2006)

The relative effects of the variation of the fine structure constant $\alpha=e^2/\hbar c$ and the dimensionless strong interaction parameter $m_q/\Lambda_{\rm QCD}$ are enhanced by 5–6 orders of magnitude in a very narrow ultraviolet transition between the ground and the first excited states in the ²²⁹Th nucleus. It may be possible to investigate this transition with laser spectroscopy. Such an experiment would have the potential of improving the sensitivity to temporal variation of the fundamental constants by many orders of magnitude.

DOI: 10.1103/PhysRevLett.97.092502

PACS numbers: 23.20.-g, 06.20.Jr, 27.90.+b, 42.62.Fi

$$\frac{\delta\omega}{\omega} \approx 10^5 \left(4\frac{\delta\alpha}{\alpha} + \frac{\delta X_q}{X_q} - 10\frac{\delta X_s}{X_s} \right)$$

with
$$X_q = \frac{m_q}{\Lambda_{QCD}}$$
 $X_s = \frac{m_s}{\Lambda_{QCD}}$

 $m_{\rm q}$, $m_{\rm s}$ light/strange quark mass (5/120 MeV) $\Lambda_{\rm OCD}$ quantum chromodynamic scale

10³-10⁵ enhancement in sensitivity! (exact value under vivid discussion!)

comparing the 229 Th nuclear transition frequency to standard atomic clocks may allow to look for variations of α at 10^{-18} - 10^{-20} per year

fundamental physics in a tabletop experiment?

New results on ²²⁹Th Questions ???

New results on ²²⁹Th Outline

Absorber Magnetic field 8 Weak thermal link G Heat bath

Introduction: nuclear physics with a laser?

- The low-energy nuclear transition in ²²⁹Thorium
- On nuclear clocks and fundamental constants

Experiment 1: Gamma measurements

- A brief history of the ²²⁹Th isomer energy
- The 2007 Beck et al. gamma measurement
- The 2020 measurement: isomer energy + branching ratio

Experiment 2: IC measurements

- The 2017 LMU measurement: proof of existence
- The 2018 PTB + LMU measurement: optical transitions
- The 2019 measurement: isomer energy

Experiment 3: X-ray pumping

- The 2019 SPring-8 experiment: isomer pumping
- + isomer energy + branching ratio

Gamma measurements A brief history of the ²²⁹Th isomer energy

S. L. Sakharov, Physics of at. Nuclei 73, 1-8 (2010)

Gamma measurements A brief history of the ²²⁹Th isomer energy

The ²²⁹Th isomer energy until 2007:

S. L. Sakharov, Physics of at. Nuclei 73, 1-8 (2010)

30 years of improving detectors...

ΔE [eV]	year	method
< 100	1976	γ-spectro
1 (4)	1990	γ-spectro
< 5	1990	d-scatt.
3.5 (1.0)	1994	γ-spectro
3.4 (1.8)	2003	γ-spectro

R. G. Helmer and C.W. Reich, Phys. Rev. C 49, 1845 (1994)V. Barci, G. Ardisson, G. Barci-Funel, et al., Phys. Rev. C 68, 034329 (2003)

lots of (unsuccessfull) experiments performed based on this value...

Gamma measurements The 2007 measurement by Beck et al.

The ²²⁹Th isomer energy until 2007:

30 years of improving detectors...

S. L. Sakharov.	Physics of at. Nucle	73. 1-8 (2010)
C. L. Caltilaiov,	T Try oldo of at. I tadi	10, 10 (2010)

B. R. Beck et.al. Phys. Rev. Lett 98, 142501 (2007)

ΔE [eV]	year	method
< 100	1976	γ-spectro
1 (4)	1990	γ-spectro
< 5	1990	d-scatt.
3.5 (1.0)	1994	γ-spectro
3.4 (1.8)	2003	γ-spectro

R. G. Helmer and C.W. Reich, Phys. Rev. C 49, 1845 (1994)V. Barci, G. Ardisson, G. Barci-Funel, et al., Phys. Rev. C 68, 034329 (2003)

Using a NASA x-ray microcalorimeter...

Gives the "latest" value 7.8 (±0.5) eV

Gamma measurements The 2007 measurement by Beck et al.

