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HISTORICAL REMARK

Remarkable fact
In QFT perturbative calculations, both polylogarithmic and non-polylogarithmic
functions appeared in one and the same journal issue by one and the same author
Racah [1934a,b] (as it is expected, polylogs appeared a bit earlier, on pages 461-476,
while the elliptic integrals — on pages 477-481).
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Both results have been obtained by explicit integration of spectra.
Note the contemporary form of the latter result.
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MODERN APPROACH

1. Consider a family of integrals

j(n1, . . . , nN) =
∫ ddl1 . . . ddlL

Dn1
1 . . .DnN

N
.

Integrals are functions of kinematic variables xi and space-time dimension
d = 4− 2ϵ.

2. Arrange IBP reduction [Chetyrkin and Tkachov, 1981, Laporta, 2000] to master
integrals j = (j1, . . . js)⊺ .

3. Find differential equations [Kotikov, 1991, Remiddi, 1997] (and/or dimensional
recurrences [Tarasov, 1996]) for master integrals

Differential equations
∂

∂xi
j = M(x, ϵ)j

Dimensional recurrences

j(ϵ+ 1) = R(x, ϵ)j(ϵ)

M and R are n× n matrices rational in x and ϵ.
4. Find general solution.
5. Use third-party methods to fix specific solution.

Steps ##2,4,5 can be troublesome. In what follows I will mostly talk about general
solution and its properties.
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ϵ-FORM OF THE DIFFERENTIAL EQUATION AND POLYLOGS

∙ In 2013 the following observation has been made [Henn, 2013]. A careful choice of
the master integrals (’canonical’ masters J) leads to the differential equation in
the form:

∂xJ = ϵS(x)J, S(x) =
∑
i

Si
x− ai

, (ϵ-form)

Solution via polylogs

Once the ϵ-form is found, the general solution

U = Pexp
[
ϵ

∫
S(x)dx

]
can be readily expanded in perturbative series wrt ϵ, coefficients being the
Goncharov’s polylogs G(a1, . . . |x).

∙ The algorithm of finding the ϵ-form has been suggested in [Lee, 2015]. The
algorithm consists of applying a sequence of rational transformations

M→ T−1 (MT− ∂xT)

which eventually reduce the differential system to ϵ-form. Now it is implemented
in three publicly available codes: epsilon [Prausa, 2017], Fuchsia [Gituliar and
Magerya, 2017], Libra [Lee, 2020].
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COMPLICATIONS

However, soon it was realized that rational transformation matrices T(x, ϵ) are not
always sufficient. Note that if we allow for any functions in T(x, ϵ), the trivial ϵ-form
∂J = 0 is always achievable by choosing T = Pexp

[∫
Mdx

]
. Thus, the question is how

to extend the class of transformations in the most natural and minimal way.

∙ In many problems it is possible to find new variable y, related to x via x = f(y)
with rational function f such that transformation to ϵ-form is rational in y. Then
the general solution is expressed via polylogs with argument y (rather than x).

∙ Sometimes several auxiliary variables y, z, . . . are needed x = f(y) = g(z) = . . ..
For U = Pexp

[
ϵ
∫
S(x, y, . . .)dx

]
to be expressible via polylogs, these variables

either should not appear simultaneously in any iterated integral coming from the
expansion of U or there should be universal rationalizing variable.

∙ Sometimes there is no transformation to ϵ-form in the class described in two
previous items. Criterion of irreducibility: [Lee and Pomeransky, 2017]. If the
system has the form ∂xJ = (A+ ϵB)J then one can use T = U0 , where U0 is the
solution of ∂xU0 = AU0 . In particular, U0 can be expressible via elliptic polylogs.
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ϵ-(IR)REDUCIBILITY

Systems reducible to ϵ-form.

We can construct solution via polylogs
with the following benefits:

∙ Functional relations, argument
transformations.

∙ Explicit asymptotics, series
expansion wrt argument.

∙ Fast numerical computation.
∙ Grading by transcendental weight,
known bases, use of pslq.

Systems irreducible to ϵ-form.

Special treatment of each irreducible
case.

∙ Functional relations: little is known
in general.

∙ Asymptotics, series expansion: yes,
but terms are determined by
recurrences.

∙ Fast numerical computation: yes,
but via custom codes.

∙ There seems to be a nontrivial symmetry in all available examples of differential
systems for multiloop integrals.

∙ One can use existing tools (in particular, Libra) to detect this symmetry and
construct quadratic constraints for the coefficients of ϵ-expansion.

