PHYSUN 2010, LNGS

October 4th

Solar neutrinos, $θ$ ₁₃ and **non-standard** ν **properties**

Antonio Palazzo

Excellence Cluster 'Universe'

Outline

- **Introduction**
- **A weak tension in the solar sector**
- **The official medicine: Standard kinematics (**θ**13>0)**
- The alternative cure: Non-standard dynamics (NSI)
- **Conclusions**

Introduction

The leptonic mixing

$$
|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i}^{*} |\nu_{i}\rangle \qquad (i = 1, 2, 3)
$$

$$
(\alpha = e, \mu, \tau)
$$

$$
U = O_{23} \Gamma_{\delta} O_{13} \Gamma_{\delta}^{\dagger} O_{12}
$$

$$
\Gamma_{\delta} = \text{diag}(1, 1, e^{+i\delta})
$$

$$
\delta \in [0, 2\pi]
$$
Dirac CP-violating phase unknown

Explicit form:

$$
U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

The neutrino mass spectrum

Experimental Sensitivities

Solar neutrinos

BS(05) OP

Flux $\rm (cm^{-2}~s^{-1})$

The solar neutrino experiments

Homestake $(E_v > 0.818 \text{ MeV})$ V_e + 37Cl \rightarrow 37Ar + e⁻

SAGE & (E_v > 0.232 MeV)
GALLEX-GNO

$$
V_{e} + {}^{71}Ga \rightarrow {}^{71}Ge + e^{-}
$$

SK (High E) **ES:** $v_x + e^- \rightarrow v_x + e^-$ **Radiochemical Real time**

> **Borexino** (Low & High E) **ES:** $v_x + e^- \rightarrow v_x + e^-$

SNO (E > 5 MeV)
\n
$$
CC: V_{e} + d \rightarrow p + p + e^{-}
$$
\n
$$
Havor
$$
\n
$$
MC: V_{x} + d \rightarrow p + n + V_{x}
$$
\nE.S: $V_{x} + e^{-} \rightarrow V_{x} + e^{-}$

8

Solar ν **data single out a unique solution**

KamLAND: long-baseline multi-reactor experiment

Average distance: ~180 km Typical ν **energy: few MeV Sensitivity to δm2 ~ few x 10-5 eV2**

Spectacular confirmation of oscillations

Precision measurement! of spectral distortions!

Osc. pattern observed over one entire cycle

Determination of δm^2 with high precision

2ν **Solar + KamLAND constraints**

KamLAND dominates! δm2 determination!

Interplay of Solar and KamLAND! in determining θ_{12}

But small tension among them is present…

A weak tension in the solar sector

Do we need to bother with it?

What lies behind the S-K tension

2005 2008 SNO-II SNO-III $\frac{CC}{NC}$ $= 0.340 \pm 0.038$ 0.301 ± 0.033

- Central value lower than before

best fit of θ_{12} at a slightly lower value

- Error reduced when combined

range allowed for θ_{12} appreciably **narrowed**

- Apparently a small change

but big enough to give! rise to a significant tension with KamLAND!

SNO III: just a statistical fluctuation?

- **1) "Internal" consistency among SNO** (CC,NC) **and SK** (ES)
- **2) Consistency among NC and Solar Model**

Maybe not!

How can we cure the S-K tension ?

The standard remedy

Perturbing the kinematics: $non-zero$ θ_{13}

θ**13 reduces the S-K disagreement**

*See also Balantekin and Yilmaz, J. Phys. G. 35, 075007 (2008)

To understand the S-K interplay it is helpful to look first at the solar ν **2-flavor survival probability**

3-flavor perturbations

$$
P_{ee}^{3\nu} \simeq s_{13}^4 + c_{13}^4 P_{ee}^{2\nu}
$$

 $\Delta m^2 \rightarrow \infty$

one-mass-scale approximation

For small values of θ**13 : Pee suppression**

$$
\text{High-E solar} \quad \longrightarrow \quad P_{ee} \simeq (1 - 2s_{13}^2)(\text{+} s_{12}^2)
$$

$$
\begin{array}{ll}\textbf{KamLAND} & \longrightarrow & P_{ee} \simeq (1 - 2s_{13}^2)(1 - 4s_{12}^2 c_{12}^2 \sin^2 \phi) \\ \textbf{(\sim vacuum)} & \end{array}
$$

 $\phi = \frac{\delta m^2 L}{4E}$ oscillation phase

Different relative sign for $(\theta_{12}, \theta_{13})$ in P_{ee}

Different $[\theta_{12}, \theta_{13}]$ correlation **in solar (S) and KamLAND (K)**

G.L Fogli, E. Lisi, A. Marrone, A.P., A.M. Rotunno arXiv:0806.2649 [hep-ph], PRL 101, 141801 (2008

θ**13 does not affect appreciably the dynamics**

 $(V \rightarrow V c_{13}^2)$ **MSW dynamics is almost unchanged**

non-zero $θ$ ₁₃ induces **only a mild energy dependence**

 main effect is the kinematical one (Energy indep. Pee suppression)

The alternative cure

Perturbing the dynamics: non-standard interactions (NSI)

A matter-vacuum tension ?

