Elliptic polylogarithms and superstring amplitudes

Federico Zerbini

IPhT Saclay

Workshop Elliptics and Beyond September 07, 2020

Outline

(1) Classical polylogarithms and genus zero amplitudes
(2) Periods of fundamental groups
(3) Elliptic polylogarithms and genus one amplitudes
(4) Beyond genus one

Outline

(1) Classical polylogarithms and genus zero amplitudes
(2) Periods of fundamental groups
(3) Elliptic polylogarithms and genus one amplitudes
(4) Beyond genus one

Multiple polylogarithms

- $X=\left\{x_{0}, x_{1}\right\}$ formal alphabet, X^{*} set of possible words $w=x_{i_{1}} \cdots x_{i_{n}}$ in non-commutative letters x_{0}, x_{1}.
- $\ln \mathbb{C}$ consider $l_{0}:=[0, i \infty], l_{1}:=[1, i \infty], U:=\mathbb{C} \backslash\left\{l_{0}, l_{1}\right\}$ $\rightsquigarrow \pi_{1}(U, x)=1$ and $\log (z)$ well-defined on U.

Multiple polylogarithms (of one variable)

Family of holomorphic functions on U indexed by words $w \in X^{*}$, defined by setting $L_{x_{0}^{n}}(z):=(\log (z))^{n} / n$! and then for any other w by

$$
L_{x_{i_{1}} \cdots x_{i_{n}}}(z):=\int_{0}^{z} \frac{d z^{\prime}}{z^{\prime}-i_{1}} L_{x_{i_{2}} \cdots x_{i_{n}}}\left(z^{\prime}\right) .
$$

Rmk 1:

$$
L_{x_{0}^{k_{r}-1} x_{1} \cdots x_{0}^{k_{1}-1} x_{1}}(z)=(-1)^{r} \sum_{0<n_{1}<\cdots<n_{r}} \frac{z_{1}^{n_{r}}}{n_{1}^{k_{1}} \cdots n_{r}^{k_{r}}} .
$$

Rmk 2: Multiple polylogs are multi-valued functions on $\mathbb{P}_{\mathbb{C}}^{1} \backslash\{0,1, \infty\}$.

Multiple zeta values

Multiple zeta values

For $k_{1}, \ldots, k_{r} \in \mathbb{N}, k_{r} \geq 2$, we set

$$
\zeta\left(k_{1}, \ldots, k_{r}\right):=\sum_{0<n_{1}<\cdots<n_{r}} \frac{1}{n_{1}^{k_{1}} \cdots n_{r}^{k_{r}}}=L_{x_{0}^{k_{r}-1} x_{1} \cdots x_{0}^{k_{1}-1} x_{1}}(1)
$$

- Ring \mathcal{Z} of multiple zeta values, conjecturally graded by weight $k_{1}+\cdots+k_{r}$
- $L_{w}(z)$ has at most logarithmic divergence at $z=1$ \rightsquigarrow regularized special value $L_{w}(1) \in \mathcal{Z}$ for any $w \in X^{*}$

The KZ equation

Theorem

The formal series $L(z):=\sum_{w \in X^{*}} L_{w}(z) w \in \mathbb{C}\left\langle\left\langle X^{*}\right\rangle\right\rangle$ is the unique holomorphic solution on U of the differential equation

$$
\frac{\partial}{\partial z} L(z)=\left(\frac{x_{0}}{z}+\frac{x_{1}}{z-1}\right) L(z)
$$

such that $L(z) \sim \exp \left(x_{0} \log (z)\right)$ as $z \rightarrow 0$.
In particular, $L(1)$ (regularized value) is the Drinfel'd associator.

Theorem (F. Brown)

There is a unique real-analytic solution $\mathcal{L}(z) \in \mathbb{C}\left\langle\left\langle X^{*}\right\rangle\right\rangle$ on $\mathbb{P}_{\mathbb{C}}^{1} \backslash\{0,1, \infty\}$ of the KZ-equation s.t. $\mathcal{L}(z) \sim \exp \left(x_{0} \log |z|^{2}\right)$ as $z \rightarrow 0$.

Single-valued multiple polylogarithms

Definition

If we write $\mathcal{L}(z)=: \sum_{w \in X^{*}} \mathcal{L}_{w}(z) w$, we call $\mathcal{L}_{w}(z)$ single-valued multiple polylogarithms.

- Single-valued multiple polylogs are given by \mathcal{Z}-linear combinations of products $L_{w_{1}}(z) \overline{L_{w_{2}}(z)}$.
- $\mathcal{L}_{x_{0}}(z)=L_{x_{0}}(z)+\overline{L_{x_{0}}(z)}=\log (z)+\overline{\log (z)}=\log |z|^{2}$.
- The map sv : $L_{w}(z) \rightarrow \mathcal{L}_{w}(z)$ respects shuffle identities. We call it the single-valued projection.