∙ There seem to be an especially adjusted basis where these constraints have the
most simple form. For ϵ-reducible systems this is just the canonical basis. To
systematically find this form for ϵ-irreducible cases some new algorithms may be
needed.
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RATIONAL EQUIVALENCE

Definition (rational equivalence)

We will say that two systems

∂xj1 = M1j1 and ∂xj2 = M2j2 (*)

are rationally (more precisely, x-rationally) equivalent if ∃ a rational change of
functions j1 = Tj2 which maps the first system to the second. Or, alternatively, if

M2 = T−1(M1T− ∂xT) .

We will write M2
R≂ M1 for matrices of rationally equivalent systems.

∙ The monodromy groups of rationally equivalent systems are isomorphic.

∙ Thanks to dimensional recurrences we have M(ϵ− 1) R≂ M(ϵ).
∙ The ϵ-reducibility means the rational equivalence to the system ∂xJ = ϵS(x)J with
S being independent of ϵ.

Question

Given two systems (*) how to find T or to establish that it does exists?
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ESTABLISHING RATIONAL EQUIVALENCE

It is easy to set up the following algorithm

1. Reduce both differential systems to normalized fuchsian form with the same (but
otherwise arbitrary) normalization conditions. Let T1 and T2 be the corresponding
transformations.

2. If the reduced systems have different sets of singular points or different sets of
eigenvalues of their matrix residues at least in one point (counting with
multiplicities), the systems are not equivalent.

3. Otherwise, search for a constant (independent of x) invertible matrix T3(ϵ) such
that

M1T3 = T3M2 .

Here M1,2 are the matrices for two normalized fuchsian forms obtained at step 1.
This is just a system of linear equations for the elements of T3 .

4. If such a T3 does not exist, the systems are not equivalent. Otherwise, they are
equivalent by means of the transformation

T = T1T3T−1
2

Proof becomes a trivial exercise given the Proposition of [Lee and Pomeransky, 2017].
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ϵ-CONJUGATION

Definition (ϵ-transposition)

Let M = M(ϵ) be a matrix depending on ϵ. We call the involution

M(ϵ)→ M⋆(ϵ) = M⊺(−ϵ)

the ϵ-transposition. We define analogously the ϵ-symmetric matrices (M = M⋆) and
ϵ-orthogonal matrices (U U⋆ = 1).

Definition (ϵ-conjugated system)

We call the differential system ∂xj = −M⋆(x, ϵ)j the ϵ-conjugated to ∂xj = M(x, ϵ)j
(note the minus sign).

NB: for matrices independent of ϵ one can omit “ϵ” in the above notations
(“ϵ-transposition” −→ “transposition” etc.)
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SYMMETRY OF THE HOMOGENEOUS DIFFERENTIAL EQUATIONS

The differential systems for master integrals have a block-triangular (BT) form, with
each block corresponding to the integrals of the specific sector. The corresponding
homogeneous systems are satisfied by the maximally cut master integrals of the
sector. Our observation concerns homogeneous differential systems corresponding to
each diagonal block1 .

Observation
Let

∂xj = Mj (DE)

be such a homogeneous differential system corresponding to some block irreducible
to BT form. Then we observe on many examples that the ϵ-conjugated differential
system

∂xj = −M⋆j (DE⋆)

is rationally equivalent to the original system (DE).

1Sometimes these blocks can be further block-triangularized.
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SYMMETRIC ϵ- AND (ϵ+ 1
2 )-FORM

This observation is not new for the systems which are reducible to ϵ- and/or to
(ϵ+ 1/2)- forms. In Ref. Lee [2018] it was observed that such systems can be reduced
to symmetric form ∂xJ = µS(x)J, (S = S⊺ and µ = ϵ or ϵ+ 1

2 ).

Indeed,

∙ For symmetric ϵ-form we have

−M⋆(ϵ) = −(ϵS)⋆ = ϵS = M(ϵ)

∙ For symmetric (ϵ+ 1/2)-form we have

−M⋆(ϵ) = −((ϵ+ 1/2)S)⋆ = (ϵ− 1/2)S = M(ϵ− 1) R≂ M(ϵ)

Note that the last transition is due to dimensional recurrence relations.
∙ The converse statement «If the system can be reduced to µ-form (µ is either ϵ or
ϵ+ 1/2) and the ϵ-conjugated system is rationally equivalent to the original, then
the system can be reduced to symmetric µ-form.» can be proved using
Proposition in [Lee and Pomeransky, 2017].

