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Multiple polylogarithms

o X = {zo,x1} formal alphabet, X* set of possible words
w = x;, ---x;, in non-commutative letters xg, x1.

@ In C consider Iy := [0,i00], I1 :=[1,i00], U := C\ {lo, 11}
~ m1(U,z) =1 and log(z) well-defined on U.

Multiple polylogarithms (of one variable)

Family of holomorphic functions on U indexed by words w € X*, defined
by setting L.y (2) := (log(2))"/n! and then for any other w by

z d/

z
gt
=

. pris
1"'$5171$1 (Z) = (71) Z k1 kr®

0<ni<--<n, W1 T

Ly, oas, (2)

Rmk 1: L k-1,
0

Rmk 2: Multiple polylogs are multi-valued functions on P{ \ {0,1,00}.
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Multiple zeta values

Multiple zeta values
For k1,..., k. € N, k. > 2, we set

1
Clk1, ... kp) = Z T = Lkt ()

0<ny <. <np

@ Ring Z of multiple zeta values, conjecturally graded by weight
ki+---+k,

@ L, (z) has at most logarithmic divergence at z = 1
~~ regularized special value L, (1) € Z for any w € X*
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The KZ equation

Theorem

The formal series L(z) := ), c x« Lw(2) w € C({X™)) is the unique
holomorphic solution on U of the differential equation

;ZL(Z)<”°+ ol >L(z)

% z—1

such that L(z) ~ exp (zglog(z)) as z — 0.

In particular, L(1) (regularized value) is the Drinfel'd associator.

Theorem (F. Brown)

There is a unique real-analytic solution £(z) € C((X*)) on
P\ {0, 1,00} of the KZ-equation s.t. £(2) ~ exp (zqlog|z|?) as z — 0.
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Single-valued multiple polylogarithms

Definition

If we write £(2) =: ), cx+ Lu(2)w, we call L,(z) single-valued
multiple polylogarithms.

@ Single-valued multiple polylogs are given by Z-linear combinations of
products L., (2) Ly, (2).

0 L,,(2) = Lyy(2) + Ly, (2) = log(z) + log(z) = log |2|?.

@ The map sv: L, (z) = L(2) respects shuffle identities. We call it
the single-valued projection.

Single-valued multiple zeta values

Regularised special values £,,(1) belong to Z, but span a conjecturally

smaller subring Z5V. We call them single-valued multiple zeta values.
Conjecturally, the single-valued projection restricts to well-defined

sV : Ly (1) = L4(1) ~> we denote (3V(kq, ..., k) :==sv(C(k1,..., k)

Examples: ¢*V(2k) =0, (*V(2k +1) =2((2k + 1)
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Perturbative expansion of string amplitudes

Figure: Four open oriented strings

@ + . + . + N

Figure: Four closed oriented strings
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Building blocks of genus zero amplitudes

Set N + 3 =number of string states, p,c € &y permutations,
si; == o (k; - k;) Mandelstam variables

Open string building blocks:

1Y, des [Tyese s |y — xj|%
N . 1=1 1<i<j<N+2 J
206 = [

N
02,y <<z <1 Tp(1) (1= 2p(vy) [liza (Tpi) — p(i-1))

Closed string building blocks:

N N
ILZ, &= H1§i<j§N+2 |25 — 2;]%%

— — N — —
/GF%)N 2p(1)Zo(1) (1 = 2p(n) ) (1 = Zo(3)) I Tiz2 (Zp(i) = 20(i-1)) (Zo (i) — Zo(i-1))
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The 4-point case (N = 1)

Open strings: the Veneziano amplitude

1 _ _ D(s)T(t
Zl(d)ld(s t) = f[o T 11— z)t-ldz = 1“(fs)+i))

> Z8a(5,8) = = exp (Lzg L (s +17 = (s +)") )

T
|
| \

Closed strings: the Virasoro-Shapiro amplitude

(1) _ s— —2 dzdz . D()@®T(A—s—t
Jiasa(s:t) = f]P’é |2[272]1 — 2| 2(4372) = r(1(7)s)(r()1£t)r(sq3t)

PONY
Tada(s,t) = =5t exp ( — 22 n1 ((227?++11) (21 820 — (s + t)2n+1))

V.