Single-valued multiple zeta values

Regularised special values $\mathcal{L}_{w}(1)$ belong to \mathcal{Z}, but span a conjecturally smaller subring $\mathcal{Z}^{\text {sv }}$. We call them single-valued multiple zeta values. Conjecturally, the single-valued projection restricts to well-defined sv : $L_{w}(1) \rightarrow \mathcal{L}_{w}(1) \rightsquigarrow$ we denote $\zeta^{\text {sv }}\left(k_{1}, \ldots, k_{r}\right):=\operatorname{sv}\left(\zeta\left(k_{1}, \ldots, k_{r}\right)\right)$

Examples: $\zeta^{\text {sv }}(2 k)=0, \zeta^{\text {sv }}(2 k+1)=2 \zeta(2 k+1)$

Perturbative expansion of string amplitudes

Figure: Four open oriented strings

Figure: Four closed oriented strings

Building blocks of genus zero amplitudes

Set $N+3=$ number of string states, $\rho, \sigma \in \mathfrak{S}_{N}$ permutations, $s_{i j}:=\alpha^{\prime}\left(k_{i} \cdot k_{j}\right)$ Mandelstam variables

Open string building blocks:

$$
Z_{\rho, \sigma}^{(N)}(\boldsymbol{s}):=\int_{0 \leq x_{\sigma(1)} \leq \cdots \leq x_{\sigma(N)} \leq 1} \frac{\prod_{i=1}^{N} d x_{i} \prod_{1 \leq i<j \leq N+2}\left|x_{i}-x_{j}\right|^{s_{i j}}}{x_{\rho(1)}\left(1-x_{\rho(N)}\right) \prod_{i=2}^{N}\left(x_{\rho(i)}-x_{\rho(i-1)}\right)}
$$

Closed string building blocks:

$$
\begin{aligned}
& J_{\rho, \sigma}^{(N)}(\boldsymbol{s}):= \\
& \int_{\left(\mathbb{P}_{\mathbb{C}}^{1}\right)^{N}} \frac{\prod_{i=1}^{N} d^{2} z_{i} \prod_{1 \leq i<j \leq N+2}\left|z_{i}-z_{j}\right|^{2 s_{i j}}}{z_{\rho(1)} \bar{z}_{\sigma(1)}\left(1-z_{\rho(N)}\right)\left(1-\bar{z}_{\sigma(N)}\right) \prod_{i=2}^{N}\left(z_{\rho(i)}-z_{\rho(i-1)}\right)\left(\bar{z}_{\sigma(i)}-\bar{z}_{\sigma(i-1)}\right)}
\end{aligned}
$$

The 4 -point case $(N=1)$

Open strings: the Veneziano amplitude

$Z_{\mathrm{id}, \mathrm{id}}^{(1)}(s, t)=\int_{[0,1]} x^{s-1}(1-x)^{t-1} d x=\frac{\Gamma(s) \Gamma(t)}{\Gamma(s+t)}$
$\rightsquigarrow Z_{\mathrm{id}, \mathrm{id}}^{(1)}(s, t)=\frac{s+t}{s t} \exp \left(\sum_{n \geq 2} \frac{(-1)^{n} \zeta(n)}{n}\left(s^{n}+t^{n}-(s+t)^{n}\right)\right)$

Closed strings: the Virasoro-Shapiro amplitude

$J_{\mathrm{id}, \mathrm{id}}^{(1)}(s, t)=\int_{\mathbb{P}_{\mathbb{C}}^{1}}|z|^{2 s-2}|1-z|^{2 t-2} \frac{d z d \bar{z}}{(-2 \pi i)}=\frac{\Gamma(s) \Gamma(t) \Gamma(1-s-t)}{\Gamma(1-s) \Gamma(1-t) \Gamma(s+t)}$
$J_{\text {id, }, \mathrm{id}}^{(1)}(s, t)=\frac{s+t}{s t} \exp \left(-2 \sum_{n \geq 1} \frac{\zeta(2 n+1)}{(2 n+1)}\left(s^{2 n+1}+t^{2 n+1}-(s+t)^{2 n+1}\right)\right)$
KLT formula: $J_{\mathrm{id}, \mathrm{id}}^{(1)}(s, t)=\frac{\sin (\pi s) \sin (\pi t)}{\pi \sin (\pi(s+t))}\left(Z_{\mathrm{id}, \mathrm{id}}^{(1)}(s, t)\right)^{2}$
Single-valued projection: $\operatorname{sv}\left(Z_{\mathrm{id}, \mathrm{id}}^{(1)}(s, t)\right)=J_{\mathrm{id}, \mathrm{id}}^{(1)}(s, t)$ coefficientwise

State of the art

- KLT relations
- Coefficients of the small α^{\prime}-expansion of $Z_{\rho, \sigma}^{(N)}(\boldsymbol{s})$ belong to \mathcal{Z}
- Coefficients of the small α^{\prime}-expansion of $J_{\rho, \sigma}^{(N)}(\boldsymbol{s})$ belong to $\mathcal{Z}^{\text {sv }}$
- ${ }^{\prime} \operatorname{sv}\left(Z_{\rho, \sigma}^{(N)}\left(\alpha^{\prime} \boldsymbol{s}\right)\right)=J_{\rho, \sigma}^{(N)}\left(\alpha^{\prime} \boldsymbol{s}\right) "$
- Recursive relations between open string building blocks, originating from KZ equation

Kawai, Lewellen, Tye, Stieberger, Broedel, Mafra, Schlotterer, Terasoma, Schnetz, Brown, Dupont, Vanhove, Zerbini, ...