The ²²⁹Th isomer energy until 2007:

30 years of improving detectors...

S I Sakh	arov, Physics	of at Nucle	73 1-8	(2010)
O. L. Cakin	arov, i riyoroo	or at. I tuciy	170, 10	(2010)

B. R. Beck et.al. Phys. Rev. Lett 98, 142501 (2007)

ΔE [eV]	year	method	
< 100	1976	γ-spectro	
1 (4)	1990	γ-spectro	
< 5	1990	d-scatt.	
3.5 (1.0)	1994	γ-spectro	
3.4 (1.8)	2003	γ-spectro	
P. G. Helmer and C.W. Peich, Phys. Rev. C 49, 1845 (1994)			

R. G. Helmer and C.W. Reich, Phys. Rev. C 49, 1845 (1994)V. Barci, G. Ardisson, G. Barci-Funel, et al., Phys. Rev. C 68, 034329 (2003)

Using a NASA x-ray microcalorimeter...

Gives the "latest" value 7.8 (±0.5) eV

Gamma measurements The 2007 measurement by Beck et al.

What we learned from 2007 Beck et al.:

- transition shifted from visible into VUV (killing MANY previous attempts)
- still within the range of lasers (but MUCH harder!)
- now, excitation energy ~ ionization energy → electronic states matter
- indirect measurement, NO proof of existence
- further improving the detectors would directly reduce the error...

 (error limited by statisitics in the 29.39 keV line + abs. energy callibration + branching ratios)

Building the worlds best gamma spectrometer (for this energy range):

Magnetic microcalorimeter

specifically designed for Th-229 optimal performance @30 keV

maXs-30 8x8 Array

32 channels, 64 pixels
16 mm² detection area
4 temp. readouts
expected energy
resolution: 10 eV
20 weeks data collection

collaboration Univ. Heidelberg Group Enss, Fleischmann

Energy callibration of the magnetic microcalorimeter: ²³³U + ²⁴¹Am

...identify the lines from literature...

Energy callibration of the magnetic microcalorimeter: ²³³U + ²⁴¹Am

```
/* Lit.Energy Error(Lit.Energy) Signalheight Error(Signalheight)
0 0 0 0 /* Needed for quadratic fit if only two Peaks are available
2.81977
                0.00024
                                2.8200 0.000212 /* Au escape: Th L beta1 16.201556 - 13.38179 L-shell gold
4.18151
                                4.1870 0.000237 /* Au escape: Th L beta2 15.623960 - 11.44245 L-shell gold
                0.00047
4.75911
                0.00047
                                4.7593 0.000078 /* Au escape: Th L beta1 16.201556 - 11.44245 L-shell gold
4.98141
                0.00047
                                4.9878 0.000229 /* Au escape: Th L beta3 16.423855 - 11.44245 L-shell gold
5.77770
                0.00055
                                5.7770 0.000227 /* Au escape: U L betal 17.22015 - 11.44245 L-shell gold
6.57351
                0.00033
                                6.5738 0.000102 /* Au escape: Th L betal 16.201556 - 9.62805 L-shell gold
                0.00047
                                7.5364 0.000138 /* Au escape: Th L gamma1 18.978259 - 11.44245 L-shell gold
7.53581
8.027842
                0.000003
                                8.0294 0.000064 /* Cu K alpha 2 blend!!! (Deutsch 1995)
                                8.0491 0.000054 /* Cu K alpha 1 blend!!! (Deutsch 1995)
8.047823
                0.000003
                                8.1556 0.000200 /* Au escape: Th L gamma6 19.599 - 11.44245 L-shell gold
8.15655
                0.001
8.90542
                0.00004
                                8.9067 0.000118 /* Cu K beta blend!!! (Deutsch 1995)
                                9.6296 0.000249 /* Au escape L-shell Deslattes1994
9.62805
                0.00033
11.44245
                0.00047
                                11.4438 0.000130 /* Au escape L-shell Deslattes1994
16.201556
                0.000030
                                16.2017 0.000008 /* Th L beta 1 blend Deslattes2003
17.22015
                0.00028
                                17.2199 0.000030 /* U L beta 1 Deslattes2003
18.978259
                                18.9776 0.000014 /* Th L gamma 1 blend Deslattes2003
                0.000020
19.503445
                                19.5034 0.000033 /* Th L gamma 3 blend Deslattes2003
                0.000060
                                19.5972 0.000020 /* Th L gamma 6 blend Bearden 1967
19.599
                0.01
                0.0008
                                25.3137 0.000068 /* Helmer Reich 1994 /* not the primary value from Table V
25.3146
25.3106(8)!!!
26.3448
                0.0002
                                26.3448 0.000041 /* Np gamma 21 Helmer Reich 1994 (nucleide.org: 26,34463 (24))
28.3301
                0.00035
                                28.3293 0.000272 /* Au escape: 97.1346(3) 233U - 68.80450(18) k-shell gold
                                29.1817 0.000033 /* Th qamma21 Japan 29,18993-EisoMunich(8.28)
29.1817
                0.001
30.14387
                0.0003
                                30.1430 0.000356 /* Au escape: 97.1346(3) 233U - 66.99073(22) k-shell gold
                                31.8163 0.000234 /* Cu K alpha 2 Deslattes1994
31.816615
                0.000060
32.193262
                0.000070
                                32.1933 0.000167 /* Ba K alpha 1 Deslattes1994
33.1963
                0.0003
                                33.1953 0.000123 /* Np gamma 10 Monographie BIPM-5 Tables Vol.5
42.4349
                0.0024
                                42.4349 0.000015 /* Th gamma 30 Beck07
43.98255
                0.0011
                                43.9957 0.000155 /* Au escape: 53.6106(11) 233U - 9.62805 L-shell gold
                                48.1037 0.000216 /* Au escape: 59.54092 Am241 - 11.44245 L-shell gold
48.09847
                0.00048
                                53.6187 0.000081 /* Th gamma64? nndc.bnl.gov/nudat2: Nuclear Data Sheets 109 (2008)
53.6106
                0.0011
2657-2724
54.7038
                0.0007
                                54.7134 0.000041 /* Th gamma 53 Helmer Reich1994
59.54092
                0.00010
                                59.5546 0.000020 /* Np gamma 20 https://www-nds.iaea.org/relnsd/NdsEnsdf/
```