However, there are relevant examples of systems which can not be reduced neither to
ϵ-form nor to (ϵ+ 1/2)-form — see below.
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QUADRATIC CONSTRAINTS

Remarks

1. Note that if M(ϵ)
R≂ −M⊺(−ϵ) holds for d = d0 − 2ϵ then it necessarily holds for

any d = d0 + k− 2ϵ (k ∈ Z can be both even and odd) — thanks to dimensional
recurrences.

2. Note that for −M⊺(−ϵ) R≂ M(ϵ) to be possible, the eigenvalues of the matrix
residues should be either integer or half-integer at ϵ = 0. The latter is a widely
known observation.

Let us now consider the general solution of ∂j = Mj in the form of path-ordered
exponent, U(x, x0|ϵ) = Pexp

[∫ x
x0
Mdx

]
. It is easy to see that

U−1⊺(x, x0| − ϵ) = Pexp
[
−

∫ x
x0
M⋆ dx

]
, so, is a general solution of ϵ-conjugated

differential system ∂j = M⋆j.

Now we use our observation: M = T−1((−M⋆) T− ∂T). For path-ordered exponents it
translates to

U(x, x0|ϵ) = T−1(x, ϵ)U−1⊺(x, x0| − ϵ)T(x0, ϵ)

Therefore, we have
U⊺(x, x0| − ϵ)T(x, ϵ)U(x, x0|ϵ) = T(x0, ϵ)
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QUADRATIC CONSTRAINTS (CONTD)

Quadratic constraints

Let j1(x, ϵ) and j2(x, ϵ) be any two (possibly coinciding) solutions of the system
∂xj = M(x, ϵ)j. Then it is possible to find (using the available techniques) a rational
matrix T(x, ϵ), such that

j⊺1 (x,−ϵ)T(x, ϵ)j2(x, ϵ) = const

is independent of x. (The right-hand side can be found by considering some suitable
asymptotics.)

Note that the opposite sign of ϵ in j⊺1 (x,−ϵ), so this relation concerns the solutions of
two different differential systems (related via ϵ→ −ϵ). But within perturbative
calculations we are interested in the coefficients of ϵ expansion, which are the same,
up to alternating sign, for j1(x,−ϵ) and j1(x, ϵ). Thus, expanding the above relation in
ϵ, we obtain an infinite set of quadratic relations for the expansion coefficients of the
solution of the original differential system.

12 of 19



EXAMPLES OF SYSTEMS IRREDUCIBLE TO BOTH ϵ- AND (ϵ+ 1/2)-FORMS.

Reducible to ϵ+ 1/2-form

∙ Massive sunrises
∙ Two-loop vertex [von Manteuffel
and Tancredi, 2017]

Irreducible to ϵ+ 1/2-form

∙ 3-loop forward massive box from
[Mistlberger, 2018] (4 masters)

∙ 4-loop HQET vertex from [Brüser et al.,

2020] (11 masters)

For all above families we have checked that our observation is valid.
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EXAMPLES OF QUADRATIC RELATIONS: FORWARD BOX

M =



− 3ϵ+2
s

1
s 0 0

− (3s−1)(4ϵ+1)(5ϵ+1)
s(s2+11s−1)

−2(ϵ+1)s2+11(2ϵ−1)s−6ϵ
s(s2+11s−1)

− (s−2)ϵ
s2+11s−1

(s+3)ϵ
s2+11s−1

(s+3)(4ϵ+1)(5ϵ+1)
s(s2+11s−1)

− (3s+4)(4ϵ+1)
s(s2+11s−1)

−2s2−(3ϵ+22)s+ϵ+2
s(s2+11s−1)

(2s+1)ϵ
s(s2+11s−1)

(s−2)(4ϵ+1)(5ϵ+1)
s(s2+11s−1)

− (4s−3)(4ϵ+1)
s(s2+11s−1)

− 5ϵ
s2+11s−1

−2(ϵ+1)s2−(19ϵ+22)s+ϵ+2
s(s2+11s−1)


Using Libra we find

W = s2


2
(
3s2 + 198s − 53

)
ϵ2 + 1 −6ϵs2 + (2 − 100ϵ)s + 14ϵ − 1 −2s((s + 13)ϵ − 2) s((6s − 22)ϵ + 3)

6ϵs2 + 2(50ϵ + 1)s − 14ϵ − 1 −6s2 − 4s + 1 −2s(s + 2) −s(14s + 3)
2s((s + 13)ϵ + 2) −2s(s + 2) 6s2 −8s2

−s((6s − 22)ϵ − 3) −s(14s + 3) −8s2 −31s2



such that
M(s, ϵ) = W−1(−M⊺(s,−ϵ)W − ∂sW)
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GENERALIZED CANONICAL FORM?