Outline

(1) Classical polylogarithms and genus zero amplitudes

(2) Periods of fundamental groups

3 Elliptic polylogarithms and genus one amplitudes

4 Beyond genus one

Cohomology and periods

- M smooth compact orientable manifold
- $H_{n}^{\text {Sing }}(M, \mathbb{Q}) n$-th singular homology group (\mathbb{Q}-vector space)
- $H_{\text {Sing }}^{n}(M, \mathbb{Q}):=\left(H_{n}^{\text {Sing }}(M, \mathbb{Q})\right)^{*} n$-th singular cohomology group
- $H_{\mathrm{dR}, \mathrm{an}}^{n}(M, \mathbb{C}) n$-th de Rham cohomology group
- Stokes $\rightsquigarrow[\omega]:[\sigma] \rightarrow \int_{\sigma} \omega$ well-defined \rightsquigarrow can view elements of $H_{\mathrm{dR}, \text { an }}^{n}$ as elements of H_{Sing}^{n}
- de Rham: $H_{\mathrm{dR}, \mathrm{an}}^{n}(M, \mathbb{C}) \underset{\rightarrow}{\rightarrow} H_{\text {Sing }}^{n}(M, \mathbb{Q}) \otimes \mathbb{C}$

Algebraic version of this story:

- X smooth algebraic variety defined over \mathbb{Q}
- $H_{\mathrm{dR}, \text { alg }}^{n}(X, \mathbb{Q}) n$-th algebraic de Rham cohomology group
- Grothendieck: $H_{\mathrm{dR}, \mathrm{alg}}^{n}(X, \mathbb{Q}) \otimes \mathbb{C} \underset{\rightarrow}{\rightarrow} H_{\mathrm{Sing}}^{n}(X(\mathbb{C}), \mathbb{Q}) \otimes \mathbb{C}$
- Entries of the matrix representing this iso are called periods
- The same holds for relative cohomology \rightsquigarrow periods in the sense of Kontsevich-Zagier

de Rham theorem for fundamental groups

Rmk: $H_{1}^{\text {Sing }}(M, \mathbb{Q}) \simeq \pi_{1}^{\mathrm{Ab}}(M, x) \simeq \mathbb{Q}\left[\pi_{1}(M, x)\right] / J^{2}$, $J:=\operatorname{ker}\left(\mathbb{Q} \pi_{1}(M, x) \rightarrow \mathbb{Q}\right)$ the augmentation ideal
Problem: Look for functions on $\mathbb{Q} \pi_{1}(M, x)$, i.e. homotopy functionals. Idea: Use integrals!
Obstacle: For ω smooth 1-form, $\int \omega$ homotopy functional $\Leftrightarrow \omega$ closed $\rightsquigarrow \int \omega$ only detects elements in $H_{1}^{\text {Sing }}(M, \mathbb{Q})$ Solution (Chen): Iterated integrals!
$\omega_{1}, \ldots, \omega_{r}$ closed smooth 1-forms, if $\int \omega_{1} \cdots \omega_{r}$ is homotopy functional then it defines \mathbb{C}-valued function on $\mathbb{Q} \pi_{1}(M, x) / J^{r+1}$

de Rham theorem for $\pi_{1}(M, x)$ (Chen)

Integration induces
$\{$ Homotopy invariant iterated integrals $\} \underset{\sim}{\sim} \mathcal{O}\left(\pi_{1}^{\text {un }}(M, x)\right) \otimes \mathbb{C}$
We're more interested in the "relative version" for $\pi_{1}(M, x, y)$ (paths from x to y)

Models, and multiple polylogarithms

Rmk: Looking for all homotopy invariant iterated integrals using all 1 -forms is hard!
Shortcut: Use a model! Identify subcomplex A^{\bullet} of complex of smooth diff. forms Ω^{\bullet} s.t. $H^{n}\left(A^{\bullet}, \mathbb{C}\right) \simeq H^{n}\left(\Omega^{\bullet}, \mathbb{C}\right)=H_{\mathrm{dR} \text {,an }}^{n}(M, \mathbb{C})$

Theorem (Chen)

Integration induces
$\left\{\right.$ Homotopy invariant iterated integrals of A^{1}-forms $\} \stackrel{\sim}{\rightarrow} \mathcal{O}\left(\pi_{1}^{\text {un }}(M, x)\right) \otimes \mathbb{C}$

