A challenge on the mythic 10 ps frontier for time-of-flight positron emission tomography

ASP Online Seminars, October 29 2020

Christian MOREL

Discovery of X-rays (1895)

Wilhelm Roentgen (1845-1923) Nobel Prize in Physics (1901)

22 Dec 1895 – published in the New York Times on 16 Jan 1896

ASP Online Seminars, October 29 2020

Aix*Marseille

Development of radiology (roentgenology)

Hôpital Tenon (Paris, 1897) Antoine Béclère (1858–1939)

Radiological Renault «Petite Curie» (1916) Marie Curie (1867-1934)

Development of Computerized Tomography (CT)

Rediscovery of the Radon solution for reconstruction from projections (Cape Town, 1963) Allan McLoed Cormack (1924-1998) Development of the first CT scanner at EMI (London, 1972) Sir Godfrey Newbold Hounsfield (1919-2004)

Computerized Tomography (CT)

G. Hounsfield, J. Ambrose (Atkinson Morley Hospital, London, 1/10/1971)

X-ray and neutron radiography

5: X-rays (W. Roentgen, Wuerzburg) Nobel Prize 1901

- 1896: Radioactivity (H. Becquerel, Paris) Nobel Prize 1903
- Thomson, Cambridge) Electro
- um and Polonium (Pierre and Marie Curie, Paris) Nobel Prize 190⁸, 1911 (Marie Curie) 1899: Alpha and beta rays (E. Rutherford, Cambridge) Nobel Pi
- Nucleus (E. Rutherford, Cambridge) 1931: Cyclotron (E. Lawrence, Berkeley) Nobel P 939
 - Neutron Trène and Frédéric Joliot-Curie, Paris, J. Chadwick, Cambridge)
 - Nobel Prize 1935 (Chadwick)
- 1930: Holes (P.A.M. Dirac, Cambridge) Nobel Prize 1933
- 1932: Positron (C.D. Anderson, Berkeley) Nobel Prize 1936

ASP Online Seminars, October 29 2020

1911:

1932:

Compton scattering $e^- + \gamma \rightarrow e^- + \gamma$ $e^- + e^+ \rightarrow \gamma + \gamma$

Matter-antimatter annihilation

Positron Emission Tomography (PET)

¹⁵0 (2 min) ^{13}N (10 min) ¹¹C (20 min) ¹⁸F (110 mi₍₂₎)

> Absolute sensitivity $\sim 10^{-2}$ Spatial resolution 2.5-4 mm Absorbed dose 5-10 mSv

> > M.R.C. Cyclotron Unit. Hammersmith Hospital London

ASP Online Seminars, October 29 2020

511 keV 511 keV 511 keV 511 keV

Radio-pharmaceutical labelling

Backprojection

Tomographical reconstruction

Central slice theorem

2D reconstruction

3D Reconstruction

ASP Online Seminars, October 29 2020

Backprojection

PET instrumentation

Hair dryer (BNL, 1960) ECAT EXACT HR+ (CTI, 1995)

ASP Online Seminars, October 29 2020 (Aix*Marseille

Continuous progress in PET instrumentation

PET III 1975 ECAT II 1977 NeuroECAT 1978

ECAT 931 1985

ECAT EXACT HR+ 1995

ASP Online Seminars, October 29 2020 (Aix*Marseille

Scintillateurs inorganiques utilisés en TEP

ASP Online Seminars, October 29 2020

Marseille

LuAP LaBr₃

8.34	5.3
65	52
32	14
17	25
400	60000
365	370
1.97	1.9

Technical progress in PET

LSO

7.4

66

75

Dens. $[g/cm^3]$ Z effectif Decay [ns] ph/MeV % NaI(TI)

BGO	
7.13	
74	
300	
8200	
15	

GSO 6.7 61 30-60 35-45 28000 10000 25

3DRP FORE+AWOSEM FORE+OSEM courtesy: DW Townsend, UPMC

- Detectors
- Data correction
- image reconstruction

Fraction of light emitted during

LSO: 69% 35% GSO: 20% BGO: 4.3%

High Resolution Research Tomograph (HRRT)

- LSO/GSO phoswich
- 153600 cristaux
- 1120 PMTs

40 min FDG fusionnée avec IRM-T1

ASP Online Seminars, October 29 2020

Aix*Marseille

EXPLORER

A total-body positron emission tomography (PET) scanner that can image molecular targets and pathways with unprecedented sensitivity for biomedical research.