1 sin(7s) sin(m 2
KLT formula: Ji(d’)id(s,t) = Wb(m(zr(sitt) ( 71 ) ( ))

Single-valued projection: sv(Z$ . Li(s,) = I 1d (s,t) coefficientwise
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State of the art

KLT relations
Coefficients of the small o/-expansion of Z},f}’) (s) belong to Z

o Coefficients of the small o’-expansion of J,SfY,) (8) belong to Z5v

p N N "

s(Zyl (') = Jjl5 (o's)

Recursive relations between open string building blocks, originating
from KZ equation

Kawai, Lewellen, Tye, Stieberger, Broedel, Mafra, Schlotterer, Terasoma,
Schnetz, Brown, Dupont, Vanhove, Zerbini, ...
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Cohomology and periods

M smooth compact orientable manifold

H3™e(M, Q) n-th singular homology group (Q-vector space)
HE,\o(M,Q) = (HS™&(M,Q))* n-th singular cohomology group
HYg .n(M,C) n-th de Rham cohomology group

Stokes ~» [w] : [0] = [ w well-defined ~+ can view elements of
Hlg ., as elements of HE,

o de Rham: Hyy . (M,C)=Hg;,,,(M,Q) ®C

Algebraic version of this story:

X smooth algebraic variety defined over Q

Hlg .14(X, Q) n-th algebraic de Rham cohomology group
Grothendieck: H/jg .1, (X, Q) ® C=HE,,,(X(C),Q) ® C
Entries of the matrix representing this iso are called periods

The same holds for relative cohomology ~~ periods in the sense of
Kontsevich-Zagier
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de Rham theorem for fundamental groups

Rmk: HY™8(M, Q) ~ 7P (M, z) ~ Q[my (M, z)]/J2,

J = ker(Qm (M, z) — Q) the augmentation ideal

Problem: Look for functions on Qmy (M, x), i.e. homotopy functionals.
Idea: Use integrals!

Obstacle: For w smooth 1-form, fw homotopy functional < w closed
~» [ w only detects elements in H;™ (M, Q)

Solution (Chen): lterated integrals!

w1, .. ,w, closed smooth 1-forms, if [wy ---w, is homotopy functional
then it defines C-valued function on Qmy (M, z)/J"+!

de Rham theorem for 71 (M, x) (Chen)

Integration induces
{Homotopy invariant iterated integrals}=O(7{*(M, 7)) ® C

We're more interested in the “relative version” for 1 (M, z,y) (paths
from z to y)
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Models, and multiple polylogarithms

Rmk: Looking for all homotopy invariant iterated integrals using all
1-forms is hard!

Shortcut: Use a model! Identify subcomplex A® of complex of smooth
diff. forms Q® s.t. H"(A®,C) ~ H"(Q*,C) = H}fg ,,(M,C)

Theorem (Chen)

Integration induces
{Homotopy invariant iterated integrals of A'-forms}=O(7*(M,z)) ® C

v

A rational model for P% \ {0,1, o0}

Qo (QL pQ2) — Q*(PL\ {0,1,00}) is a quasi-isomorphism

~ functions on 7 (P% \ {0,1,00}) given by (homotopy invariant)
iterated integrals of dz/z and dz/z — 1, i.e. multiple polylogarithms,
which therefore give all the “periods of 7 (PL \ {0,1,00},0,2)"
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Compact Riemann surfaces

X, compact Riemann surface of genus g > 1 (donuts)
mi(Xg,2) = (A1,..., Ay, B1,...,By| [[; AiB;A; 'B; ' = 1)
o H}™(X,,Q) = Q¥

Qelilg

w € Q). (X, C) “1st kind” if holomorphic (~ H"(X,))

we Nt

a

2nd kind differential
Hc}R@]g(Xg,C) . 120 ZM(;)rentas}
Hig g (Xg, C©) = HE; (X, Q) @ C via integration:

Jw:o = [ w well-defined by residue theorem!