Energy calibration of the magnetic microcalorimeter: ²³³U + ²⁴¹Am

the magnetic microcalorimeter shows excellent linearity

(in strong contrast to the "ohmic" microcalorimeter used by Beck et al.)

residual "calibration error": 0.76 eV

Differencing scheme (as in Beck et al.)

$$\begin{split} \mathbf{E_{iso}} &= (\mathbf{E_{29.39~keV}} + \mathbf{E_{42.43~keV}}) - (\mathbf{E_{42.63~keV}} + \mathbf{E_{29.18~keV}}) \\ &= (\mathbf{E_{29.39~keV}} - \mathbf{E_{29.18~keV}}) - (\mathbf{E_{42.63~keV}} - \mathbf{E_{42.43~keV}}) \\ &= \Delta \mathbf{E_{29~keV}} - \Delta \mathbf{E_{42~keV}} \end{split}$$

Isomer energy:

$$E_{iso} = (8.10 \pm 0.17) \text{ eV}$$

Branching ratios:

$$b_{29} = 9.3(6) \%$$

$$b_{42} = 0.3(3) \%$$

- callibration error drops out (close-by lines)
- exact value of branching ratio not critical
- absolute energy callibration not critical

4 different ways to extract the isomer energy from this data

- 4-line difference (as 2007)
- different decay paths
- doublett fitting
- combining with Spring-8 result...

What can we learn from Sikorsky et al. 2020

- isomer energy around 8.1 eV (153 nm)
- still within the range of VUV lasers (hard!)
- within the bandgap of VUV materials (fluoride crystals)
- further improving the detectors will further reduce the error...

New results on ²²⁹Th Questions ???

New results on ²²⁹Th Outline

Absorber Magnetic field B Weak thermal link G Heat bath

Introduction: nuclear physics with a laser?