The S-K tension can be seen as a disagreement between the (standard) interpretation of flavor transitions occurring in two different conditions: Solar ν**'s: matter-enhanced KamLAND** ν**'s: ~vacuum**

From this perspective, it is meaningful to hypothesize that the tension may result from some unaccounted effect intervening in the dynamics of solar ν **transitions.**

Non-standard interactions (NSI) offer one such possibility, as they can alter the coherent forward scattering of solar ν**'s on the constituents of the ordinary matter (Wolfestein 1978).**

Coherent forward scattering in the presence of NSI : Pictorial view

Coherent forward scattering in the presence of NSI : Math. view

Evolution in the flavor basis:

$$
i\frac{d}{dx}\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = H \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}
$$

H contains three terms:

 $H = H_{\text{kin}} + H_{\text{dyn}}^{\text{std}} + H_{\text{dyn}}^{\text{NSI}}$

Kinematics
$$
H_{\text{kin}} = U \begin{pmatrix} -\delta k/2 & 0 & 0 \\ 0 & +\delta k/2 & 0 \\ 0 & 0 & k/2 \end{pmatrix} U^{\dagger}
$$
 $\delta k = \delta m^2 / 2E$
 $k = m^2 / 2E$

Standard MSW dynamics

$$
H_{\rm dyn}^{\rm std} = \text{diag}(V, 0, 0) \qquad V(x) = \sqrt{2} G_F N_e(x)
$$

Non-standard dynamics

$$
(H_{\rm dyn}^{\rm NSI})_{\alpha\beta}=\sqrt{2}\,G_F\,N_f(x)\epsilon_{\alpha\beta}
$$

26

Reduction to an effective two flavor dynamics

One mass scale approximation: $\Delta m^2 \rightarrow \infty$

 $P_{ee} = c_{13}^4 P_{ee}^{\text{eff}} + s_{13}^4$ **survival probability** $i\frac{d}{dx}\left(\begin{array}{c}\nu_e\ \nu_a\end{array}\right)=H^{\text{eff}}\left(\begin{array}{c}\nu_e\ \nu_a\end{array}\right).$ **effective evolution**

$$
H^{\text{eff}} = V(x) \begin{pmatrix} c_{13}^2 & 0 \\ 0 & 0 \end{pmatrix} + \sqrt{2} G_f N_d(x) \begin{pmatrix} 0 & \varepsilon \\ \varepsilon & \varepsilon' \end{pmatrix} \qquad \text{d-quark}
$$

 $\varepsilon = -\varepsilon_{e\tau}c_{13}s_{23}$ **for** ν**e <->** ντ **FCNC** $\varepsilon' = +2\varepsilon_{\text{ex}}s_{13}c_{13}c_{23}$

Parameter space:

$$
[\delta m^2, \theta_{12}, \theta_{13}, \theta_{23}, \varepsilon_{e\tau}]
$$

Impact of NSI on solar LMA

A. P. and J.W.F. Valle, PRD 80, 091301 (R) (2009) arXiv:0909.1535 [hep-ph]

Positive values of ε **shift the LMA towards** *bigger values of* $θ$ ₁₂

alleviating the tension with KamLAND

Sol+Kam combination prefers ε **~ 0.17**

Note that such couplings are not incompatible with the existing bounds Davidson et al. 2003, Biggio et al. 2009

Combining the two remedies

θ**13-NSI degeneracy**

A.P. and J.W.F. Valle, PRD 80, 091301 (R) (2009), arXiv:0909.1535 [hep-ph]

 global fit (S+K) is ~ identical for the two limit cases: I) [θ**13 > 0** ε **= 0] (3**ν**)**

II) $[\theta_{13} = 0 \quad \epsilon \rightarrow 0]$ (2v + NSI)

Full degeneracy between θ**13 and the NSI coupling**

> **Tension between Sol & Kam is shared among** θ**13 and** ε

Can we disentangle the two effects?

Small differences at low energies (~3%) may be hard to detect

At intermediate energies, differences more pronounced: Pee profile is flatter with NSI

Lowered threshold high energy experiments [SK-III, Borexino (8B), SNO(LETA)] **might give important information…**

A.P. and J.W.F. Valle, PRD 80, 091301 (R) (2009), arXiv:0909.1535 [hep-ph]

SK-III (M. Ikeda @ NOW 2010)

BOREXINO (M. Pallavicini @ NOW 2010)

No upturn visible !

.