(X4, C) := meromorphic differentials on X

1¢(Xg, C) “2nd kind" if meromorphic with no residues

“Algebraic” version of Chen's theorem for curves (Hain)

{"Iterated integrals of 2nd kind"} ® C5O (71" (X, z)) ® C
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Configuration spaces

@ X possibly punctured compact Riemann surface

o C(X,n):={(z1,...x,) € X" |x; # x;} configuration space of n
distinct points on X

e 71 (C(X,n),x) ~ theory of braid groups

e Periods of 71 (C(P¢ \ {0,1,00},7),0,2) = m1 (Mo nt3, ) given by
multiple polylogs in several variables

1. .,nr
T

2 T
ny <. <ngp n’flnf_7

Why important for us?

Configuration spaces of Riemann surfaces are very natural geometric
objects related to computation of string theory amplitudes

What's known?

Kriz and Totaro described the cohomology rings, but the description is
not explicit for g > 2 ~~ hard to build models ~~ hard to construct
periods of fundamental groups
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Complex (one-punctured) tori

7 €H (i.e. Im(r) > 0)

T, := C/(Z + 7Z) complex tori «~ genus-one Riemann surfaces
T := T, \ {0} one-punctured genus-one Riemann surfaces
7(Tr,2) =272, m(T:,2) =Z+ 7

HY(T,,Q) = H'(T},Q) = Q°

H*(T,,Q) =Q, H*(T;,Q) =0

P(z) =% + Y okso(k+1)Gria(r)2", Gi(T) =32, m
O(T%) polynomials in P(z) and P’(z)

H(}R,alg(TTv C) ~ H&R,alg(Tiﬂ C) ~ Cldz] + C[P(2)dz],

~ “periods” (1,7) and “quasi-periods” (G2(7), 2mi + 7G2(7))
Hig an(T7, C) = Hig o (T7, C) = Cld2] + Cld?]

H&R,an(T‘f'?(C) = H&R,alg(TT’ C) via

ey dz = (ﬁ . GQ(T))dz — P(2)dz + df (2)
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The Kronecker function

The Kronecker function

For z € T consider ¢ := €% ¢ := 2™ Define
0(z) == ¢"/"2(¢M? = (V) [s (1 = Q1 = ¢7¢71) and set

. 0(0)0(z+a
F(Z,Oé) = %

Rmk 1: Multi-valued function of z on T%, because F(z 4+ 1,a) = F(z, @)
but F(z + 7, ) = exp(—2mia) F(z, ), simple pole at z =0

Rmk 2: Writing F'(2, ) =: 3, 5 g™ (2)a™t, we find

gV =1 V() = 1 =3, Guni(1)2" = ((2) - Ga(7)z,

g™ (z) € O(T%)[g™M (2)], holomorphic at z =0

Elliptic multiple polylogarithms (first definition)

D(ny,...,n, |2) = [ g")(2)dz-- g (2)dz (= € C)

Natural def. in string theory, limit 7 — {00 ~» genus-0 multiple polylogs
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The Brown-Levin approach

Consider the formal 1-form Q(z, ) := exp (27rm::$§:))>F(z,a)dz.

O(z, a) is well-defined on T%, because 2”";‘((5)”) = 27:;'(";(;) + 2mi

compensates for the monodromy of F', and is real analytic

Theorem (Brown-Levin)

Let Q(z,a) =: 3,5 gw™a" ™!, and let v := 2mi d(Im(z)/Im(7)) ~

Q-model A*(T*) :=Q & (Qv ® Qw® @ QW @ ---) — Q*(T*)
(in particular, [v] and [wo] = [dz] basis of Hjy ,,(T%,C))

Rmk: Similar construction for C(T%, n) using w™ (2; — z;)

Theorem / second definition (Brown-Levin)

wpr(®o, 1) = vao + Q(z, —ad,, )(x1) Liec[xo, z1]"-valued, then
periods of 7™ (T%, 0, z) (elliptic multiple polylogs) are the coefficients of
1+ foz wpr(To, 1) + foz wrr (2o, z1)wsL (o, 1) + . ..