Suppose that we have found a rational transformation W = W(x, ϵ), such that

M(x, ϵ) = W−1 [−M⋆(x, ϵ)W− ∂xW]

Then, if we make the transformation M→ T−1(MT− ∂xT), it induces the change of W:

W→ T⋆WT

Question

What is the possible simplest form of W we can achive by rational transformations T?

∙ For ϵ-reducible systems the answer is W = 1. It is exactly by passing to symmetric
ϵ-form.

∙ For several other examples we find that we can make W to be constant matrix

(independent of both x and ϵ!). In particular, this is true for .

Unfortunately, we lack algorithms to answer the question in a systematic way for any
given system.
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EXAMPLES OF QUADRATIC RELATIONS: TWO-LOOP SUNRISE

Two-loop equal mass cut sunrise in d = 2− 2ϵ dimensions can be expressed via
hypergeometric functions 2F1

( 1
3 ,

2
3 ; 1− ϵ; y

)
and 2F1

( 4
3 ,

2
3 ; 1− ϵ; y

)
[Tarasov, 2006].

The quadratic constraint reads

2F1
( 1
3 ,

2
3 ; 1− ϵ; y

)
2F1

( 1
3 ,

2
3 ; ϵ+ 1; y

)
+ (y−1)

3ϵ 2F1
( 4
3 ,

2
3 ; 1− ϵ; y

)
2F1

( 1
3 ,

2
3 ; ϵ+ 1; y

)
+ (1−y)

3ϵ 2F1
( 1
3 ,

2
3 ; 1− ϵ; y

)
2F1

( 4
3 ,

2
3 ; ϵ+ 1; y

)
= 1 .

When expanded in ϵ it results to the following “shuffling-like” identities (N = 0, 1, . . .):

N∑
n=0

(−)nHα,1nHα,1N−n + [1+ (−)N]y(1− y)
N+1∑
n=0

(−)n (∂Hα,1n )Hα,1N+1−n = δN0 .

where

Hα,1n (y) =
∞∑
j=0

(3j)!
33j (j!)3

yjS1, . . . , 1︸ ︷︷ ︸
n

(j)
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EXAMPLES OF QUADRATIC RELATIONS: BROADHURST-ROBERT-LIKE RELATIONS

Multiloop sunrise integrals in d = 2 in coordinate scape are expressed via functions

IKM[{a0, b0}m0 , {a1, b1}m1 , . . . , s] =
∫

dx xs
∏
k
[I0(mkx)]ak [K0(mkx)]bk .

Our approach allows one to obtain quadratic relations for those functions. E.g., for
two-loop sunrise we obtain

IKM [{2, 1}m, {0, 1}1, 1] IKM [{3, 0}m, {0, 1}1, 3]

− IKM [{2, 1}m, {0, 1}1, 3] IKM [{3, 0}m, {0, 1}1, 1] =
4
(
1 − 5m2)

(1 − m2)2 (1 − 9m2)2
.

The right-hand side has been calculated from the limit m→ 0.
At 3 loops we, e.g. have
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In Ref. [Broadhurst and Roberts, 2018] remarkable quadratic relations have been
conjectured∑

k,l
IKM [{ñ,N− ñ}1, k]Dkl(N, ñ, n)IKM [{n,N− n}1, l] = πN+1−ñ−nB(N, ñ, n) ,

where D(N, ñ, n) and B(N, ñ, n) are rational numerical matrices. Recently, these
relations have been proved in Ref. [Fresán et al., 2020], except that matrix D was
defined differently. Within our approach we have been able to do the same (with yet
another definition of D).
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SUMMARY

∙ The differential equations for multiloop integrals seem to always exhibit the
symmetry with respect to ϵ-conjugation

∂xj = M(x, ϵ)j ←→ ∂xj = −M⊺(x,−ϵ)j

These two systems appear to be rationally equivalent. We already have tools to
find the rational transformation W connecting the two systems.

∙ This symmetry leads to an infinite set of nontrivial quadratic constraints for the
coefficients of ϵ expansion of solutions.

∙ For the systems reducible to ϵ-form we can achieve W = 1. To find the simplest
form of the matrix W for ϵ-irreducible systems we need to invent new algorithms.
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