Implementation of Long Short-Term Memory Neural Networks in High-Level Synthesis Targeting FPGAs

Richa Rao University of Washington June 9th, 2020

Neural Networks

Training and Inference

• **Training:** Process by which neural networks learn

Training and Inference

• **Training:** Process by which neural networks learn

• Inference: Using trained networks for prediction

Input

Computation with trained weights and biases

Types of Neural Networks

- Networks
- More than 1 hidden layer

Types of Neural Networks

- Networks
- More than 1 hidden layer

image as input

Types of Neural Networks

- Deep Neural Networks
- More than 1 hidden layer

- Convolutional Neural Networks
- Convolution layers
- Work well with image as input

- Long Short-Term Memory NN
- Memory Cell
- Work well with sequence of data as input

Long Short-Term Memory Neural Networks

- $x_t \rightarrow Input$
- $A \rightarrow LSTM$ Cell
- $H_t \rightarrow Output$

Unrolled LSTM network

Long-Term dependencies

I grew up in France. I speak

Long-Term dependencies

I grew up in France. I speak *french*

Long-Term dependencies

I grew up in France. I speak french

LSTM Cell

- Allow long-term dependencies between data by deciding-
 - Information to get of at each timestep
 - Information to carry to the next timestep
 - Output at each timestep

Unrolled LSTM network with contents of LSTM Cell

I. Information to get rid of at each timestep

Working of Forget Gate

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

 $\begin{array}{l} x_t \rightarrow \text{Input} \\ h_{t-1} \rightarrow \text{Output from previous timestep} \\ W_f, b_f \rightarrow \text{Weights and Biases} \\ f_t \rightarrow \text{Forget gate} \\ \sigma \rightarrow \text{Sigmoid Activation} \end{array}$

II. Information to carry to the next timestep

Working of Input Gate

 $i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$ $\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$ $x_t \rightarrow Input$ $h_{t-1} \rightarrow Output$ from previous timestep $W_i, b_i, W_C, b_C \rightarrow$ Weights and Biases $i_t \rightarrow$ Input gate σ , tanh \rightarrow Sigmoid, Tanh Activation \rightarrow New vector values

Image Sourc

II. Information to carry to the next timestep

Cell State

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

 $\begin{array}{l} C_t \rightarrow \text{Cell State} \\ C_{t-1} \rightarrow \text{Cell state from previous timestep} \\ i_t \rightarrow \text{Input gate} \\ f_t \rightarrow \text{Forget gate} \\ \tilde{C}_t \rightarrow \text{New vector values} \end{array}$

Image Source

III. Output at each timestep

Working of Output Gate

$$o_{t} = \sigma \left(W_{o} \ [h_{t-1}, x_{t}] + b_{o} \right)$$

$$h_{t} = o_{t} * \tanh \left(C_{t} \right)$$

$$x_{t}, h_{t} \rightarrow \text{Input, Output}$$

$$h_{t-1} \rightarrow \text{Output from previous timestep}$$

$$W_{o}, b_{o} \rightarrow \text{Weights and Biases}$$

$$o_{t} \rightarrow \text{Output gate}$$

$$\sigma, \tanh \rightarrow \text{Sigmoid, Tanh Activation}$$

$$C \rightarrow \text{Cell state}$$

Image Sourc

FPGA for ML Applications

- > Adaptable architecture
- Use the consumption Use the consumption
- 🙂 Flexible
- C Preferred for the task of inference due to low latency

FPGA for ML Applications

- > Adaptable architecture
- Use the consumption Use the consumption
- 🙂 Flexible
- C Preferred for the task of inference due to low latency
 - Need to code in HDL

High-Level Synthesis

• Automated design process that converts an algorithm in high-level language to low-level language.

High-Level Synthesis

HLS4ML Framework

- High-Level Synthesis for Machine Learning
- Tunable parameters
 - Quantization
 - Parallelization

HLS4ML Framework

- High-Level Synthesis for Machine Learning
- Tunable parameters
 - Quantization
 - Parallelization

Neural Networks and ML packages supported by HLS4ML

- ML Packages
 - Keras
 - Tensorflow
 - PyTorch
 - Onnx

- Neural networks supported
 - Fully connected NNs
 - Convolutional NNs
 - Boosted Decision Trees

Neural Networks and ML packages supported by HLS4ML

- ML Packages
 - Keras
 - Tensorflow
 - PyTorch
 - Onnx

- Neural networks supported
 - Fully connected NNs
 - Convolutional NNs
 - Boosted Decision Trees
 - Long Short-Term Memory NNs

Application of HLS4ML

- If the neural network model and ML package is supported
 - Any ML application

Application of HLS4ML

- If the neural network model and ML package is supported
 - Any ML application

- Focus of HLS4ML group
 - Application in Physics Top Tagging

A quick detour into the world of physics...

Top Tagging

- Types of jets
 - light quark (q) 0
 - gluon (g) Ο
 - W boson (W) Ο
 - Z boson (Z) 0
 - top quark (t) Ο

0000 р Particle Jet Energy depositions p in calorimeters

KERAS LSTM top tagging model

- Input:
 - Sequence of 20 particles with 6 features each
- Output:
 - Probability of 5 jet classes (q,g,W,Z,t)

Two step verification

- **Step 1:** KERAS vs HLS
 - Not a part of HLS4ML framework

Two step verification

- **Step 1:** KERAS vs HLS
 - Not a part of HLS4ML framework

- Step 2: HLS vs RTL
 - Verified by Vivado HLS

Resource Utilization and Latency as per HLS compiler

- FPGA Targeted: Xilinx Kintex Ultrascale FPGA (xcku115-flvb2104-2-i)
- Reuse factor: 1
- Precision: <16,6> (6 integer bits, 10 fractional bit)

Model	Latency(µs)	Iteration Interval(ns)	DSP(%)	FF(%)	LUT(%)	BRAM(%)
LSTM	1.35	5	326	48	104	11

Resource Utilization and Latency as per HLS compiler

- FPGA Targeted: Xilinx Kintex Ultrascale FPGA (xcku115-flvb2104-2-i)
- Reuse factor: 1
- Precision: <16,6> (6 integer bits, 10 fractional bit)

Model	Latency(µs)	Iteration Interval(ns)	DSP(%)	FF(%)	LUT(%)	BRAM(%)
LSTM	1.35	5	326	48	104	11
LSTM Static	1.35	1350	43	6	10	~0

Resource Utilization as per HLS compiler

Conclusion

- LSTM was implemented in the HLS4ML framework
- LSTM implementation was optimized to reduce resource utilization
- Github link: <u>https://github.com/richarao/hls4ml/tree/keras-lstm</u>

References

[1] Duarte, J., Han, S., Harris, P., Jindariani, S., Kreinar, E., Kreis, B., Ngadiuba, J., Pierini, M., Rivera, R., Tran, N. and Wu, Z., 2018. Fast inference of deep neural networks in FPGAs for particle physics. *Journal of Instrumentation*, 13(07), pp.P07027-P07027

[2] Fastmachinelearning.org. 2020. *HLS4ML* · *Gitbook*. [online] Available at: <https://fastmachinelearning.org/hls4ml/>.

Thank You Scott, Shih-Chieh Thank You HLS4ML team!