A rational model for $\mathbb{P}_{\mathbb{C}}^{1} \backslash\{0,1, \infty\}$

$\mathbb{Q} \oplus\left(\mathbb{Q} \frac{d z}{z} \oplus \mathbb{Q} \frac{d z}{z-1}\right) \hookrightarrow \Omega^{\bullet}\left(\mathbb{P}_{\mathbb{C}}^{1} \backslash\{0,1, \infty\}\right)$ is a quasi-isomorphism
\rightsquigarrow functions on $\pi_{1}^{\text {un }}\left(\mathbb{P}_{\mathbb{C}}^{1} \backslash\{0,1, \infty\}\right)$ given by (homotopy invariant) iterated integrals of $d z / z$ and $d z / z-1$, i.e. multiple polylogarithms, which therefore give all the "periods of $\pi_{1}\left(\mathbb{P}_{\mathbb{C}}^{1} \backslash\{0,1, \infty\}, 0, z\right)$ "

Compact Riemann surfaces

- X_{g} compact Riemann surface of genus $g \geq 1$ (donuts)
- $\pi_{1}\left(X_{g}, x\right)=\left\langle A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g} \mid \prod_{i} A_{i} B_{i} A_{i}^{-1} B_{i}^{-1}=1\right\rangle$
- $H_{1}^{\text {Sing }}\left(X_{g}, \mathbb{Q}\right)=\mathbb{Q}^{2 g}$
- $\Omega_{\text {alg }}^{1}\left(X_{g}, \mathbb{C}\right):=$ meromorphic differentials on X_{g}
- $\omega \in \Omega_{\text {alg }}^{1}\left(X_{g}, \mathbb{C}\right)$ "1st kind" if holomorphic $\left(\rightsquigarrow H^{1,0}\left(X_{g}\right)\right)$
- $\omega \in \Omega_{\mathrm{alg}}^{1}\left(X_{g}, \mathbb{C}\right)$ " 2 nd kind" if meromorphic with no residues
- $H_{\mathrm{dR}, \mathrm{alg}}^{1}\left(X_{g}, \mathbb{C}\right):=\frac{\{2 \text { nd kind differentials }\}}{d \mathcal{M}(X)}$
- $H_{\mathrm{dR}, \mathrm{alg}}^{1}\left(X_{g}, \mathbb{C}\right) \underset{\rightarrow}{\rightarrow} H_{\text {Sing }}^{1}\left(X_{g}, \mathbb{Q}\right) \otimes \mathbb{C}$ via integration:
$\int \omega: \sigma \rightarrow \int_{\sigma} \omega$ well-defined by residue theorem!

"Algebraic" version of Chen's theorem for curves (Hain)

$\{$ "Iterated integrals of 2 nd kind" $\} \otimes \mathbb{C} \underset{\rightarrow}{\boldsymbol{O}}\left(\pi_{1}^{\text {un }}\left(X_{g}, x\right)\right) \otimes \mathbb{C}$

Configuration spaces

- X possibly punctured compact Riemann surface
- $C(X, n):=\left\{\left(x_{1}, \ldots x_{n}\right) \in X^{n} \mid x_{i} \neq x_{j}\right\}$ configuration space of n distinct points on X
- $\pi_{1}(C(X, n), x) \rightsquigarrow$ theory of braid groups
- Periods of $\pi_{1}\left(C\left(\mathbb{P}_{\mathbb{C}}^{1} \backslash\{0,1, \infty\}, n\right), 0, z\right)=\pi_{1}\left(\mathfrak{M}_{0, n+3}, x\right)$ given by multiple polylogs in several variables

$$
\sum_{n_{1}<\cdots<n_{r}} \frac{z_{1}^{n_{1}^{\prime}} \ldots z_{r}^{n_{r}}}{n_{1}^{k_{1} \ldots n_{r}^{k_{r}}}}
$$

Why important for us?
Configuration spaces of Riemann surfaces are very natural geometric objects related to computation of string theory amplitudes What's known?
Kriz and Totaro described the cohomology rings, but the description is not explicit for $g \geq 2 \rightsquigarrow$ hard to build models \rightsquigarrow hard to construct periods of fundamental groups

Outline

(1) Classical polylogarithms and genus zero amplitudes

(2) Periods of fundamental groups
(3) Elliptic polylogarithms and genus one amplitudes
(4) Beyond genus one