Data tend to prefer NSI over θ_{13}

Conclusions

- **A tension is present in the solar sector data. Although small it has a clear origin.**
- $-$ The simplest remedy is provided by non-zero θ_{13} but **NSI offer an interesting alternative.**
- **The first solar** ν **measurements in the "invisible region" at intermediate energies seem to favor NSI over** θ**13 but more data and new experiments are needed.**
- **The new reactor experiments will provide a "clean" measure of** θ**13 (unaffected by NSI). In case of a null result, a persisting S-K tension will strengthen the NSI hypothesis.**

Back-up slides

Result established by CHOOZ in 1998!

$$
P_{ee}^{osc} = 1 - 4U_{e3}^{2}(1 - U_{e3}^{2}) \sin^{2} \left(\frac{\Delta m^{2}}{4E} L\right)
$$
\n
$$
P_{ee}^{exp} \simeq 1 \qquad U_{e3}^{2} = \sin^{2} \theta_{13}
$$
\n
$$
\begin{array}{c}\n\text{(A)} \text{error}\n\text{(A)} \text{error}\n\text{(B)} \text{error}\n\text{(A)} \text{error}\n\text{(B)} \text{error}\n\text{(A)} \text{error}\n\text{(B)} \text{error}\n\text{(A)} \text{error}\n\text{(B)} \text{error}\n\text{(A)} \text{error}\n\text{(B)} \text{error}\n\text{(C)} \text{error}\n\text{(D)} \
$$

Global 3ν analysis!

High precision on both mass splittings, now determined by "artificial" neutrino sources experiments (KamLAND for δm2, MINOS for Δm2).

Estimates of the two leading mixing angles is less accurate (especially θ_{23}), and experiments using "natural" ν's play a crucial role in their determination.

A preference for θ_{13} > 0 at a non-negligible C.L (90%) emerged in 2008 Fogli, Lisi, Marrone, A.P, Rotunnno, PRL 101, 141801 (2008), arXiv:0806.2649,hep-ph.

Global combination (2008)

Combining the data from the two sectors an overall preference for θ_{13} >0 emerges at the **1.6 sigma (90% CL)**

Current status of θ_{13}

SK and SNO response functions

Villante et al., Phys. Rev. D 59, 013006 (1999)

Both in SK and SNO the original energy info is **degraded**:

The response functions describe **quantitatively** such "energy flow"

They represent the "**detected**" ν energy spectrum which is different from the original one

 $\rho_B^e(E_\nu, [E_e^{\text{min}}, E_e^{\text{max}}]) = \text{SK } (\nu_e, e) \text{ ES}$ $\rho_B^a(E_\nu,[E_e^{\text{min}}, E_e^{\text{max}}]) = \text{SK } (\nu_a, e) \text{ ES } (a = \mu, \tau)$ $\rho_B^c(E_\nu, [\tilde{E}_e^{\min}, \tilde{E}_e^{\max}]) =$ SNO (ν_e, d) CC

$$
\rho_B^e = \frac{\lambda_B(E_\nu) \int_{E_e^{\text{min}}}^{E_e^{\text{max}}} dE_e \int_0^{E_\nu} dE'_e \frac{d\sigma^e(E_\nu, E'_e)}{dE'_e} R_{\text{SK}}(E_e, E'_e)}{\sigma_B^e[E_e^{\text{min}}, E_e^{\text{max}}]} ,
$$

$$
\rho_B^a = \frac{\lambda_B(E_\nu) \int_{E_e^{\text{min}}}^{E_e^{\text{max}}} dE_e \int_0^{E_\nu} dE'_e \frac{d\sigma^a(E_\nu, E'_e)}{dE'_e} R_{\text{SK}}(E_e, E'_e)}{\sigma_B^a[E_e^{\text{min}}, E_e^{\text{max}}]} ,
$$

$$
\rho_B^c = \frac{\lambda_B(E_\nu) \int_{\tilde{E}_e^{\min}} dE_e \int_0 dE'_e \frac{dE'_e \frac{dE'_\nu}{dE'_e} R_{\rm SNO}(E_e, E'_e)}{d\tilde{E}_e}}{\sigma_B^c [\tilde{E}_e^{\min}, \tilde{E}_e^{\max}]}
$$
\nelectron energy window

40

"Equalized" SK and SNO response functions

Model-Independent analysis

$$
\begin{array}{rcl}\n\Phi_{ES}^{SK} &=& \Phi_B[\langle P_{ee} \rangle + r_\sigma(1 - \langle P_{ee} \rangle)] \\
\Phi_{CC}^{SNO} &=& \Phi_B \langle P_{ee} \rangle \\
\Phi_{NC}^{SNO} &=& \Phi_B\n\end{array}
$$

 $\langle P_{ee} \rangle$ = energy-averaged Pee $r_{\sigma} = \sigma_{\mu,\tau}/\sigma_e \approx 0.154$

Internal consistency: agreement with SK (ES)

Consistency with solar model: NC in agreement with Φ_B