Sensitivity: x 40 Low dose: ~ SFO-LHR transatlantic flight

EXPLORER is Completed!

System: Ring diameter: 78.6 cm Transaxial FOV: 68.6 cm Axial FOV: 194.8 cm

of crystals: 564,480 crystal blocks: 13,440 of SiPMs: 53,760

EXPLORER First Human Images

61-yo male, 65 kg; 164 cm; 7.8 mCi injected

ASP Online Seminars, October 29 2020

1 min scan, 81 min p.i.

20 min scan, 82 min p.i.

courtesy: Zhongshan Hospital, Shanghai

1991: PET/CT concept, D.W. Townsend (HUG)

PRT-1

ASP Online Seminars, October 29 2020

Courtesy: D.W. Townsend, UPMC

CT: 160 mAs; 130 KV_p ; pitch 1.6; 5 mm slices

PET: 6.3 mCi FDG; 3 x 10 min; 3.4 mm slices

MIBG scan one year ago showed right adrenal lesion; adrenal resected but no tumor found. PET suggested a lesion in the adrenal resection bed but PET/CT showed lesion located in spine.

UPMC, 1998

Courtesy: D.W. Townsend, UPMC

ASP Online Seminars, October 29 2020

40 year-old woman with multiple endocrine syndrome (MEN-1) and history of malignant pheochromocytoma

Typical design of a PET/CT scanner

Dual-modality imaging range

2001 : 1st commercial PET/CT scanner installed in Zurich by GE 2005 : > 650 TEP/TDM scanners installed, 95% PET sales

PET/CT scanners

Discovery IQ, GE

NEMA - US Shipments (\$M) TEP/CT

Biograph, Siemens uMI 510, United Imaging ASP Online Seminars, October 29 2020

AnyScan, Pozitron Teknik

Celesteion, Toshiba

courtesy: D.W. Townsend, UT

Clinical + Preclinical

microPET Focus 220 ECAT EXACT HR+

Humain 390 MBq FDG

Mouse 6 MBq FDG

Phosphor-sandwich (phoswich) detector

Proof of concept of simultaneous PET/CT ClearPET/XPAD prototype PET/CT scanner at CPPM

M Hamonet et al., Proc. IEEE NSS/MIC 2016

Tomographical reconstruction and counting statistics

Signal-to-noise ratio and counting statistics

Improving spatial resolution x 2 \Rightarrow increasing counting statistics x 16 to get unchanged SNR in the reconstructed image voxels

ASP Online Seminars, October 29 2020 (Aix+Marseille Université

Time-Of-Flight (TOF)-PET

Impact of TOF-PET on image SNR

$$N_{Tot} = \left(\frac{L}{d}\right)^{3} \times \left(\frac{A}{\Delta A}\right)^{2} \times \left(\frac{L}{d}\right)$$

$$N_{ToF} = \left(\frac{L}{d}\right)^{3} \times \left(\frac{A}{\Delta A}\right)^{2} \times \left(\frac{\Delta L}{d}\right)$$
Variance $f = \frac{L}{\Delta L} = \frac{2L}{c\Delta t}$
No TOF 700 ps 500 ps

State-of-the-art TOF-PET

nonTOF 527ps-TOF ASP Online Seminars, October 29 2020 (Aix*Marseille

210ps-TOF

7 (2019) 139-147 Bendriem, Clin Transl Imaging M. Conti and B.

