Statistics for High Energy Physics 1.Profile Likelihood, Asimov, CLs & Exclusion 2. Discovery and the Look Elsewhere Effect

Eilam Gross, Weizmann Institute of Science

Your Lecturer

Eilam Gross

Professor of Physics Department of Particle Physics and Astrophysics Weizmann Institute of Physics <u>Eilam.Work@gmail.com</u> <u>Eilam.gross@weizmann.ac.il</u>

My research:

Applications of DL in HEP

Search for (yet undiscovered) Higgs decaying to Charm Quarks and tagging heavy quark flavors (in particular Charm).

- 80s-90s: CERN, LEP OPAL Higgs Convener
- 2000s : TESLA
 LC WS Higgs Convener
- 2010s. : ATLAS, LHC Statistics Convener Higgs Convener (2012) LHC Higgs Combination Convener
- Present. : Charm Physics and ML

Basically ITS ALL ABOUT NUMBERS $n_{expected} = L \cdot \sigma \cdot eff$

$[L] = events/cm^2$ $[\sigma] = cm^2$

6/2015

Preliminaries

A counting experiment

• The Higgs hypothesis is that of signal s(m_H) $s(m_H) = L\sigma_{_{S\!M}} \cdot \epsilon$ For simplicity unless otherwise noted

$$s(m_H) = L\sigma_{SM}$$

In a counting experiment

$$\mu = \frac{L\sigma_{obs}(m_H) + \delta}{L\sigma_{SM}(m_H)} = \frac{\sigma_{obs}(m_H)}{\sigma_{SM}(m_H)}$$

 $n - \mu_{s}(m) \perp b$

- μ is the strength of the signal (with respect to the expected Standard Model one)
- The hypotheses are therefore denoted by H_{μ}
- H_1 is the SM with a Higgs, H_0 is the background only model

A Tale of Two Hypotheses NULL ALTERNATE

- Test the Null hypothesis and try to reject it
- Fail to reject it OR reject it in favour of the alternative hypothesis

- Test the Null hypothesis and try to reject it
- Fail to reject it OR reject it in favour of the alternative hypothesis

Rejecting H_0 in favour of $H_1(m_H) \rightarrow D$ iscovery of a Higgs with a mass m_H

We quantify rejection by p-value (later)

Reject H₁ in favor of H₀

Excluding $H_1(m_H) \rightarrow Excluding$ the Higgs with a mass m_H

We quantify rejection by p-value (later)

Likelihood

 Likelihood is the compatibility of the Hypothesis with a given data set.
 But it depends on the data

Likelihood is <u>not</u> the probability of the hypothesis given the data

$$L(H) = P(x \mid H)$$

$$P(x \mid H) \neq P(H \mid x)$$

Bayes Theorem

$$P(H \mid x) = \frac{P(x \mid H) \cdot P(H)}{\sum_{H} P(x \mid H) P(H)}$$
$$P(H \mid x) \approx P(x \mid H) \cdot P(H)$$
$$P(T)$$

Testing an Hypothesis (wikipedia...)

- The first step in any hypothesis test is to state the relevant **null**, H_0 and **alternative hypotheses**, say, H_1
- The next step is to define a test statistic, q, under the null hypothesis
- Compute from the observations the observed value q_{obs} of the test statistic q.
- Decide (based on q_{obs}) to either
 fail to reject the null hypothesis or
 reject it in favor of an alternative hypothesis
- next: How to construct a test statistic, how to decide?

Test statistic and p-value

Case Study 1 : Spin

Spin 0 vs Spin 1 Hypotheses

The Neyman-Pearson Lemma

• Define a **test statistic**

$$\lambda = \frac{L(H_1)}{L(H_0)}$$

• When performing a hypothesis test between two simple hypotheses, H_0 and H_1 , **the Likelihood Ratio test**, $\lambda = \frac{L(H_1)}{L(H_0)}$

which rejects H_0 in favor of H_1 ,

is the most powerful test

for a given significance level with a threshold $\boldsymbol{\eta}$

 $\alpha = prob(\lambda \leq \eta)$

Building PDF

Build the pdf of the test statistic

$$q_{NP} = q_{NP}(x) = -2\ln\frac{L(H_0 | x)}{L(H_1 | x)}$$

Building PDF

Build the pdf of the test statistic

$$q_{NP} = q_{NP}(x) = -2 \ln \frac{L(H_0 | x)}{L(H_1 | x)}$$

PDF of a test statistic 1200 1000 f(q |null) $f(q \mid alt)$ 800 600 400 200 0└ -15 obs-5 15 -100 10 q Null like alt like 21 Eilam Gross Statistics in PP

