
Implementation of Long Short-Term
Memory Neural Networks in High-Level

Synthesis Targeting FPGAs

Richa Rao
University of Washington

June 9th, 2020

Neural Networks

Training and Inference

● Training: Process by which
neural networks learn

Training and Inference

● Training: Process by which
neural networks learn

● Inference: Using trained
networks for prediction

● Deep Neural
Networks

● More than 1 hidden
layer

Types of Neural Networks

Image Source

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

● Deep Neural
Networks

● More than 1 hidden
layer

● Convolutional
Neural Networks

● Convolution layers
● Work well with

image as input

Types of Neural Networks

Image Source

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

● Deep Neural
Networks

● More than 1 hidden
layer

● Convolutional
Neural Networks

● Convolution layers
● Work well with

image as input

Types of Neural Networks

Image Source

● Long Short-Term
Memory NN

● Memory Cell
● Work well with

sequence of data as
input

●

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Long Short-Term Memory Neural Networks
● xt → Input
● A → LSTM Cell
● Ht → Output

Image Source
Unrolled LSTM network

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long-Term dependencies

I grew up in France. I speak _____

Long-Term dependencies

I grew up in France. I speak french

Long-Term dependencies

I grew up in France. I speak french

LSTM Cell
● Allow long-term dependencies between data by deciding-

○ Information to get of at each timestep
○ Information to carry to the next timestep
○ Output at each timestep

Image SourceUnrolled LSTM network with contents of LSTM Cell

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

I. Information to get rid of at each timestep

Image Source

Working of Forget Gate

xt → Input

ht-1 → Output from previous timestep

Wf, bf → Weights and Biases

ft → Forget gate

𝝈 → Sigmoid Activation

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

II. Information to carry to the next timestep

Image Source

xt → Input

ht-1 → Output from previous timestep

Wi, bi , WC, bC → Weights and Biases

it → Input gate

𝝈 , tanh → Sigmoid, Tanh Activation

C̃t → New vector values

Working of Input Gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

II. Information to carry to the next timestep

Image Source

Ct → Cell State

Ct-1 → Cell state from previous timestep

it → Input gate

ft → Forget gate

C̃t → New vector values

Cell State

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

III. Output at each timestep

Image Source

xt , ht→ Input, Output

ht-1 → Output from previous timestep

Wo, bo → Weights and Biases

ot → Output gate

𝝈 , tanh → Sigmoid, Tanh Activation

Ct → Cell state

Working of Output Gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

FPGA for ML Applications

Adaptable architecture

Low power consumption

Flexible

Preferred for the task of inference due to low latency

FPGA for ML Applications

Adaptable architecture

Low power consumption

Flexible

Preferred for the task of inference due to low latency

Need to code in HDL

High-Level Synthesis

● Automated design process that converts an algorithm in high-level language to
low-level language.

High-Level Synthesis

Image Source

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf

HLS4ML Framework
● High-Level Synthesis for Machine Learning
● Tunable parameters

○ Quantization
○ Parallelization

Image Source

https://fastmachinelearning.org/hls4ml/CONCEPTS.html

HLS4ML Framework
● High-Level Synthesis for Machine Learning
● Tunable parameters

○ Quantization
○ Parallelization

Image Source

https://fastmachinelearning.org/hls4ml/CONCEPTS.html

Neural Networks and ML packages supported by
HLS4ML
● ML Packages

○ Keras
○ Tensorflow
○ PyTorch
○ Onnx

● Neural networks supported
○ Fully connected NNs
○ Convolutional NNs
○ Boosted Decision Trees

Neural Networks and ML packages supported by
HLS4ML
● ML Packages

○ Keras
○ Tensorflow
○ PyTorch
○ Onnx

● Neural networks supported
○ Fully connected NNs
○ Convolutional NNs
○ Boosted Decision Trees
○ Long Short-Term Memory NNs

Application of HLS4ML
● If the neural network model and

ML package is supported
○ Any ML application

Image Source

https://www.quora.com/What-are-some-real-world-examples-of-applications-of-machine-learning-in-the-field

Application of HLS4ML
● If the neural network model and

ML package is supported
○ Any ML application

● Focus of HLS4ML group
○ Application in Physics - Top

Tagging

Image Source

https://www.quora.com/What-are-some-real-world-examples-of-applications-of-machine-learning-in-the-field

A quick detour into the world of physics...