300ps-TOF

500ps-TOF

700ps-TOF

nonTOF

Classification of scintillators

The detection chain

Unwanted pulses 2

TDC conversion time

+ t_{TDC}

electronics

The detection chain

From the time of detection $t_{d,i}$ of n optical photons

$$T_d = \{t_{d,1}, t_{d,2}, \dots, t_{d,n}\}$$

 \succ provides the Fisher information $I_{Td}(\Theta)$ of the gamma ray interaction time Θ

defines the Cramér-Rao lower bound by minimizing the variance of the time estimator Ξ

$$Var(\Xi) \geq 1 / I_{Td}(\Theta)$$

Random deletion 2 SiPM PDE

Unwanted pulses 2 DCR

ASP Online Seminars, October 29 2020

Courtesy: P. Lecoq, CERN

Prompt photons to boost the timing resolution

Cramér–Rao lower bound calculations for 2 x 2 x 3 mm³ and 2 x 2 x 20 mm³ LSO:Ce,Ca scintillator with a SiPM having a PDE of 55%, as a function of the number of additional prompt photons generated Courtesy:S. Gundacker, CERN Aix*Marseille

ASP Online Seminars, October 29 2020

1000500ps CTR [ps] FWHM 100 10 10ps 1 200 2000 prompt photons produced

Possible sources of prompt photons (< 1 ns)

Hot intraband luminescence 0.1 - 10 ps (e.g. PbWO₄, $CaWO_4$)

High donor band semiconductors < 1 ns (e.g. ZnO)quenched at room temperature

Courtesy: P. Lecoq, CERN

Cherenkov contribution

ASP Online Seminars, October 29 2020

Aix*Marseille

ZnO:Ga polystyrene composite scintillator

Highly luminescent ZnO:Ga nanocrystals 80-100 nm

- Prepared by a photochemical method
- 4000 pe/511 keV in powder (same as LSO)
- Embedded in a polystyrene sheet 10% weigth

Improving Coincidence Time Resolution (CTR)

Courtesy: R. Martinez Turtos, CERN

P Lecoq et al. Nucl. Instrum. Meth. A 718 (2013) 569 hole depth h Scintillator hole diameter: D (a) Rod height: Scintillato rod diameter: D S. Gundacker^(b)et al., Phys Med Biol 65 (2020) 025001 $CTR_{analytic} = 3.33 \sqrt{\frac{\tau}{0}}$ LuAG:Pr 2x2x8mm³ BGO $150 \cdot$ Energy deposition is 511keV FWHM [ps] CsI:undoped (PDE=17% Meltmount coupling GAGG:Ce:Mg 90-GFAG BC418 LSO:Ce:0.2%Ca LSO:Ce:0.4%Ca LYSO:Ce CTRBC42 CsI:undoped 30 (extrapolated with PDE=59%) Primarily crystal size 2x2x3mm³ and FBK NUV-HD 40µm SiPM readout (PD 0.01 0.02 initial photon-time-density $ILY_{@Energy} / \{\tau_{deff} (1.57 \tau_r + 1.13 \sigma_{SPTR+PTS})\}$ Aix*Marseille

$\sigma_{deff}(1.57 au_r$ +1.13 $\sigma_{SPTR+PTS})$
.43 \cdot ILY $_{@511keV(340keV}$ for plastics)
$\sigma_{SPTR+PTS}=39 ps$
except for BC418 & BC422 it is 340keV
g)
BaF_{2} (PDE=22% of FBK VUV-HD SiPM and Glycerin coupling)
2
and a second secon
BaF_2 (extrapolated with PDE=59%)
E=59%)
0.03
$[photons/ps^2]$

Resolution in TOF-direction: ~1.5 mm ↔ CTR: ~10 ps FWHM **Resolution in detector direction: 5 mm**

Courtesy: J. Nuyts, Univ Leuven

1992: FAI raised a challenge for the first balloon circumnavigation

This was a clear-cut case to shed light on TOF-PET with CTR < 10 ps FWHM and raise a challenge on reconstruction-less positron tomography

1931: Auguste Piccard performed the first stratospheric balloon flights above 16000 m

The challenge as a spur on technological R&D

The Longitude Act was enacted by the parliament of the United Kingdom in July 1714 after the shipwreck of the HMS Association on the reefs of Gilstone Ledges during the night of Oct 22 1707, leading to the death of 1400 to 2000 mans.

The Longitude Act established the Longitude **Office** in Greenwich and offered a reward to anybody who would find a simple and practical way to determine precisely the longitude of a ship.