Fact: Can be written in terms of Im(z) and T'(ny,...,n, | 2)!
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The Levin-Racinet approach

Consider the formal 1-form H(z,a) := exp(—ag'V)(2))F(z, a)dz.
H(z, ) is well-defined (and holomorphic) on T, because
g (z+47) = ¢ (2) — 2mi compensates for the monodromy of F

Recall: -7 dz = (,m(ﬂ Gaolr ))dz ~P(2)dz + df(2)
~ [2mi d(Im(2)/Im(7))] = [Ga(7)dz + P(2)dz]
Primitives are 277 Im(z)/Im(7) and —¢(!)(2), respectively!
Let H(z @) =1),59 nMan1
o (™ 2-nd kind differential forms

e By Hain's Theorem, periods of ©}"™(T%, 21, z2) are all the homotopy
invariant iterated integrals constructed with (")

Alternative construction

wrr(xo,x1) := (Gao(7) + P(2))dz 29 + H(z,—ad,, )(z1), then periods of
(T, 21, 22) are the coefficients of
1+ f;f wrr(zo, 1) + fzzf wrr(xo, 1)wrr(zo, z1) + . ..
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Other approaches

“Classical” (Bloch, Zagier, Beilinson, Levin, Brown, ...)

Regularized infinite averages of genus-zero multiple polylogarithms (many
variables) on (T*)" = (C*/¢* =" ~~ holomorphic multi-valued functions
on C(T*,n), can be written in terms of I'(ny,...,7n, | 2), generate all
periods of 7" (C(T%, n),0, z) (Brown-Levin).

Related to this: “ELi-functions” (Adams, Bogner, Weinzierl, ...)

“Algebraic” (Broedel, Duhr, Dulat, Tancredi, ...)

Iterated integrals using algebraically defined integration kernels with at
most simple poles ~~ generate same space as I'(nq,...,n, | 2).
Related to constructing all primitives of rational fcts on elliptic curves
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Elliptic multiple zeta values

A-elliptic multiple zeta values (Enriquez)

IA(ny,...,n.|7) :=T(ng,...,n.|1)

B-elliptic multiple zeta values (Enriquez)

IB(ny,...,n.|7) =777 [4(nyg,...,n, | —1/7)

e A=10,1] and B = [0, 7| standard cycles of T%,
T4 iterated integrals along A, IZ iterated integrals along B

o Coefficients of “elliptic associator” associated with “KZB-equation”
(genus-one analogue of Drinfeld associator and KZ equation)

o I*(ny,...,n,.|7) = ijo a;¢’, aj € Z[2mi]

o IB(ny .y [ 7) = Yt o, Soys0 i (2T R, by € 2

@ I[*(ni1,...,n, |T) can be written as (special) combinations of
iterated integrals [ Gy, (7')dr’ -+ Gy, (7')d7’
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Genus-one amplitudes

2mlm(z;—z;5)

Genus-one Green's function G(z;, z;) := —log |0(2)[* + =5

Closed string integral prototype:

/ / eXP( Z SijG(Zan)f(Zh?hm,ZN,EN)dM
. JoTs,N)

1<i<j<N+1

where zy11 =0, f made out of 9,G and 9;:G
Open string integral prototype:

/ / exp ( Z $i;G(zi, zj)g(zl, o ZN)dp
iRt J0<z < <2n <1

1<i<j<N+1

where zy11 =0, f made out of 0,G
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Genus-one amplitudes

2mlm(z;—z;5)

