Multiwavelength Studies of Active Galactic Nuclei

Eli Kasai University of Namibia

African School of Fundamental Physics & Applications

September 24, 2020

African School of Fundamental Physics and Applications

Active Galactic Nuclei

Biography

- Active Galactic Nuclei AGN
- What distinguishes AGN from each other

Blazars

- Blazar emission models and challenges
- Cherenkov telescope array and multiwavelength campaigns
- Conclusion

Education || Employment || Research

- ∢ ศ⊐ >

BSc - University of Namibia: 2001 - 2004

African School of Physics

Active Galactic Nuclei

September 24, 2020 4 / 27

BSc(Hons), MSc, Phd - UCT: 2010 - 2017

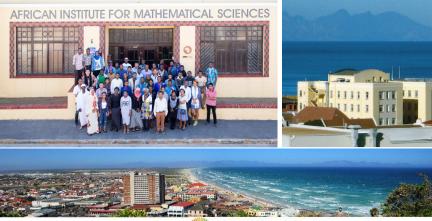
African School of Physics

Active Galactic Nuclei

September 24, 2020 5 / 27

South African Astronomical Observatory

SKA-South Africa (SARAO) - MeerKaT


African School of Physics

Active Galactic Nuclei

September 24, 2020 7 / 27

African Institute for Mathematical Sciences

A research group of the

African Institute for Mathematical Sciences

African School of Physics

Active Galactic Nuclei

September 24, 2020 8 / 27

Institute of Cosmology & Gravitation

Employment

- Senior Lecturer UNAM: Sep 2019 present
- Intern IAU-OAD: 2013 2015
- Commercial Analyst NamPower: 2005 2009

University of Namibia - Main Campus

IAU Office of Astronomy for Development

African School of Physics

Active Galactic Nuclei

September 24, 2020

12 / 27

Namibia Power Corporation - NamPower

Active Galactic Nuclei

■► < Ξ ► < Ξ ► Ξ < </p>
September 24, 2020 13 / 27

Research

SALT redshift measurements of blazars for CTA

- Africa Data Science Intensive Program 2020
 - ▶ ML, AI, Big Data, Data Science

SALT-CTA redshift program

Cherenkov Telescope Array

Sutherland observatory

African School of Physics

Active Galactic Nuclei

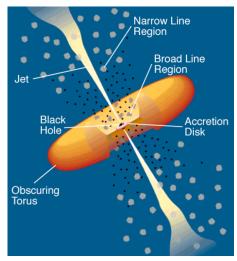
₽▶ ৰ ≣▶ ৰ ≣▶ ≣ ∽ ৭.৫ September 24, 2020 15 / 27

The Africa Data Science Intensive (DSI) program is a hands-on skills training data science course based on solving real-world problems.

African School of Physics

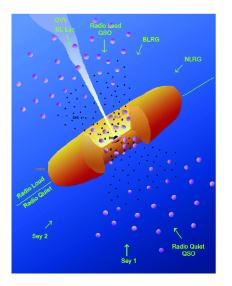
Active Galactic Nuclei

September 24, 2020


16 / 27

Biography

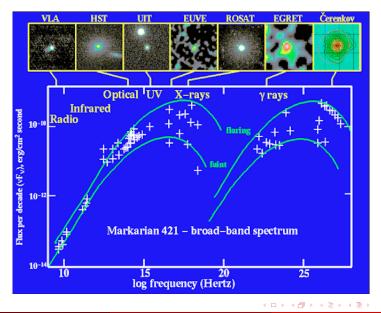
- Active Galactic Nuclei AGNs
- What distinguishes AGN from each other
- Blazars
- Blazar emission models and challenges
- Cherenkov telescope array and multiwavelength campaigns
- Conclusion


Credit: C.M. Urry & P. Padovani

From observational features, luminous AGNs appear to fall into 3 categories:

- Seyferts
 - Seyfert I (narrow & broad lines)
 - ► Seyfert II (narrow lines)
 - Quasars
 - ► QSOs
 - BL Lacs
 - OVVs
 - Radio Galaxies
 - ► FR-I (edge-darkened)
 - ▶ FR-II (edge-brightened)

Active Galactic Nuclei - AGNs



From observational features, luminous AGNs appear to fall into 3 categories:

- Seyferts
 - Seyfert I (narrow & broad lines)
 - Seyfert II (narrow lines)
 - Quasars
 - ► QSOs
 - BL Lacs
 - OVVs
 - Radio Galaxies
 - ► FR-I (edge-darkened)
 - FR-II (edge-brightened)

