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Neural Networks
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https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
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Types of Neural Networks

Convolutional
Neural Networks
Convolution layers
Work well with

image as input

Image Source


https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
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input
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https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Long Short-Term Memory Neural Networks

o x — Input
e A— LSTM Cell
e H — Output
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM Cell

e Allow long-term dependencies between data by deciding-
o Information to get of at each timestep
o Information to carry to the next timestep
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o  Output at each timestep
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Unrolled LSTM network with contents of LSTM Cell Image Source


https://colah.github.io/posts/2015-08-Understanding-LSTMs/

I. Information to get rid of at each timestep

fe=0Wg-[ht—1,24] + bf)

X, — Input

h_, — Output from previous timestep
Working of Forget Gate W, b,— Weights and Biases
f — Forget gate

o — Sigmoid Activation

Image Source


https://colah.github.io/posts/2015-08-Understanding-LSTMs/

I1. Information to carry to the next timestep
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[ x, — Input
: h_, — Output from previous timestep
Working of Input Gate W, b., W, b.— Weights and Biases

1. — Input gate

o , tanh — Sigmoid, Tanh Activation

C T New vector values

Imaoe Sourc



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

I1. Information to carry to the next timestep

Cell State
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Ci = fi % Cy_q + 4 + C

C, — Cell State

C,., — Cell state from previous timestep
i, — Input gate

f — Forget gate

C T New vector values

Image Source


https://colah.github.io/posts/2015-08-Understanding-LSTMs/

II1. Output at each timestep
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hy = o4 * tanh (C})

X, , h,— Input, Output

W, b, — Weights and Biases

o, — Output gate

Ct — Cell state

h_, — Output from previous timestep

o , tanh — Sigmoid, Tanh Activation
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FPGA for ML Applications

O Adaptable architecture
< Low power consumption

' Flexible

O) Preferred for the task of inference due to low latency



FPGA for ML Applications

O Adaptable architecture
< Low power consumption

' Flexible

O) Preferred for the task of inference due to low latency

@ Need to code in HDL



High-Level Synthesis

e Automated design process that converts an algorithm in high-level language to
low-level language.



High-Level Synthesis
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https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf

HLS4ML Framework

High-Level Synthesis for Machine Learning
Tunable parameters
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https://fastmachinelearning.org/hls4ml/CONCEPTS.html

HLS4ML Framework
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https://fastmachinelearning.org/hls4ml/CONCEPTS.html

Neural Networks and ML packages supported by
HLS4ML

e ML Packages e Necural networks supported
o Keras o  Fully connected NNs
o  Tensorflow o  Convolutional NNs
o PyTorch o  Boosted Decision Trees
o  Onnx
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e ML Packages e Necural networks supported
o Keras o  Fully connected NNs
o  Tensorflow o  Convolutional NNs
o PyTorch o  Boosted Decision Trees
o  Onnx o Long Short-Term Memory NNs



Application of HLS4ML
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https://www.quora.com/What-are-some-real-world-examples-of-applications-of-machine-learning-in-the-field

Application of HLS4ML

e [f the neural network model and

ML package is supported
o  Any ML application

e Focus of HLS4ML group
o  Application in Physics - Top
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A quick detour into the world of physics...



Top Tagging

e Types of jets

o light quark (q)
gluon (g)
W boson (W) /
Z boson (Z)
top quark (t) \

p

o O O O

Particle Jet Energy depositions
in calorimeters

Image Source


https://cms.cern/news/jets-cms-and-determination-their-energy-scale

KERAS LSTM top tagging model

e I[nput:

o  Sequence of 20 particles with 6 features each

e Output:

o  Probability of 5 jet classes (q,g2,W,Z,t)

Layer Type: Input
Output Shape: [20 X 6]

Layer Type: LSTM

Recurrent weight: [16 X 64]
Weight: [6 X 64]

Recurrent Activation: Sigmoid
Activation: ReLLU

Output Shape: [20 X 16]

Layer Type: Dense
Weight: [320 X §]
Activation: Softmax

Output Shape: [1 X 5]




Block diagram to add LSTM into HLS4ML
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Block diagram to add LSTM into HLS4ML

Input
e Trained model (JSON)
e Trained Weights and
biases (HS)




Block diagram to add LSTM into HLS4ML

Converter
e Python objects for
LSTM layer




Block diagram to add LSTM into HLS4ML

HLS Model
e LSTM class created
e Parameters like weights,

biases, activations
defined




Block diagram to add LSTM into HLS4ML

Template
e Layer configuration
and template defined
for HLS code




Block diagram to add LSTM into HLS4ML

Vivado Writer
e Uses information from

above modules
e Writes final HLS code




Block diagram to add LSTM into HLS4ML

|
C++ files Algorithm .
. e Header file containing
e HLS main LSTM on
| e HLS testbench . multiplication
algorithm




Block diagram to add LSTM into HLS4ML

Vivado HLS
e CSim
e (Csynth
e RTL/C CoSim




Two step verification

® Step 1: KERAS vs HLS
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Not a part of HLS4ML framework
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Two step verification

® Step 1: KERAS vs HLS

O

Not a part of HLS4ML framework

® Step 2: HLS vs RTL

O

Verified by Vivado HLS
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Resource Utilization and Latency as per HLS compiler

FPGA Targeted: Xilinx Kintex Ultrascale FPGA (xckul15-flvb2104-2-1)

Reuse factor: 1

e Precision: <16,6> (6 integer bits, 10 fractional bit)
Iteration o o o o
Model Latency(us) Interval(ns) DSP(%) FF(%) LUT (%) BRAM(%)
LSTM 1.35 5 326 48 104 11




Resource Utilization and Latency as per HLS compiler

e FPGA Targeted: Xilinx Kintex Ultrascale FPGA (xckul15-flvb2104-2-1)

e Reuse factor: 1
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Resource Utilization as per HLS compiler
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Conclusion

e LSTM was implemented in the HLS4ML framework
e LSTM implementation was optimized to reduce resource utilization

e (Github link: https://github.com/richarao/hls4ml/tree/keras-lstm



https://github.com/richarao/hls4ml/tree/keras-lstm
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