Complex (one-punctured) tori

- $\tau \in \mathbb{H}($ i.e. $\operatorname{Im}(\tau)>0)$
- $\mathbb{T}_{\tau}:=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ complex tori $\leadsto \rightsquigarrow$ genus-one Riemann surfaces
- $\mathbb{T}_{\tau}^{*}:=\mathbb{T}_{\tau} \backslash\{0\}$ one-punctured genus-one Riemann surfaces
- $\pi_{1}\left(\mathbb{T}_{\tau}, x\right)=\mathbb{Z}^{2}, \pi_{1}\left(\mathbb{T}_{\tau}^{*}, x\right)=\mathbb{Z} * \mathbb{Z}$
- $H^{1}\left(\mathbb{T}_{\tau}, \mathbb{Q}\right)=H^{1}\left(\mathbb{T}_{\tau}^{*}, \mathbb{Q}\right)=\mathbb{Q}^{2}$
- $H^{2}\left(\mathbb{T}_{\tau}, \mathbb{Q}\right)=\mathbb{Q}, H^{2}\left(\mathbb{T}_{\tau}^{*}, \mathbb{Q}\right)=0$
- $\mathcal{P}(z):=\frac{1}{z^{2}}+\sum_{k \geq 2}(k+1) G_{k+2}(\tau) z^{n}, G_{k}(\tau):=\sum_{m, n} \frac{1}{(m \tau+n)^{k}}$, $\mathcal{O}\left(\mathbb{T}_{\tau}^{*}\right)$ polynomials in $\mathcal{P}(z)$ and $\mathcal{P}^{\prime}(z)$
- $H_{\mathrm{dR}, \mathrm{alg}}^{1}\left(\mathbb{T}_{\tau}, \mathbb{C}\right) \simeq H_{\mathrm{dR}, \mathrm{alg}}^{1}\left(\mathbb{T}_{\tau}^{*}, \mathbb{C}\right) \simeq \mathbb{C}[d z]+\mathbb{C}[\mathcal{P}(z) d z]$, \rightsquigarrow "periods" $(1, \tau)$ and "quasi-periods" $\left(G_{2}(\tau), 2 \pi i+\tau G_{2}(\tau)\right)$
- $H_{\mathrm{dR}, \mathrm{an}}^{1}\left(\mathbb{T}_{\tau}, \mathbb{C}\right) \simeq H_{\mathrm{dR}, \mathrm{an}}^{1}\left(\mathbb{T}_{\tau}^{*}, \mathbb{C}\right) \simeq \mathbb{C}[d z]+\mathbb{C}[d \bar{z}]$
- $H_{\mathrm{dR}, \mathrm{an}}^{1}\left(\mathbb{T}_{\tau}, \mathbb{C}\right) \simeq H_{\mathrm{dR}, \mathrm{alg}}^{1}\left(\mathbb{T}_{\tau}, \mathbb{C}\right)$ via

$$
\frac{\pi}{\operatorname{lm}(\tau)} d \bar{z}=\left(\frac{\pi}{\operatorname{lm}(\tau)}-G_{2}(\tau)\right) d z-\mathcal{P}(z) d z+d f(z)
$$

The Kronecker function

The Kronecker function

For $z \in \mathbb{T}_{\tau}^{*}$ consider $\zeta:=e^{2 \pi i z}, q:=e^{2 \pi i \tau}$. Define
$\theta(z):=q^{1 / 12}\left(\zeta^{1 / 2}-\zeta^{-1 / 2}\right) \prod_{j \geq 1}\left(1-q^{j} \zeta\right)\left(1-q^{j} \zeta^{-1}\right)$ and set
$F(z, \alpha):=\frac{\theta^{\prime}(0) \theta(z+\alpha)}{\theta(z) \theta(\alpha)}$
Rmk 1: Multi-valued function of z on \mathbb{T}_{τ}^{*}, because $F(z+1, \alpha)=F(z, \alpha)$ but $F(z+\tau, \alpha)=\exp (-2 \pi i \alpha) F(z, \alpha)$, simple pole at $z=0$
Rmk 2: Writing $F(z, \alpha)=: \sum_{n \geq 0} g^{(n)}(z) \alpha^{n-1}$, we find $g^{(0)}(z)=1 \quad g^{(1)}(z)=\frac{1}{z}-\sum_{n \geq 1} G_{n+1}(\tau) z^{n}=\zeta(z)-G_{2}(\tau) z$, $g^{(n)}(z) \in \mathcal{O}\left(\mathbb{T}_{\tau}^{*}\right)\left[g^{(1)}(z)\right]$, holomorphic at $z=0$

Elliptic multiple polylogarithms (first definition)
$\tilde{\Gamma}\left(n_{1}, \ldots, n_{r} \mid z\right):=\int_{0}^{z} g^{\left(n_{1}\right)}(z) d z \cdots g^{\left(n_{r}\right)}(z) d z \quad(z \in \mathbb{C})$
Natural def. in string theory, limit $\tau \rightarrow i \infty \rightsquigarrow$ genus- 0 multiple polylogs

The Brown-Levin approach

Consider the formal 1-form $\Omega(z, \alpha):=\exp \left(2 \pi i \alpha \frac{\ln (z)}{\operatorname{lm}(\tau)}\right) F(z, \alpha) d z$.
$\Omega(z, \alpha)$ is well-defined on \mathbb{T}_{τ}^{*}, because $\frac{2 \pi i \operatorname{lm}(z+\tau)}{\operatorname{lm}(\tau)}=\frac{2 \pi i \operatorname{lm}(z)}{\operatorname{lm}(\tau)}+2 \pi i$
compensates for the monodromy of F, and is real analytic

Theorem (Brown-Levin)