- The low-energy nuclear transition in ²²⁹Thorium
- On nuclear clocks and fundamental constants

Experiment 1: Gamma measurements

- A brief history of the ²²⁹Th isomer energy
- The 2007 Beck et al. gamma measurement
- The 2020 measurement: isomer energy + branching ratio

Experiment 2: IC measurements

- The 2017 LMU measurement: proof of existence
- The 2018 PTB + LMU measurement: optical transitions
- The 2019 measurement: isomer energy

Experiment 3: X-ray pumping

- The 2019 SPring-8 experiment: isomer pumping
- + isomer energy + branching ratio

Exp. concept: •

- populate the isomeric state via 2% decay branch in α decay of ²³³U
- spatially decouple ^{229(m)}Th recoils from the ²³³U source
- detect the subsequently occurring isomeric decay

Buffer gas stopping cell

Laval nozzle

aperture electrode

triodic detection extraction system

233U RF + DC source funnel

RF quadrupole ion guide/ion trap

Quadrupole mass separator

MCP CCD

located at Maier-Leibnitz Laboratory, Garching:

extracted ^{229(m)}Th³⁺ ions: 'soft landing' on MCP surface

electron capture on MCP surface: neutralization of Th ions

isomer decay by Internal Conversion: electron emission

internal conversion (IC) energetically allowed for neutral thorium:

 $I(Th^+, 6.31 \text{ eV}) < E^*(^{229m}Th, \sim 7.8 \text{ eV})$

- isomer lifetime expected to be reduced by ca. 10^{-9} (from $\sim 10^4$ s $\rightarrow \sim 10 \ \mu$ s)
- Th ions: IC is energetically forbidden, radiative decay branch may dominate

amplification of IC electron: electron cascade generated, accelerated towards phosphor screen

internal conversion (IC) energetically allowed for neutral thorium:

 $I(Th^+, 6.31 \text{ eV}) < E^*(^{229m}Th, ~7.8 \text{ eV})$

- isomer lifetime expected to be reduced by ca. 10^{-9} (from $\sim 10^4$ s $\rightarrow \sim 10 \ \mu$ s)
- Th ions: IC is energetically forbidden, radiative decay branch may dominate

electrons hit phosphor screen: visible light imaged by CCD camera

internal conversion (IC) energetically allowed for neutral thorium:

 $I(Th^+, 6.31 \text{ eV}) < E^*(^{229m}Th, \sim 7.8 \text{ eV})$

- isomer lifetime expected to be reduced by ca. 10^{-9} (from $\sim 10^4$ s $\rightarrow \sim 10 \ \mu$ s)
- Th ions: IC is energetically forbidden, radiative decay branch may dominate

no signal from U³⁺, U²⁺
L. v.d. Wense, B. Seiferle, P.G. Thirolf et al., Nature 533, 47-51 (2016)

What we learned from 2017 LMU experiment:

- "direct" proof of existence of isomer state
- internal conversion THE dominating process for neutrals
- lifetime of ²²⁹Th^m in neutrals: 7 μs (follow-up publication)
- isomer energy BELOW 18.3 eV
 (2nd ionization energy, Th²⁺ lives "forever")
- isomer energy is ABOVE 6.3 eV
 (1st ionization energy, otherwise IC would not work)

IC measurements The 2018 PTB/LMU laser spectroscopy

What we (believe to) know about the ²²⁹Th isomer

nuclear ground and isomer state have different magnetic moments! (quadrupole component)

→ different electronic hyperfine structures for ground and isomer state

→ should be able to see that in "standard" laser spectroscopy

E. Peik, M. Okhapkin, *Comptes Rendus Physique*, Volume 16, Issue 5, Pages 516-523 (2015)

Joint experiments of LMU and PTB, combining:

- Production and storage of ^{229m}Th ions
- High-resolution laser spectroscopy of Th²⁺

Development of the laser spectroscopy scheme; reference spectra with ^{229g}Th²⁺ and ²³²Th²⁺

ground state

Spectra of ^{229m}Th²⁺ and ^{229g}Th²⁺

ground + isomer state

J. Thielking, M. V. Okhapkin, P. Glowacki, D. M. Meier, L. v.d. Wense, B. Seiferle, C. E. Düllmann, P. G. Thirolf, E. Peik: Laser spectroscopic characterization of the nuclear clock isomer ^{229m}Th

Two-step laser excitation eliminates Doppler-broadening:

1st step: excitation of a narrow velocity class out of the 300 K thermal distribution

2nd step: high-resolution spectroscopy, free from Doppler-broadening

Spectra of step 2 for various detunings of laser 1 provide the resolved HFS of

both transitions

- Fluorescence detection free from laser straylight
- Levels with J=2—1—0 simplify the analysis

Typical HFS resonances of nuclear isomeric and ground states in scan of the 2nd-

Nuclear ground state resonances

Total data set: 70 spectra for different detunings of the 1st-step laser and in coand counter-propagation beam configuations.