Power and Luminosity

For a given significance the power increases with increased luminosity

Luminosity ~ Total number of events in an experiment

CLs

From p-values to Gaussian significance

Eilam Gross Statistics in PP

p-value – testing the null hypothesis

When testing the b hypothesis (null=b), it is custom to set $\alpha =$ 2.9 10-7

 \rightarrow if p_b<2.9 10⁻⁷ the b hypothesis is rejected

→ Discovery

When testing the s+b hypothesis (null=s+b), set $\alpha = 5\%$ if $p_{s+b} < 5\%$ the signal hypothesis is rejected at the 95% Confidence Level (CL)

 \rightarrow Exclusion

Profile Likelihood with Nuisance Parameters

$$\begin{aligned} q_{\mu} &= -2ln \frac{L(\mu s + \hat{b}_{\mu})}{L(\hat{\mu} s + \hat{b})} \\ q_{\mu} &= -2ln \frac{\max_{b} L(\mu s + b)}{\max_{\mu,b} L(\mu s + b)} \\ q_{\mu} &= q_{\mu}(\hat{\mu}) = -2ln \frac{L(\mu s + \hat{b}_{\mu})}{L(\hat{\mu} s + \hat{b})} \end{aligned}$$

$$\hat{\mu}$$
 MLE of μ
 \hat{b} MLE of b
 $\hat{\hat{b}}_{\mu}$ MLE of b fixing μ
 $\hat{\hat{\theta}}_{\mu}$ MLE of θ fixing μ

Wilks Theorem

S.S. Wilks, The large-sample distribution of the Ann. Math. Statist. 9 (1938) 60-2.

• Wilks' theorem says that the pdf of the statistic under the null hypothesis approaches a chi-square PDF for one degree of freedom

Classification of Test Statistics

Test	Purpose	Expression	LR
Stat.			
q_0	discovery of positive signal	$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu} \ge 0\\ 0 & \hat{\mu} < 0 \end{cases}$	$\lambda(0) = rac{L(0,\hat{ec{ heta}})}{L(\hat{\mu},\hat{ec{ heta}})}$
t_{μ}	2-sided measure- ment	$t_{\mu} = -2ln\lambda(\mu)$	$\lambda(\mu) = rac{L(\mu,ec{ heta})}{L(\hat{\mu},ec{ heta})}$
${ ilde t}_\mu$	avoid negative signal (Feldman-Cousins)	$ ilde{t}_{\mu}=-2ln ilde{\lambda}(\mu)$	$ ilde{\lambda}(\mu) = egin{cases} rac{L(\mu, \hat{ec{ heta}}(\mu))}{L(\hat{\mu}, \hat{ec{ heta}})} & \hat{\mu} \ge 0 \ rac{\hat{ec{ heta}}(\mu, \hat{ec{ heta}}(\mu))}{\hat{ec{ heta}}(\mu))} & \hat{\mu} < 0 \ rac{\hat{ec{ heta}}(\mu, \hat{ec{ heta}}(\mu))}{L(0, \hat{ec{ heta}}(0))} & \hat{\mu} < 0 \end{cases}$
q_{μ}	exclusion	$q_{\mu} = \begin{cases} -2\ln\lambda(\mu) & \hat{\mu} \le \mu \\ 0 & \hat{\mu} > \mu \end{cases}$	
$ ilde q_\mu$	exclusion of positive signal	$\tilde{q}_{\mu} = \begin{cases} -2\ln\frac{L(\mu,\hat{\vec{\theta}}(\mu))}{L(0,\hat{\vec{\theta}}(0))} & \hat{\mu} < 0 \ ,\\ -2\ln\frac{L(\mu,\hat{\vec{\theta}}(\mu))}{L(\hat{\mu},\hat{\vec{\theta}})} & 0 \le \hat{\mu} \le \mu\\ 0 & \hat{\mu} > \mu \end{cases}$	

Study Case 2: Bump Hunt

Bump Hunt

Bump Hunt

Gamma Gamma like BG and a Gaussian signal on top of it

Asymptotic Approximation

Test Statistic
$$t_{\mu} = -2ln\lambda(\mu)$$
 $t_{\mu} = -2ln\lambda(\mu)$ $\lambda(\mu) = \frac{L(\mu, \hat{\theta}_{\mu})}{L(\hat{\mu}, \hat{\theta})}$

Higher values of t_{μ} correspond to increasing incompatibility between the data and μ

Wald Theorem

$$\lambda(\mu) = \frac{L(\mu, \hat{\theta}_{\mu})}{L(\hat{\mu}, \hat{\theta})} \quad t_{\mu} = -2\ln\lambda(\mu) \quad Wilks \Rightarrow f(t_{\mu} \mid \mu) \sim \chi_{1}^{2}$$
How does t_{μ} distributes under $H_{\mu'}$ ($\mu' \neq \mu$)
A. Wald, Tests of Statistical Hypotheses Concerning Several Parameters When the
Number of Observations is Large, Transactions of the American Mathematical Society,
Vol. 54, No. 3 (Nov., 1943), pp. 426-482.

