Implementation of Long Short-Term Memory Neural Networks in High-Level Synthesis Targeting FPGAs

Richa Rao University of Washington June 9th, 2020

Neural Networks

Training and Inference

● **Training:** Process by which neural networks learn

Training and Inference

● **Training:** Process by which neural networks learn

● **Inference:** Using trained networks for prediction

Computation with trained weights and biases

Types of Neural Networks

- Networks
- More than 1 hidden layer

Types of Neural Networks

- Networks
- More than 1 hidden layer

image as input

Types of Neural Networks

- Deep Neural Networks
- More than 1 hidden layer

- Convolutional Neural Networks
- Convolution layers
- $\overline{\bullet}$ Work well with image as input

- Long Short-Term Memory NN
- Memory Cell
- Work well with sequence of data as input

Long Short-Term Memory Neural Networks

- $\bullet \quad x_t \rightarrow Input$
- \bullet A \rightarrow LSTM Cell
- \bullet H_t \rightarrow Output

Unrolled LSTM network

Long-Term dependencies

I grew up in France. I speak *_____*

Long-Term dependencies

I grew up in France. I speak *french*

Long-Term dependencies

I grew up in France. I (speak *french*)

LSTM Cell

- Allow long-term dependencies between data by deciding-
	- Information to get of at each timestep
	- Information to carry to the next timestep
	- Output at each timestep

Unrolled LSTM network with contents of LSTM Cell [Image Source](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)

I. Information to get rid of at each timestep

Working of Forget Gate

$$
f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)
$$

 $x_t \rightarrow Input$ $h_{t-1} \rightarrow$ Output from previous timestep W_f , $b_f \rightarrow$ Weights and Biases $f_t \rightarrow$ Forget gate $\sigma \rightarrow$ Sigmoid Activation

II. Information to carry to the next timestep

Working of Input Gate

 $i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$ $\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$ $x_t \rightarrow$ Input $h_{t-1} \rightarrow$ Output from previous timestep W_i , b_i , W_C , $b_C \rightarrow$ Weights and Biases $i_t \rightarrow$ Input gate σ , tanh \rightarrow Sigmoid, Tanh Activation \rightarrow New vector values

[Image Source](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)

II. Information to carry to the next timestep

Cell State

$$
C_t = f_t * C_{t-1} + i_t * \tilde{C}_t
$$

 $C_t \rightarrow$ Cell State $C_{t-1} \rightarrow$ Cell state from previous timestep $i_t \rightarrow$ Input gate $f_t \rightarrow$ Forget gate $\tilde{C}_t \rightarrow$ New vector values

III. Output at each timestep

Working of Output Gate

$$
o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)
$$

\n
$$
h_t = o_t * \tanh (C_t)
$$

\n
$$
\begin{array}{c}\nx_t, h_t \to \text{Input, Output} \\
h_{t-1} \to \text{Output from previous timestep} \\
W_o, b_o \to \text{Weights and Biases} \\
o_t \to \text{Output gate} \\
\sigma, \tanh \to \text{Sigmoid, Tanh Activation} \\
C_t \to \text{Cell state}\n\end{array}
$$

[Image Source](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)

FPGA for ML Applications

- Adaptable architecture \mathbb{C}^+
- **U** Low power consumption
- $\ddot{\circ}$ Flexible
- Preferred for the task of inference due to low latency \mathbb{C}

FPGA for ML Applications

- Adaptable architecture
- **U** Low power consumption
- Flexible $\ddot{\circ}$
- Preferred for the task of inference due to low latency \mathbb{C}
	- Need to code in HDL

High-Level Synthesis

● Automated design process that converts an algorithm in high-level language to low-level language.

High-Level Synthesis

[Image Source](https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf)

HLS4ML Framework

- High-Level Synthesis for Machine Learning
- Tunable parameters
	- Quantization
	- Parallelization

HLS4ML Framework

- High-Level Synthesis for Machine Learning
- Tunable parameters
	- Quantization
	- Parallelization

Neural Networks and ML packages supported by HLS4ML

- ML Packages
	- Keras
	- Tensorflow
	- PyTorch
	- Onnx
- Neural networks supported
	- Fully connected NNs
	- Convolutional NNs
	- Boosted Decision Trees

Neural Networks and ML packages supported by HLS4ML

- ML Packages
	- Keras
	- Tensorflow
	- PyTorch
	- Onnx
- Neural networks supported
	- Fully connected NNs
	- Convolutional NNs
	- Boosted Decision Trees
	- **○ Long Short-Term Memory NNs**

Application of HLS4ML

- If the neural network model and ML package is supported
	- Any ML application

Application of HLS4ML

- If the neural network model and ML package is supported
	- Any ML application

- Focus of HLS4ML group
	- **○ Application in Physics Top Tagging**

A quick detour into the world of physics...

Top Tagging

- Types of jets
	- \circ light quark (q)
	- \circ gluon (g)
	- \circ W boson (W)
	- \circ Z boson (Z)
	- \circ top quark (t)

p Particle Jet Energy depositions p in calorimeters

KERAS LSTM top tagging model

- Input:
	- Sequence of 20 particles with 6 features each
- Output:
	- \circ Probability of 5 jet classes (q, g, W, Z, t)

Two step verification

- **Step 1:** KERAS vs HLS
	- Not a part of HLS4ML framework

Two step verification

- **Step 1:** KERAS vs HLS
	- Not a part of HLS4ML framework

- **Step 2:** HLS vs RTL
	- Verified by Vivado HLS

Resource Utilization and Latency as per HLS compiler

- FPGA Targeted: Xilinx Kintex Ultrascale FPGA (xcku115-flvb2104-2-i)
- Reuse factor: 1
- Precision: $\leq 16,6$ (6 integer bits, 10 fractional bit)

Resource Utilization and Latency as per HLS compiler

- FPGA Targeted: Xilinx Kintex Ultrascale FPGA (xcku115-flvb2104-2-i)
- Reuse factor: 1
- Precision: $\leq 16,6$ (6 integer bits, 10 fractional bit)

Resource Utilization as per HLS compiler

Conclusion

- LSTM was implemented in the HLS4ML framework
- LSTM implementation was optimized to reduce resource utilization
- Github link: <https://github.com/richarao/hls4ml/tree/keras-lstm>

References

[1] Duarte, J., Han, S., Harris, P., Jindariani, S., Kreinar, E., Kreis, B., Ngadiuba, J., Pierini, M., Rivera, R., Tran, N. and Wu, Z., 2018. Fast inference of deep neural networks in FPGAs for particle physics. *Journal of Instrumentation*, 13(07), pp.P07027-P07027

[2] Fastmachinelearning.org. 2020. *HLS4ML · Gitbook*. [online] Available at: <https://fastmachinelearning.org/hls4ml/>.

Thank You Scott, Shih-Chieh Thank You HLS4ML team!