What we learned from 2018 PTB/LMU experiment:

- even more "direct" proof of existence of isomer state
- laser spectroscopy can easily distinguish between ground/isomer
- a series a nuclear parameters measured...

measured to $\mu = -0.37(6)\mu_{\rm N}$ Q = 1.74(6)×10⁻²⁸ e·m²

- + 2% branching into 229m Th in 233 U α -decay confirmed
- + mean square charge radius change

$$< r^2 > ^{229m} - < r^2 > ^{229} = 0.012(2) \text{ fm}^2$$

IC measurements (now again!) The 2019 measurement

- neutralization of Th³⁺ (Th²⁺) by passing through graphene foil
- in-flight internal conversion free of surface effects (subtleties here!)
- kinetic energy measurement of IC electron

$$\mathbf{E_{kin}} = \mathbf{E_{iso}} - \mathbf{IP} + \mathbf{E_{i}} - \mathbf{E_{f}}$$

IC measurements (now again!) The 2019 measurement

$$\mathbf{E_{kin}} = \mathbf{E_{iso}} - \mathbf{IP} + \mathbf{E_{i}} - \mathbf{E_{f}}$$

IP: ionization potential of neutral ground-state Thorium: 6.31 eV

E: (possible) excitation energy of ion undergoing IC

E_f: final electronic state of the remaining Th1+ ion

needs theory input!

Simulating a statistical average of the "most probable" electronic configurations for a given \mathbf{E}_{iso} yields:

$$E_{iso} = (8.28 \pm 0.03_{stat.} \pm 0.16_{syst.}) \text{ eV}$$

IC measurements (now again!) The 2019 measurement

What we learned from 2019 LMU experiment:

- isomer energy around 8.3 eV (150 nm)
- within the range of VUV lasers (hard!)
- within the bandgap of VUV materials (fluoride crystals)
- not much further improvement possible (systematic error)

New results on ²²⁹Th **Questions** ???

New results on ²²⁹Th Outline

Energy input E Absorber Magnetic field Meak thermal link Heat bath

Introduction: nuclear physics with a laser?

- The low-energy nuclear transition in ²²⁹Thorium
- On nuclear clocks and fundamental constants

Experiment 1: Gamma measurements

- A brief history of the ²²⁹Th isomer energy
- The 2007 Beck et al. gamma measurement
- The 2020 measurement: isomer energy + branching ratio

Experiment 2: IC measurements

- The 2017 LMU measurement: proof of existence
- The 2018 PTB + LMU measurement: optical transitions
- The 2019 measurement: isomer energy

Experiment 3: X-ray pumping

- The 2019 SPring-8 experiment: isomer pumping
- + isomer energy + branching ratio

X-ray pumping An introduction to NRS

Concept: excite the 2nd ²²⁹Th nuclear state in SPring-8 synchrotron

- 1.8 kBq solid ²²⁹Th sample (~ThO₂)
- 9 APD detectors (Hamamatsu)
 - energy resolution 21%
 - time resolution 60 ps

BL19LXU beam line, 4 x 10¹² photons/s in 0.26 eV linewidth (later reduced to 0.1 eV)

X-ray pumping An introduction to NRS

Concept: excite the 2nd ²²⁹Th nuclear state in SPring-8 synchrotron

experimental challenges:

- separate NRS signal from prompt peak
- estimated lifetime 150 ps
- signal/background ratio 10⁻⁶
- photoelectric and NRS signature similar

...5 beam times, 4 years of work...