Let $\Omega(z, \alpha)=: \sum_{n \geq 0} \omega^{(n)} \alpha^{n-1}$, and let $\nu:=2 \pi i d(\operatorname{Im}(z) / \operatorname{Im}(\tau)) \rightsquigarrow$
\mathbb{Q}-model $A^{\bullet}\left(\mathbb{T}_{\tau}^{*}\right):=\mathbb{Q} \oplus\left(\mathbb{Q} \nu \oplus \mathbb{Q} \omega^{(0)} \oplus \mathbb{Q} \omega^{(1)} \oplus \cdots\right) \hookrightarrow \Omega^{\bullet}\left(\mathbb{T}_{\tau}^{*}\right)$
(in particular, $[\nu]$ and $\left[\omega_{0}\right]=[d z]$ basis of $H_{\mathrm{dR}, \mathrm{an}}^{1}\left(\mathbb{T}_{\tau}^{*}, \mathbb{C}\right)$)
Rmk: Similar construction for $C\left(\mathbb{T}_{\tau}^{*}, n\right)$ using $\omega^{(n)}\left(z_{i}-z_{j}\right)$

Theorem / second definition (Brown-Levin)

$\omega_{B L}\left(x_{0}, x_{1}\right):=\nu x_{0}+\Omega\left(z,-\operatorname{ad}_{x_{0}}\right)\left(x_{1}\right) \operatorname{Lie}_{\mathbb{C}}\left[x_{0}, x_{1}\right]^{\wedge}$-valued, then periods of $\pi_{1}^{\mathrm{un}}\left(\mathbb{T}_{\tau}^{*}, 0, z\right)$ (elliptic multiple polylogs) are the coefficients of $1+\int_{0}^{z} \omega_{B L}\left(x_{0}, x_{1}\right)+\int_{0}^{z} \omega_{B L}\left(x_{0}, x_{1}\right) \omega_{B L}\left(x_{0}, x_{1}\right)+\ldots$

Fact: Can be written in terms of $\operatorname{Im}(z)$ and $\tilde{\Gamma}\left(n_{1}, \ldots, n_{r} \mid z\right)$!

The Levin-Racinet approach

Consider the formal 1-form $H(z, \alpha):=\exp \left(-\alpha g^{(1)}(z)\right) F(z, \alpha) d z$. $H(z, \alpha)$ is well-defined (and holomorphic) on \mathbb{T}_{τ}^{*}, because $g^{(1)}(z+\tau)=g^{(1)}(z)-2 \pi i$ compensates for the monodromy of F
Recall: $\frac{\pi}{\operatorname{lm}(\tau)} d \bar{z}=\left(\frac{\pi}{\operatorname{lm}(\tau)}-G_{2}(\tau)\right) d z-\mathcal{P}(z) d z+d f(z)$ $\rightsquigarrow[2 \pi i d(\operatorname{Im}(z) / \operatorname{Im}(\tau))]=\left[G_{2}(\tau) d z+\mathcal{P}(z) d z\right]$ Primitives are $2 \pi i \operatorname{Im}(z) / \operatorname{Im}(\tau)$ and $-g^{(1)}(z)$, respectively! Let $H(z, \alpha)=: \sum_{n \geq 0} \eta^{(n)} \alpha^{n-1}$

- $\eta^{(n)}$ 2-nd kind differential forms
- By Hain's Theorem, periods of $\pi_{1}^{\mathrm{un}}\left(\mathbb{T}_{\tau}^{*}, z_{1}, z_{2}\right)$ are all the homotopy invariant iterated integrals constructed with $\eta^{(n)}$

Alternative construction

$\omega_{L R}\left(x_{0}, x_{1}\right):=\left(G_{2}(\tau)+\mathcal{P}(z)\right) d z x_{0}+H\left(z,-\operatorname{ad}_{x_{0}}\right)\left(x_{1}\right)$, then periods of $\pi_{1}^{\mathrm{un}}\left(\mathbb{T}_{\tau}^{*}, z_{1}, z_{2}\right)$ are the coefficients of
$1+\int_{z_{1}}^{z_{2}} \omega_{L R}\left(x_{0}, x_{1}\right)+\int_{z_{1}}^{z_{2}} \omega_{L R}\left(x_{0}, x_{1}\right) \omega_{L R}\left(x_{0}, x_{1}\right)+\ldots$

Other approaches

"Classical" (Bloch, Zagier, Beilinson, Levin, Brown, ...)

Regularized infinite averages of genus-zero multiple polylogarithms (many variables) on $\left(\mathbb{T}_{\tau}^{*}\right)^{n}=\left(\mathbb{C}^{*} / q^{\mathbb{Z}}=^{n} \rightsquigarrow\right.$ holomorphic multi-valued functions on $C\left(\mathbb{T}_{\tau}^{*}, n\right)$, can be written in terms of $\tilde{\Gamma}\left(n_{1}, \ldots, n_{r} \mid z\right)$, generate all periods of $\pi_{1}^{\mathrm{un}}\left(C\left(\mathbb{T}_{\tau}^{*}, n\right), 0, z\right)$ (Brown-Levin).
Related to this: "ELi-functions" (Adams, Bogner, Weinzierl, ...)

"Algebraic" (Broedel, Duhr, Dulat, Tancredi, ...)

