Elliptic polylogarithms and superstring amplitudes

Federico Zerbini

IPhT Saclay

Workshop Elliptics and Beyond September 07, 2020

Outline

Genus zero

- Classical polylogarithms and genus zero amplitudes
- Periods of fundamental groups
- 3 Elliptic polylogarithms and genus one amplitudes
- Beyond genus one

•00000000 Outline

Genus zero

- Classical polylogarithms and genus zero amplitudes
- Periods of fundamental groups
- 3 Elliptic polylogarithms and genus one amplitudes

Multiple polylogarithms

- $X = \{x_0, x_1\}$ formal alphabet, X^* set of possible words $w = x_{i_1} \cdots x_{i_n}$ in non-commutative letters x_0, x_1 .
- In \mathbb{C} consider $l_0 := [0, i\infty], l_1 := [1, i\infty], U := \mathbb{C} \setminus \{l_0, l_1\}$ $\rightsquigarrow \pi_1(U,x) = 1$ and $\log(z)$ well-defined on U.

Multiple polylogarithms (of one variable)

Family of holomorphic functions on U indexed by words $w \in X^*$, defined by setting $L_{x_0^n}(z) := (\log(z))^n/n!$ and then for any other w by

$$L_{x_{i_1}\cdots x_{i_n}}(z) := \int_0^z \frac{dz'}{z'-i_1} L_{x_{i_2}\cdots x_{i_n}}(z').$$

$$\text{Rmk 1:} \qquad L_{x_0^{k_r-1}x_1\cdots x_0^{k_1-1}x_1}(z) = (-1)^r \sum_{0 < n_1 < \cdots < n_r} \frac{z^{n_r}}{n_1^{k_1}\cdots n_r^{k_r}}.$$

Rmk 2: Multiple polylogs are multi-valued functions on $\mathbb{P}^1_{\mathbb{C}} \setminus \{0,1,\infty\}$.

Multiple zeta values

Multiple zeta values

For $k_1, \ldots, k_r \in \mathbb{N}$, $k_r \geq 2$, we set

$$\zeta(k_1, \dots, k_r) := \sum_{0 < n_1 < \dots < n_r} \frac{1}{n_1^{k_1} \cdots n_r^{k_r}} = L_{x_0^{k_r - 1} x_1 \cdots x_0^{k_1 - 1} x_1}(1)$$

- Ring ${\mathcal Z}$ of multiple zeta values, conjecturally graded by weight $k_1+\cdots+k_r$
- $L_w(z)$ has at most logarithmic divergence at z=1 \leadsto regularized special value $L_w(1) \in \mathcal{Z}$ for any $w \in X^*$

The KZ equation

Theorem

The formal series $L(z):=\sum_{w\in X^*}L_w(z)\,w\in\mathbb{C}\langle\langle X^*\rangle\rangle$ is the unique holomorphic solution on U of the differential equation

$$\frac{\partial}{\partial z}L(z) = \left(\frac{x_0}{z} + \frac{x_1}{z - 1}\right)L(z)$$

such that $L(z) \sim \exp(x_0 \log(z))$ as $z \to 0$.

In particular, L(1) (regularized value) is the Drinfel'd associator.

Theorem (F. Brown)

There is a unique real-analytic solution $\mathcal{L}(z) \in \mathbb{C}\langle\langle X^* \rangle\rangle$ on $\mathbb{P}^1_{\mathbb{C}} \setminus \{0,1,\infty\}$ of the KZ-equation s.t. $\mathcal{L}(z) \sim \exp\left(x_0 \log|z|^2\right)$ as $z \to 0$.

Definition

Genus zero

If we write $\mathcal{L}(z) =: \sum_{w \in X^*} \mathcal{L}_w(z) w$, we call $\mathcal{L}_w(z)$ single-valued multiple polylogarithms.

- Single-valued multiple polylogs are given by \mathcal{Z} -linear combinations of products $L_{w_1}(z)L_{w_2}(z)$.
- $\mathcal{L}_{x_0}(z) = L_{x_0}(z) + \overline{L_{x_0}(z)} = \log(z) + \overline{\log(z)} = \log|z|^2$.
- The map sv : $L_w(z) \to \mathcal{L}_w(z)$ respects shuffle identities. We call it the single-valued projection.