John Harrison's H1 Marine Chronometer

Longitude rewards:

```
✓ £ 10,000 < 1°</p>
```

(= 110 km on the equator)

John Harrison received £ 10,000 in 1765 $(\sim 1.33 \text{ million } \pm \text{ in } 2020)$ for the development of the Marine Chronometer

1919: Raymond Orteig offered a prize of 25,000 US\$ to the first aviator who would flight from New York to Paris without stops

The Orteig Prize offer was initially available for 5 years, and then was renewed for another 5 years in 1924

May 1927 : Charles Lindbergh made the first flight from New York to Paris on board of the Spirit of Saint-Louis in 33 h and 30 minutes

XPRIZE is an innovation engine A facilitator of exponential change A catalyst for the benefit of humanity

Foundation based in California distributing prices of several millions of dollars for challenges launched in the domains of energy & environment, life sciences, exploration and development Its slogan is *making the impossible possible* Elon Musk, James Cameron, Larry Page, Arianna Huffington, Ratan Tata are members of its administration council

2012 : Qualcomm Tricorder XPrize 10 M\$

The 10 ps challenge: a step toward reconstruction-less TOF-PET

The 10 ps challenge:

- a spur on the development of fast timing
- an opportunity to get together
- an incentive to raise funding
- a way to shed light on nuclear instrumentation for medical imaging and beyond

One unique challenge launched for 5 to 10 years and operated by an international organisation with rules issued by the community based on the measurement of CTR combined to sensitivity

Several milestones and prizes:

- 3 years after the launch of the challenge: 1M€ expected for the Flash Gordon Prizes delivered to the 3 best certified achievements
- until the end of the challenge: 1M€ expected for the Leonard McCoy Prize for the first team meeting successfully the specifications of the challenge

ASP Online Seminars, October 29 2020

Aix<mark>*Marse</mark>

Non-TOF OSEM

10 ps TOF backproj

Physics in Medicine & Biology

Topical Review

Roadmap toward the 10 ps time-of-flight PET challenge

RECEIVED 16 September 2019

REVISED 22 March 2020

ACCEPTED FOR PUBLICATION 20 May 2020

PUBLISHED 20 October 2020

Paul Lecoq¹, Christian Morel², John O Prior³, Dimitris Visvikis⁴, Stefan Gundacker^{1,5}, Etiennette Auffray¹, Peter Križan⁶, Rosana Martinez Turtos^{1,21}, Dominique Thers⁷, Edoardo Charbon⁸, Joao Varela⁹, Christophe de La Taille¹⁰, Angelo Rivetti¹¹, Dominique Breton¹², Jean-François Pratte¹³, Johan Nuyts¹⁴, Suleman Surti¹⁵, Stefaan Vandenberghe¹⁶, Paul Marsden¹⁷, Katia Parodi¹⁸, Jose Maria Benlloch¹⁹ and Mathieu Benoit²⁰

Advantages:

- Better lesion detectability
- Low and ultra-low dose imaging
- Scan time reduction
- Longer post-injection observation

Applications:

- \checkmark Immuno-PET imaging (antibodies imaging)
- \checkmark Cell-based therapy imaging
- Lung cancer screening
- ✓ Infectious disease imaging
- Foetal imaging research \checkmark
- Psychiatric disease imaging and screening

Other fast timing applications (outside of TOF-PET):

- Compton imaging •••
- Protontherapy range monitoring
- Positron annihilation lifetime spectroscopy (PALS)
- Light detection and ranging (LIDAR)

ASP Online Seminars, October 29 2020

10 ps TOF-PET properties: Better image characteristics Faster image reconstruction Higher effective sensitivity

The 10 ps challenge

Overview

Flash Gordon Prize

Leonard McCoy Prize

Sponsors & Partners

Provisional Executive Board

Endorsements

The10ps-challenge.org

+ _

CLEAR

CRYSTAL

IEEE NPSS NMISC

SOCIETY OF NUCLEAR MEDICINE & MOLECULAR IMAGING

ASP Online Seminars, October 29 2020

Scientists

Leaflet | C OpenStreetMap contributors, Points C 2012 LINZ

The 10 ps challenge: a step toward reconstruction-less TOF-PET

Thank you

ASP Online Seminars, October 29 2020

Aix*Marseille

Non-TOF backproj

Non-TOF OSEM

10 ps TOF backproj