Iterated integrals using algebraically defined integration kernels with at most simple poles \rightsquigarrow generate same space as $\tilde{\Gamma}\left(n_{1}, \ldots, n_{r} \mid z\right)$.
Related to constructing all primitives of rational fcts on elliptic curves

Elliptic multiple zeta values

A-elliptic multiple zeta values (Enriquez)
 $I^{A}\left(n_{1}, \ldots, n_{r} \mid \tau\right):=\tilde{\Gamma}\left(n_{1}, \ldots, n_{r} \mid 1\right)$

B-elliptic multiple zeta values (Enriquez)

$I^{B}\left(n_{1}, \ldots, n_{r} \mid \tau\right):=\tau^{r-n_{1}-\cdots-n_{r}} I^{A}\left(n_{1}, \ldots, n_{r} \mid-1 / \tau\right)$

- $A=[0,1]$ and $B=[0, \tau]$ standard cycles of \mathbb{T}_{τ}^{*}, I^{A} iterated integrals along A, I^{B} iterated integrals along B
- Coefficients of "elliptic associator" associated with "KZB-equation" (genus-one analogue of Drinfeld associator and KZ equation)
- $I^{A}\left(n_{1}, \ldots, n_{r} \mid \tau\right)=\sum_{j \geq 0} a_{j} q^{j}, a_{j} \in \mathcal{Z}[2 \pi i]$
- $I^{B}\left(n_{1}, \ldots, n_{r} \mid \tau\right)=\sum_{k=1-n_{1}-\cdots-n_{r}}^{r} \sum_{j \geq 0} b_{k, j}(2 \pi i \tau)^{k} q^{j}, b_{k, j} \in \mathcal{Z}$
- $I^{\bullet}\left(n_{1}, \ldots, n_{r} \mid \tau\right)$ can be written as (special) combinations of iterated integrals $\int_{\tau}^{i \infty} G_{k_{1}}\left(\tau^{\prime}\right) d \tau^{\prime} \cdots G_{k_{s}}\left(\tau^{\prime}\right) d \tau^{\prime}$

Genus-one amplitudes

Genus-one Green's function $G\left(z_{i}, z_{j}\right):=-\log |\theta(z)|^{2}+\frac{2 \pi \operatorname{lm}\left(z_{i}-z_{j}\right)}{\operatorname{lm}(\tau)}$ Closed string integral prototype:

$$
\int_{\mathfrak{M}_{1,1}} \int_{C\left(\mathbb{T}_{\tau}^{*}, N\right)} \exp \left(\sum_{1 \leq i<j \leq N+1} s_{i j} G\left(z_{i}, z_{j}\right) f\left(z_{1}, \bar{z}_{1}, \ldots, z_{N}, \bar{z}_{N}\right) d \mu\right.
$$

where $z_{N+1} \equiv 0, f$ made out of $\partial_{z} G$ and $\partial_{\bar{z}} G$
Open string integral prototype:

$$
\int_{i \mathbb{R}^{+}} \int_{0 \leq z_{1} \leq \cdots \leq z_{N} \leq 1} \exp \left(\sum_{1 \leq i<j \leq N+1} s_{i j} G\left(z_{i}, z_{j}\right) g\left(z_{1}, \ldots, z_{N}\right) d \mu\right.
$$

where $z_{N+1} \equiv 0, f$ made out of $\partial_{z} G$

Genus-one amplitudes

Genus-one Green's function $G\left(z_{i}, z_{j}\right):=-\log |\theta(z)|^{2}+\frac{2 \pi \operatorname{lm}\left(z_{i}-z_{j}\right)}{\operatorname{lm}(\tau)}$ Closed string integral prototype:

$$
\int_{\mathfrak{M}_{1,1}} \int_{C\left(\mathbb{T}_{\tau}^{*}, N\right)} \exp \left(\sum_{1 \leq i<j \leq N+1} s_{i j} G\left(z_{i}, z_{j}\right) f\left(z_{1}, \bar{z}_{1}, \ldots, z_{N}, \bar{z}_{N}\right) d \mu\right.
$$

where $z_{N+1} \equiv 0, f$ made out of $\partial_{z} G$ and $\partial_{\bar{z}} G$
Open string integral prototype:

$$
\int_{i \mathbb{R}^{+}} \int_{0 \leq z_{1} \leq \cdots \leq z_{N} \leq 1} \exp \left(\sum_{1 \leq i<j \leq N+1} s_{i j} G\left(z_{i}, z_{j}\right) g\left(z_{1}, \ldots, z_{N}\right) d \mu\right.
$$

where $z_{N+1} \equiv 0, f$ made out of $\partial_{z} G$

Genus-one amplitudes

Genus-one Green's function $G\left(z_{i}, z_{j}\right):=-\log |\theta(z)|^{2}+\frac{2 \pi \operatorname{lm}\left(z_{i}-z_{j}\right)}{\operatorname{lm}(\tau)}$
Closed string integral prototype:

$$
\begin{aligned}
& \int_{C\left(\mathbb{T}_{\tau}^{*}, N\right)} \exp \left(\sum_{1 \leq i<j \leq N+1} s_{i j} G\left(z_{i}, z_{j}\right) d \mu\right. \\
& =\sum_{l_{i j} \geq 0} \prod_{i j} \frac{s_{i j}^{l_{i j}}}{l_{i j}!} \int_{C\left(\mathbb{T}_{\tau}^{*}, N\right)} \prod_{1 \leq i<j \leq N+1} G\left(z_{i}, z_{j}\right)^{l_{i j}} d \mu
\end{aligned}
$$