Single-valued multiple zeta values

Regularised special values $\mathcal{L}_w(1)$ belong to \mathcal{Z} , but span a conjecturally smaller subring \mathcal{Z}^{sv} . We call them single-valued multiple zeta values. Conjecturally, the single-valued projection restricts to well-defined $\operatorname{sv}: L_w(1) \to \mathcal{L}_w(1) \leadsto \text{ we denote } \zeta^{\operatorname{sv}}(k_1, \ldots, k_r) := \operatorname{sv}(\zeta(k_1, \ldots, k_r))$

Examples: $\zeta^{\text{sv}}(2k) = 0$, $\zeta^{\text{sv}}(2k+1) = 2\zeta(2k+1)$

Perturbative expansion of string amplitudes

Figure: Four open oriented strings

Figure: Four closed oriented strings

Set N+3 =number of string states, $\rho,\sigma\in\mathfrak{S}_N$ permutations, $s_{ij}:=\alpha'(k_i\cdot k_j)$ Mandelstam variables

Open string building blocks:

$$Z_{\rho,\sigma}^{(N)}(\mathbf{s}) := \int_{0 \le x_{\sigma(1)} \le \dots \le x_{\sigma(N)} \le 1} \frac{\prod_{i=1}^{N} dx_i \prod_{1 \le i < j \le N+2} |x_i - x_j|^{s_{ij}}}{x_{\rho(1)} (1 - x_{\rho(N)}) \prod_{i=2}^{N} (x_{\rho(i)} - x_{\rho(i-1)})}$$

Closed string building blocks:

$$\begin{split} J_{\rho,\sigma}^{(N)}(\pmb{s}) &:= \\ \int_{(\mathbb{P}^1_{\mathbb{C}})^N} \frac{\prod_{i=1}^N d^2z_i \prod_{1 \leq i < j \leq N+2} |z_i - z_j|^{2s_{ij}}}{z_{\rho(1)}\overline{z}_{\sigma(1)}(1 - z_{\rho(N)})(1 - \overline{z}_{\sigma(N)}) \prod_{i=2}^N (z_{\rho(i)} - z_{\rho(i-1)})(\overline{z}_{\sigma(i)} - \overline{z}_{\sigma(i-1)})} \end{split}$$

The 4-point case (N=1)

Open strings: the Veneziano amplitude

$$\begin{split} Z_{\rm id,id}^{(1)}(s,t) &= \int_{[0,1]} x^{s-1} (1-x)^{t-1} dx = \frac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)} \\ &\leadsto Z_{\rm id,id}^{(1)}(s,t) = \frac{s+t}{st} \exp\left(\sum_{n\geq 2} \frac{(-1)^n \zeta(n)}{n} \left(s^n + t^n - (s+t)^n\right)\right) \end{split}$$

Closed strings: the Virasoro-Shapiro amplitude

$$\begin{array}{l} J_{\rm id,id}^{(1)}(s,t) = \int_{\mathbb{P}^1_{\mathbb{C}}} |z|^{2s-2} |1-z|^{2t-2} \frac{dz d\overline{z}}{(-2\pi i)} = \frac{\Gamma(s)\Gamma(t)\Gamma(1-s-t)}{\Gamma(1-s)\Gamma(1-t)\Gamma(s+t)} \\ \leadsto \\ J_{\rm id,id}^{(1)}(s,t) = \frac{s+t}{st} \exp\left(-2\sum_{n\geq 1} \frac{\zeta(2n+1)}{(2n+1)} \left(s^{2n+1} + t^{2n+1} - (s+t)^{2n+1}\right)\right) \end{array}$$

KLT formula:
$$J_{\mathrm{id,id}}^{(1)}(s,t) = \frac{\sin(\pi s)\sin(\pi t)}{\pi\sin(\pi(s+t))} \left(Z_{\mathrm{id,id}}^{(1)}(s,t)\right)^2$$

Single-valued projection: $\operatorname{sv}(Z_{\operatorname{id},\operatorname{id}}^{(1)}(s,t)) = J_{\operatorname{id},\operatorname{id}}^{(1)}(s,t)$ coefficientwise

State of the art

- KLT relations
- ullet Coefficients of the small lpha'-expansion of $Z_{
 ho,\sigma}^{(N)}(m{s})$ belong to $\mathcal Z$
- ullet Coefficients of the small lpha'-expansion of $J^{(N)}_{
 ho,\sigma}(m{s})$ belong to $\mathcal{Z}^{\mathrm{sv}}$
- "sv $(Z_{\rho,\sigma}^{(N)}(\alpha's)) = J_{\rho,\sigma}^{(N)}(\alpha's)$ "
- Recursive relations between open string building blocks, originating from KZ equation

Kawai, Lewellen, Tye, Stieberger, Broedel, Mafra, Schlotterer, Terasoma, Schnetz, Brown, Dupont, Vanhove, Zerbini, ...