Top Tagging
● Types of jets

○ light quark (q)
○ gluon (g)
○ W boson (W)
○ Z boson (Z)
○ top quark (t)

Image Source

https://cms.cern/news/jets-cms-and-determination-their-energy-scale

KERAS LSTM top tagging model
● Input:

○ Sequence of 20 particles with 6 features each
● Output:

○ Probability of 5 jet classes (q,g,W,Z,t)

Block diagram to add LSTM into HLS4ML

Block diagram to add LSTM into HLS4ML
Input

● Trained model (JSON)
● Trained Weights and

biases (H5)

Block diagram to add LSTM into HLS4ML

Converter
● Python objects for

LSTM layer

Block diagram to add LSTM into HLS4ML

HLS Model
● LSTM class created
● Parameters like weights,

biases, activations
defined

Block diagram to add LSTM into HLS4ML

Template
● Layer configuration

and template defined
for HLS code

Block diagram to add LSTM into HLS4ML

Vivado Writer
● Uses information from

above modules
● Writes final HLS code

Block diagram to add LSTM into HLS4ML

C++ files
● HLS main
● HLS testbench

Algorithm
● Header file containing

LSTM multiplication
algorithm

Block diagram to add LSTM into HLS4ML

Vivado HLS
● CSim
● Csynth
● RTL/C CoSim

Two step verification

● Step 1: KERAS vs HLS
○ Not a part of HLS4ML framework

Two step verification

● Step 1: KERAS vs HLS
○ Not a part of HLS4ML framework

● Step 2: HLS vs RTL
○ Verified by Vivado HLS

Resource Utilization and Latency as per HLS compiler

Model Latency(µs) Iteration
Interval(ns) DSP(%) FF(%) LUT(%) BRAM(%)

LSTM 1.35 5 326 48 104 11

● FPGA Targeted: Xilinx Kintex Ultrascale FPGA (xcku115-flvb2104-2-i)
● Reuse factor: 1
● Precision: <16,6> (6 integer bits, 10 fractional bit)

Resource Utilization and Latency as per HLS compiler

Model Latency(µs) Iteration
Interval(ns) DSP(%) FF(%) LUT(%) BRAM(%)

LSTM 1.35 5 326 48 104 11

LSTM
Static 1.35 1350 43 6 10 ~0

● FPGA Targeted: Xilinx Kintex Ultrascale FPGA (xcku115-flvb2104-2-i)
● Reuse factor: 1
● Precision: <16,6> (6 integer bits, 10 fractional bit)

Resource Utilization as per HLS compiler

Conclusion
● LSTM was implemented in the HLS4ML framework

● LSTM implementation was optimized to reduce resource utilization

● Github link: https://github.com/richarao/hls4ml/tree/keras-lstm

https://github.com/richarao/hls4ml/tree/keras-lstm

References
[1] Duarte, J., Han, S., Harris, P., Jindariani, S., Kreinar, E., Kreis, B., Ngadiuba, J.,
Pierini, M., Rivera, R., Tran, N. and Wu, Z., 2018. Fast inference of deep neural networks
in FPGAs for particle physics. Journal of Instrumentation, 13(07), pp.P07027-P07027

[2] Fastmachinelearning.org. 2020. HLS4ML · Gitbook. [online] Available at:
<https://fastmachinelearning.org/hls4ml/>.

Thank You Scott, Shih-Chieh

Thank You HLS4ML team!