Genus-one Green's function G(z;, z;) := —log |0(2)[* + =5

Closed string integral prototype:

/ / eXP( Z SijG(Zan)f(ZhZh---7ZN,5N)dM
m, ., Jo(rs,N)

1<i<j<N+1

where zy11 =0, f made out of 9,G and 9;:G
Open string integral prototype:

/ / exp ( Z $i;G(zi, zj)g(zl, o ZN)dp
iRT J0<z1 < <2n <1

1<i<j<N+1

where zy11 =0, f made out of 0,G
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Genus-one amplitudes

27lm(z; —z;)

Genus-one Green's function G(z;, z;) :== —log |0(2)]? + e

Closed string integral prototype:

/C(’JI‘* N) exp( Z SijG(Zi,Zj)du

1<i<j<N+1

*ZHZH/ < N) II GGz odu

lij >0 ij 1<i<j<N+1

Open string integral prototype:

exp( si-G(zi,z)du
/0<21<"'<ZN<1 Z ! ’

1<i<jSN+1

Lij
NIy [I  Glez)an

Sz eSaNSlgic <Nt
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Genus-one amplitudes

Genus-one Green's function G(z;, z;) :== —log |0(2)]? + %@;m

Closed string integral prototype:

i5G (2, ')d
/C(TixN) exp<1<i<;N+18] (Fiv2a )t
=> 11 "

1;;>0 ij /C(1I ) 1<z<j<N+1

G(Zia Zj)lij dﬂ

Blue integrals are called modular graph functions
Open string integral prototype:

exp( si-G(zi,z-)du
/0<21<---<zN<1 Z ! ’

1<i<j<N+1

ST T ate

1;;>0 ij 0<z1<-<zN<1icicj<N+1




Genus one
0000000000 0e

State of the art

Coefficients of open string integrals are A-elliptic multiple zeta values

Modular graph functions new interesting class of real-analytic
modular functions, contains real-analytic Eisenstein series, many
algebraic and differential relations, asymptotic limit involves
single-valued MZVs (see D'Hoker's talk)

Single-valued-like projection from “symmetrized open integrals on
B-cycle” (holomorphic graph functions) to modular graph functions

Modular graph functions are combinations of holomorphic and
anti-holomorphic elliptic MZVs

Conjecture: Limits of N-point genus-one integrals related to
N + 2-point genus-zero integrals (known in open case or N = 2)

Recursions based on KZB-equation (see Kaderli's talk)
No known KLT-like relations

Partial results on moduli space integrals for closed strings

Green, Russo, Vanhove, Broedel, Matthes, Mafra, Schlotterer, D'Hoker,
Zerbini, Zagier, Gurdogan, Brown, Basu, Kaidi, Kleinschmidt, Gerken, Kaderli...
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String amplitudes

D’Hoker, Green, Pioline: Higher-genus analogues of modular graph
functions!

New interesting class of modular (Sp24(Z)) invariant functions
containing Zhang-Kawazumi invariant textcolorred(see D'Hoker's talk)

Open Strings Closed Strings
g=20 MZVs svMZVs
g =1 | Elliptic MZVs | Modular graph functions
g=2 ? Modular graph functions
g>2 ? Modular graph functions?

Hope / expectation: open and closed string related by KLT relations
(single-valued projections) at higher genus



Higher-genus analogues of polylogarithms

Enriquez: higher-genus analogue of KZB form
@ Induces connection (on non-trivial bundle) which is flat,
multi-valued, regular singular at one point
@ Reduces to Kronecker function at genus-one
@ Not explicit in higher genus

First step: single-valued (flat) version?

Two possible ways: 1) real analytic (Brown-Levin)
2) meromorphic (Levin-Racinet)

Second way easier (but lose regular singularity)

Possible to deduce one from the other?

Second step: use it to generate periods of m"™(X,, x,y), i.e.
higher-genus analogues of polylogs
Question: do we get all of them?

(Work in progress with B. Enriquez)



THE END

Thanks for your attention!
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