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Neural Networks



Training and Inference

● Training: Process by which 
neural networks learn
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● Inference: Using trained 
networks for prediction



● Deep Neural 
Networks

● More than 1 hidden 
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Types of Neural Networks

Image Source

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464


● Deep Neural 
Networks

● More than 1 hidden 
layer

● Convolutional 
Neural Networks

● Convolution layers
● Work well with 

image as input

Types of Neural Networks

Image Source

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464


● Deep Neural 
Networks

● More than 1 hidden 
layer

● Convolutional 
Neural Networks

● Convolution layers
● Work well with 

image as input

Types of Neural Networks

Image Source

● Long Short-Term 
Memory NN

● Memory Cell
● Work well with 

sequence of data as 
input

●

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464


Long Short-Term Memory Neural Networks
● xt → Input
● A → LSTM Cell
● Ht → Output

Image Source
Unrolled LSTM network

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM Cell
● Allow long-term dependencies between data by deciding-

○ Information to get of at each timestep
○ Information to carry to the next timestep
○ Output at each timestep

Image SourceUnrolled LSTM network with contents of LSTM Cell

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


I. Information to get rid of at each timestep

Image Source

Working of Forget Gate

xt → Input

ht-1 → Output from previous timestep

Wf, bf → Weights and Biases

ft → Forget gate

𝝈 → Sigmoid Activation

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


II. Information to carry to the next timestep

Image Source

xt → Input

ht-1 → Output from previous timestep

Wi, bi , WC, bC → Weights and Biases

it → Input gate

𝝈 , tanh → Sigmoid, Tanh Activation

C̃t →  New vector values

Working of Input Gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


II. Information to carry to the next timestep

Image Source

Ct → Cell State

Ct-1 → Cell state from previous timestep

it → Input gate

ft → Forget gate

C̃t →  New vector values

Cell State

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


III. Output at each timestep

Image Source

xt , ht→ Input, Output

ht-1 → Output from previous timestep

Wo, bo → Weights and Biases

ot → Output gate

𝝈 , tanh → Sigmoid, Tanh Activation

Ct →  Cell state

Working of Output Gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Adaptable architecture

Low power consumption

Flexible

Preferred for the task of inference due to low latency



FPGA for ML Applications

Adaptable architecture

Low power consumption

Flexible

Preferred for the task of inference due to low latency

Need to code in HDL



High-Level Synthesis

● Automated design process that converts an algorithm in high-level language to 
low-level language.



High-Level Synthesis

Image Source

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf


HLS4ML Framework
● High-Level Synthesis for Machine Learning
● Tunable parameters

○ Quantization
○ Parallelization

Image Source

https://fastmachinelearning.org/hls4ml/CONCEPTS.html
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Neural Networks and ML packages supported by 
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● ML Packages

○ Keras
○ Tensorflow
○ PyTorch
○ Onnx

● Neural networks supported
○ Fully connected NNs
○ Convolutional NNs
○ Boosted Decision Trees
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○ Tensorflow
○ PyTorch
○ Onnx

● Neural networks supported
○ Fully connected NNs
○ Convolutional NNs
○ Boosted Decision Trees
○ Long Short-Term Memory NNs



Application of HLS4ML
● If the neural network model and 

ML package is supported
○ Any ML application

Image Source

https://www.quora.com/What-are-some-real-world-examples-of-applications-of-machine-learning-in-the-field


Application of HLS4ML
● If the neural network model and 

ML package is supported
○ Any ML application

● Focus of HLS4ML group
○ Application in Physics - Top 

Tagging

Image Source

https://www.quora.com/What-are-some-real-world-examples-of-applications-of-machine-learning-in-the-field


A quick detour into the world of physics...



Top Tagging
● Types of jets

○ light quark (q)
○ gluon (g)
○ W boson (W)
○ Z boson (Z)
○ top quark (t)

Image Source

https://cms.cern/news/jets-cms-and-determination-their-energy-scale


KERAS LSTM top tagging model
● Input: 

○ Sequence of 20 particles with 6 features each
● Output: 

○ Probability of 5 jet classes (q,g,W,Z,t)



Block diagram to add LSTM into HLS4ML



Block diagram to add LSTM into HLS4ML
Input

● Trained model (JSON)
● Trained Weights and 

biases (H5)



Block diagram to add LSTM into HLS4ML

Converter
● Python objects for 

LSTM layer



Block diagram to add LSTM into HLS4ML

HLS Model
● LSTM class created
● Parameters like weights, 

biases, activations 
defined



Block diagram to add LSTM into HLS4ML

Template
● Layer configuration 

and template defined 
for HLS code



Block diagram to add LSTM into HLS4ML

Vivado Writer
● Uses information from 

above modules
● Writes final HLS code



Block diagram to add LSTM into HLS4ML

C++ files
● HLS main
● HLS testbench

Algorithm
● Header file containing 

LSTM multiplication 
algorithm 



Block diagram to add LSTM into HLS4ML

Vivado HLS
● CSim
● Csynth
● RTL/C CoSim



Two step verification

● Step 1: KERAS vs HLS
○ Not a part of HLS4ML framework



Two step verification

● Step 1: KERAS vs HLS
○ Not a part of HLS4ML framework

● Step 2: HLS vs RTL
○ Verified by Vivado HLS



Resource Utilization and Latency as per HLS compiler

Model Latency(µs) Iteration 
Interval(ns) DSP(%) FF(%) LUT(%) BRAM(%)

LSTM 1.35 5 326 48 104 11

● FPGA Targeted: Xilinx Kintex Ultrascale FPGA (xcku115-flvb2104-2-i)
● Reuse factor:  1
● Precision:  <16,6>  (6 integer bits, 10 fractional bit)



Resource Utilization and Latency as per HLS compiler

Model Latency(µs) Iteration 
Interval(ns) DSP(%) FF(%) LUT(%) BRAM(%)

LSTM 1.35 5 326 48 104 11

LSTM 
Static 1.35 1350 43 6 10 ~0

● FPGA Targeted: Xilinx Kintex Ultrascale FPGA (xcku115-flvb2104-2-i)
● Reuse factor:  1
● Precision:  <16,6>  (6 integer bits, 10 fractional bit)



Resource Utilization as per HLS compiler



Conclusion
● LSTM was implemented in the HLS4ML framework

● LSTM implementation was optimized to reduce resource utilization

● Github link: https://github.com/richarao/hls4ml/tree/keras-lstm

https://github.com/richarao/hls4ml/tree/keras-lstm
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Thank You Scott, Shih-Chieh

Thank You HLS4ML team!