$$t_{\mu} = -2\ln\lambda(\mu) = \frac{(\mu - \hat{\mu})^{2}}{\sigma_{\hat{\mu}}^{2}} + O(1/\sqrt{N})$$
(Use the Asimov Dataset to estimate σ)
(Use the Asimov Dataset to estimate σ)

$$f(t_{\mu} \mid \mu')$$
 follows a noncentral Chi squared distribution
with non-centrality parameter $\Lambda = \frac{(\mu - \mu')^{2}}{\sigma_{\mu}^{2}}$ with 1 d.o.f

Wald Theorem

$$t_{\mu} = -2\ln\lambda(\mu) = \frac{\left(\mu - \hat{\mu}\right)^2}{\sigma_{\hat{\mu}}^2} + O\left(1/\sqrt{N}\right)$$

$$\hat{\mu} \sim G(\mu', \sigma)$$

N is the sample size

 $f(t_{\mu} \mid \mu')$ follows a noncentral Chi squared distribution

with non-centrality parameter $\Lambda = \frac{(\mu - \mu')^2}{\sigma^2}$ with 1 d.o.f

$$f(t_{\mu};\Lambda) = \frac{1}{2\sqrt{t_{\mu}}} \frac{1}{\sqrt{2\pi}} \left[\exp\left(-\frac{1}{2}\left(\sqrt{t_{\mu}} + \sqrt{\Lambda}\right)^2\right) + \exp\left(-\frac{1}{2}\left(\sqrt{t_{\mu}} - \sqrt{\Lambda}\right)^2\right) \right]$$

for $\mu' = \mu$ we retrieve Wilks' theorem

$$f(t_{\mu}) = \frac{1}{\sqrt{2\pi t_{\mu}}} e^{-\frac{1}{2}t_{\mu}} = \chi^{2}$$

Estimating the Sensitivity of an Experiment

- Estimate the expected significance one could achieve (for discovering the Higgs Boson) with a given analysis, a given Luminosity and CM energy..
- Option 1:
 - Toss, say, 1,000,000 BG only events (null) and derive the BG-only pdf of q, f(q_{null}IBG).

Toss another 1,000,000 S+BG (alt) events and find the significance for each one of them

then, find the median significance....

• This may take ages..., is there a shortcut?

• Option 2:

Asymptotics+Asimov Data Set

In the future, the United States has converted to an "electronic democracy" where the computer Multivac selects a single person to answer a number of questions. Multivac will then use the answers and other data to determine what the results of an election would be, avoiding the need for an actual election to be held.

The Asimov Data Set

- The use of a single representative individual to stand in for the entire population can help in evaluating the sensitivity of a statistical method.
- The "Asimov data set": an ensemble of simulated experiments can be replaced by a single representative one.

Estimating the Sensitivity of an Experiment

• one can replace each ensemble of the alternate-hypothesis experiments with one data set that represents the typical experiment.

This "Asimov" data set delivers the desired median sensitivity. Hence, one is exempted from the need to perform an ensemble of experiments for each set of parameters.

- The Asimov data set is constructed such that when one uses it to evaluate the estimators for all parameters, one obtains the true parameter values.
- the Asimov data set can trivially be constructed from the true parameters values. For example, a set corresponding to the H₁ hypothesis is n_A = s + b. and the one correspond to the H₀ hypothesis is n_A = b.
- As strange as it reads, the Asimov data set is not necessarily an integer.

Back to Spin Distribution of p₀-value under H1

 q_{μ} for exclusion

$\begin{array}{c} \mathsf{CCGV} \\ q_{\mu} = \begin{cases} -2\log\lambda(\mu) & \hat{\mu} \leq \mu \\ 0 & \hat{\mu} > \mu \end{cases} \end{array}$

Upward fluctuations of the signal do not serve as an evidence against the signal

Exclusion at 95% CL

- We test hypothesis H_{μ}
- We calculate the PL (profile likelihood) ratio with the one observed data

Eilam Gross Statistics in PP

Exclusion at the 95% CL

• Find the p-value of the signal hypothesis H₁₁

$$p_{\mu} = \int_{q_{\mu,obs}}^{\infty} f(q_{\mu} \mid H_{\mu}) dq_{\mu}$$

- In principle if $p_{\mu} < 5\%$, 95% CL
- Note that H_uis for a given Higgs mass m_H

Brazil Plot

Next: p0 &Look Elsewhere Effect

E.G., O. Vitells "Trial factors for the look elsewhere effect in high energy physics", Eur. Phys. J. C 70 (2010) 525

O. Vitells and E. G., Estimating the significance of a signal in a multidimensional search, 1669 Astropart. Phys. 35 (2011) 230, arXiv:1105.4355

1/30/18

Ellam Gross, ATLAS Stat Forum, 1/2018