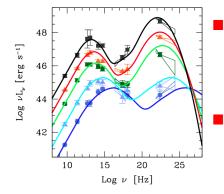
Multiwavelength AGN observations

African School of Physics

Active Galactic Nuclei

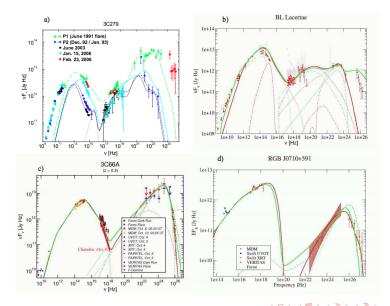
September 24, 2020

20 / 27


- Over 200 VHE sources (both galactic and extra-galactic) have been detected in the last decade by ground-based Atmospheric Imaging Cherenkov Telescopes:
 - ▶ H.E.S.S. (SH)
 - MAGIC (NH)
 - VERITAS (NH)
- AGN make up 40% of the 200+ sources
- 3/4 of the 40% AGN fraction are high-frequency peaked BL Lacs (the rest are FSRQs, LBLs, IBLs and UHBLs)
- VHE observations of active galaxies represent a unique tool to probe the physics of extreme environments, including
 - accretion physics
 - ▶ jet formation
 - interaction of the black-hole magnetosphere with the accretion disk corona
 - ▶ relativistic interaction processes, etc.

 Blazar SEDs are dominated by non-thermal emission and consist of two distinct, broad components

- ▶ a low-energy component from radio through UV or X-rays, and
- ▶ a high-energy component from from X-rays to gamma-rays.
- Blazars are sub-divided into several types, determined by the location of the peak of the low-energy (synchrotron) SED component, ν_s :
 - ▶ Low-synchrotron-peaked (LSP) have $\nu_s \leq 10^{14}$ Hz, i.e. infrared
 - FSRQs
 - Low-frequency peaked BL Lacs (LBLs)
 - ▶ Intermediate-synchrotron-peaked (ISP) have 10^{14} Hz < $\nu_s \le 10^{15}$ Hz, i.e. optical UV
 - LBLs
 - Intermediate BL Lacs (IBLs)
 - ▶ High-synchrotron-peaked (HSP) have $\nu_s > 10^{15}$ Hz, i.e. X-rays
 - almost all high-frequency peaked BL Lacs (HBLs)



Overall decreasing bolometric luminosity as well as decreasing gamma-ray dominance along the sequence FSRQ \rightarrow LBL \rightarrow HBL.

FSRQs are expected to have strong gamma-ray dominance, while HBLs are expected to be synchrotron dominated.

Contradictions with the sequence

September 24, 2020 24 / 27

Blazar emission models

- The low-frequency emission from blazars is generally accepted to be synchrotron emission from relativistic electrons in the jet
- For the origin of the high-energy (X-ray through gamm-ray) emission, two fundamentally different approaches have been proposed:

Leptonic model

- radiative output throughout the EM spectrum assumed to be dominated by leptons (electrons and possibly positrons)
- high-energy emission explained by Compton scattering of low-energy photons by the same electrons producing the synchrotron emission

Leptonic model

- Iow-frequency emission is still dominated by synchrotron emission from primary electrons
- high-energy emission is dominated by proton-synchrotron emission, π⁰ decay photons, synchrotron, and Compton emission from secondary decay products of charged pions, and the output from pair cascades initiated by these high-energy emissions.

African School of Physics

Active Galactic Nuclei

CTA and other coordinated MWL efforts

-9.5 hadronic scenario leptonic scenario -10 -10. log (v F_v [erg cm² s⁻¹]) СТА СТА -1 PKS 2155-034 -12 -12.5 -13 -13.5 24 25 26 27 28 24 25 26 27 28 log (v [Hz]) 10-9 48 Log $\nu L_{\nu} \; [erg \; s^{-1}]$ 10-10 46 SED [erg cm⁻² s⁻¹] 10-11 Fermi 1 week source source+EBL (z=0.10) source+EBL (z=0.30) 42 source+EBL (z=1.00) 10-12 source+EBL (z=1.50) MAGIC 50h --- CTA 5h - CTA 10 h 10-13 10-1 100 103 102 103 104 Energy [GeV]

https://doi.org/10.1142/10986

Needed:

- Hiqh-quality spectra: CTA
- Redshifts: e.g.
 SALT

African School of Physics

September 24, 2020 26 / 27

- A lot is yet to be understood about AGN
- High-quality spectra obtained with CTA at various redshifts will be key to fully understanding the emission mechanisms of blazars https://www.cta-observatory.org/science/cta-performance/.