X-ray pumping The 2019 Spring-8 measurement

NRS resonance curve

$$E_{2nd} = (29189.93 \pm 0.07) \text{ eV}$$

combined with known

$$\Gamma_{\gamma, in} = (14.3 \pm 1.40) \text{ neV}$$

Lifetime and excitation yield

$$T_{1/2} = (82.2 \pm 4.0) \text{ ps}$$

$$\Gamma_{\gamma,cr} = (1.70 \pm 0.40) \text{ neV}$$

transition linewidth, quite some subleties here

$$\rightarrow b_{\gamma,cr} = 1/(9.4 \pm 2.4)$$

IC branching ratio: $\mathbf{b}_{\text{IC,in}} = 0.58 \pm 0.07$, isomer pumping rate 25 kHz

X-ray pumping The 2019 Spring-8 measurement

Extracting the isomer energy:

- SPring-8 measures ONLY the cross-band energy
- Gamma spectroscopy measures PREDOMINANTLY the intra-band energy (small correction for branching ratio required)

→ isomer energy can be extracted from "old" gamma spectroscopy data...

- yields energy interval 2.5 eV < E_{is} < 8.9 eV (bof!)
- approach suffers from poor ABSOLUTE calibration of detectors (absolute error not even quantified in Beck et al.)
- combined with 2020 HD measurement :

 $E_{iso} = (7.8 \pm 0.8) \text{ eV using } b = 1/9.4$

New results on ²²⁹Th Summary + Outlook

- isomer energy consistently measured around 8.2 eV
 - clearly VUV (currently no CW laser)
 - clearly compatible with solid-state approaches (if IC suppressed)
- 2nd nuclear level measured with 0.07 eV error
- branching ratio confirmed to be ~ 90% 10% (in-band cross-band)

STILL, no direct excitation of isomer from ground state or radiative decay detected!

→ new ERC Synergy

Whats next (from our subjective perspective):

- use X-ray pumping to populate isomer + detect VUV photon ...ongoing at SPring-8
- directly excite the isomer in ²²⁹Th-doped crystals
 ...ongoing at Vienna + MLS synchrotron Berlin (also UCLA)
- use beta-decay of ²²⁹Ac
 ...pioneered by Piet Van Duppen, Leuven...

Vienna crystals at Spring-8

We want YOU... ...for Thorium research!

new **ERC Synergy project** started Feb. 2020 laser spectroscopy of Th-229 (and much more)

Ekkehard PEIKPhysikalisch-Technische
Bundesanstalt

Marianna SAFRONOVA
University of Delaware

Peter THIROLF Ludwig-Maximilians-Universität München

Thorsten SCHUMM
Technische Universität Wien

...looking for PhDs and PostDocs!

contact thorsten.schumm@tuwien.ac.at

New results on ²²⁹Th Who's doing that?

Gamma measurements

J. Geist, S. Kempf, A. Fleischmann, L Gastaldo, Chr. Enss

C. Mokry, J. Runge, C. E. Düllmann

T. Sikorsky, J. H. Sterba, V. Rosecker, K. Beeks, G. Kazakov, T. Schumm

Uni Heidelberg

GSI, Uni Mainz, HIM

TU WIEN

IC measurements

B. Seiferle, L. v.d. Wense, I. Amersdorffer, P. Thirolf

P. V. Bilous, A Palffy

C. Lemell, F. Libisch, S. Stellmer, T. Schumm

C. E. Düllmann

LMU

Max-Planck Kernphysik

TU Wien

GSI, Uni Mainz, HIM

SPring-8 measurments

T. Masuda, A. Yoshimi, A. Fujieda, H. Hara, T. Hiraki, H. Kaino, Y. Miyamoto,

K. Okai, S. Okubo, N. Sasao, S. Uetake, M. Yoshimura, K. Yoshimura, K. Suzuki

H. Fujimoto, T. Watanabe

H. Haba, A. Yamaguchi, T. Yokokita, K. Tamasaku

Y Kasamatsu, Y. Yasuda, Y. Shigekawa

S. Kitao, M. Seto

K. Konashi, M. Watanabe

S. Stellmer, T. Schumm

Y. Yoda

Okayama University

AIST Tsukuba

RIKFN

Osaka University

Kyoto University

Institute f. Material res. Tohoku

TU Wien

SPring-8 beamline

New results on ²²⁹Th Questions ???