Open string integral prototype:

$$
\begin{aligned}
& \int_{0 \leq z_{1} \leq \cdots \leq z_{N} \leq 1} \exp \left(\sum_{1 \leq i<j \leq N+1} s_{i j} G\left(z_{i}, z_{j}\right) d \mu\right. \\
& =\sum_{l_{i j} \geq 0} \prod_{i j} \frac{s_{i j}^{l_{i j}}}{l_{i j}!} \int_{0 \leq z_{1} \leq \cdots \leq z_{N} \leq 1} \prod_{1 \leq i<j \leq N+1} G\left(z_{i}, z_{j}\right)^{l_{i j}} d \mu
\end{aligned}
$$

Genus-one amplitudes

Genus-one Green's function $G\left(z_{i}, z_{j}\right):=-\log |\theta(z)|^{2}+\frac{2 \pi \operatorname{lm}\left(z_{i}-z_{j}\right)}{\operatorname{lm}(\tau)}$ Closed string integral prototype:

$$
\begin{aligned}
& \int_{C\left(\mathbb{T}_{\tau}^{*}, N\right)} \exp \left(\sum_{1 \leq i<j \leq N+1} s_{i j} G\left(z_{i}, z_{j}\right) d \mu\right. \\
& =\sum_{l_{i j} \geq 0} \prod_{i j} \frac{s_{i j}^{l_{i j}}}{l_{i j}!} \int_{C\left(\mathbb{T}_{\tau}^{*}, N\right)} \prod_{1 \leq i<j \leq N+1} G\left(z_{i}, z_{j}\right)^{l_{i j}} d \mu
\end{aligned}
$$

Blue integrals are called modular graph functions
Open string integral prototype:

$$
\begin{aligned}
& \int_{0 \leq z_{1} \leq \cdots \leq z_{N} \leq 1} \exp \left(\sum_{1 \leq i<j \leq N+1} s_{i j} G\left(z_{i}, z_{j}\right) d \mu\right. \\
& =\sum_{l_{i j} \geq 0} \prod_{i j} \frac{s_{i j}^{l_{i j}}}{l_{i j}!} \int_{0 \leq z_{1} \leq \cdots \leq z_{N} \leq 1} \prod_{1 \leq i<j \leq N+1} G\left(z_{i}, z_{j}\right)^{l_{i j}} d \mu
\end{aligned}
$$

State of the art

- Coefficients of open string integrals are A-elliptic multiple zeta values
- Modular graph functions new interesting class of real-analytic modular functions, contains real-analytic Eisenstein series, many algebraic and differential relations, asymptotic limit involves single-valued MZVs (see D'Hoker's talk)
- Single-valued-like projection from "symmetrized open integrals on B-cycle" (holomorphic graph functions) to modular graph functions
- Modular graph functions are combinations of holomorphic and anti-holomorphic elliptic MZVs
- Conjecture: Limits of N-point genus-one integrals related to $N+2$-point genus-zero integrals (known in open case or $N=2$)
- Recursions based on KZB-equation (see Kaderli's talk)
- No known KLT-like relations
- Partial results on moduli space integrals for closed strings

Green, Russo, Vanhove, Broedel, Matthes, Mafra, Schlotterer, D'Hoker, Zerbini, Zagier, Gurdogan, Brown, Basu, Kaidi, Kleinschmidt, Gerken, Kaderli...

Outline

(1) Classical polylogarithms and genus zero amplitudes

(2) Periods of fundamental groups
(3) Elliptic polylogarithms and genus one amplitudes
(4) Beyond genus one

String amplitudes

D'Hoker, Green, Pioline: Higher-genus analogues of modular graph functions!
New interesting class of modular $\left(S p_{2 g}(\mathbb{Z})\right)$ invariant functions containing Zhang-Kawazumi invariant textcolorred(see D'Hoker's talk)

	Open Strings	Closed Strings
$g=0$	MZVs	svMZVs
$g=1$	Elliptic MZVs	Modular graph functions
$g=2$	$?$	Modular graph functions
$g>2$	$?$	Modular graph functions?

Hope / expectation: open and closed string related by KLT relations (single-valued projections) at higher genus

Higher-genus analogues of polylogarithms

Enriquez: higher-genus analogue of KZB form

- Induces connection (on non-trivial bundle) which is flat, multi-valued, regular singular at one point
- Reduces to Kronecker function at genus-one
- Not explicit in higher genus

First step: single-valued (flat) version?
Two possible ways: 1) real analytic (Brown-Levin)
2) meromorphic (Levin-Racinet)

Second way easier (but lose regular singularity)
Possible to deduce one from the other?
Second step: use it to generate periods of $\pi_{1}^{\mathrm{un}}\left(X_{g}, x, y\right)$, i.e. higher-genus analogues of polylogs
Question: do we get all of them?
(Work in progress with B. Enriquez)

THE END

Thanks for your attention!