Genus one

Genus zero

- Classical polylogarithms and genus zero amplitudes
- Periods of fundamental groups
- 3 Elliptic polylogarithms and genus one amplitudes

Cohomology and periods

- ullet M smooth compact orientable manifold
- $\bullet \ H_n^{\rm Sing}(M,\mathbb{Q}) \ n\text{-th singular homology group } (\mathbb{Q}\text{-vector space})$
- $H^n_{\mathrm{Sing}}(M,\mathbb{Q}) := (H^{\mathrm{Sing}}_n(M,\mathbb{Q}))^*$ n-th singular cohomology group
- \bullet $H^n_{\mathrm{dR,an}}(M,\mathbb{C})$ n-th de Rham cohomology group
- Stokes $\leadsto [\omega]: [\sigma] \to \int_\sigma \omega$ well-defined \leadsto can view elements of $H^n_{\mathrm{dR,an}}$ as elements of H^n_{Sing}
- de Rham: $H^n_{\mathrm{dR,an}}(M,\mathbb{C}) \tilde{\to} H^n_{\mathrm{Sing}}(M,\mathbb{Q}) \otimes \mathbb{C}$

Algebraic version of this story:

- ullet X smooth algebraic variety defined over $\mathbb Q$
- \bullet $H^n_{\mathrm{dR},\mathrm{alg}}(X,\mathbb{Q})$ n-th algebraic de Rham cohomology group
- Grothendieck: $H^n_{\mathrm{dR,alg}}(X,\mathbb{Q})\otimes\mathbb{C}\tilde{\to}H^n_{\mathrm{Sing}}(X(\mathbb{C}),\mathbb{Q})\otimes\mathbb{C}$
- Entries of the matrix representing this iso are called periods
- The same holds for relative cohomology → periods in the sense of Kontsevich-Zagier

de Rham theorem for fundamental groups

```
Rmk: H_1^{\mathrm{Sing}}(M,\mathbb{Q}) \simeq \pi_1^{\mathrm{Ab}}(M,x) \simeq \mathbb{Q}[\pi_1(M,x)]/J^2, J := \ker(\mathbb{Q}\pi_1(M,x) \to \mathbb{Q}) the augmentation ideal Problem: Look for functions on \mathbb{Q}\pi_1(M,x), i.e. homotopy functionals.
```

Idea: Use integrals!

Obstacle: For ω smooth 1-form, $\int \omega$ homotopy functional $\Leftrightarrow \omega$ closed $\leadsto \int \omega$ only detects elements in $H_1^{\mathrm{Sing}}(M,\mathbb{Q})$

Solution (Chen): Iterated integrals!

 ω_1,\dots,ω_r closed smooth 1-forms, if $\int \omega_1\cdots\omega_r$ is homotopy functional then it defines $\mathbb C$ -valued function on $\mathbb Q\pi_1(M,x)/J^{r+1}$

de Rham theorem for $\pi_1(M,x)$ (Chen)

Integration induces

 $\{ \text{Homotopy invariant iterated integrals} \} \tilde{\to} \mathcal{O}(\pi_1^{\mathrm{un}}(M,x)) \otimes \mathbb{C}$

We're more interested in the "relative version" for $\pi_1(M,x,y)$ (paths from x to y)

Models, and multiple polylogarithms

Rmk: Looking for all homotopy invariant iterated integrals using all 1-forms is hard!

Shortcut: Use a model! Identify subcomplex A^{\bullet} of complex of smooth diff. forms Ω^{\bullet} s.t. $H^n(A^{\bullet}, \mathbb{C}) \simeq H^n(\Omega^{\bullet}, \mathbb{C}) = H^n_{\mathrm{dR,an}}(M, \mathbb{C})$

Theorem (Chen)

Integration induces $\{ \text{Homotopy invariant iterated integrals of } A^1\text{-forms} \} \tilde{\to} \mathcal{O}(\pi_1^{\mathrm{un}}(M,x)) \otimes \mathbb{C}$

A rational model for $\mathbb{P}^1_{\mathbb{C}} \setminus \{0,1,\infty\}$

 $\mathbb{Q} \oplus (\mathbb{Q} \tfrac{dz}{z} \oplus \mathbb{Q} \tfrac{dz}{z-1}) \hookrightarrow \Omega^{\bullet}(\mathbb{P}^1_{\mathbb{C}} \setminus \{0,1,\infty\}) \text{ is a quasi-isomorphism} \\ \leadsto \text{functions on } \pi^{\mathrm{un}}_1(\mathbb{P}^1_{\mathbb{C}} \setminus \{0,1,\infty\}) \text{ given by (homotopy invariant)} \\ \text{iterated integrals of } dz/z \text{ and } dz/z-1, \text{ i.e. } \mathbf{multiple polylogarithms,} \\ \text{which therefore give all the "periods of } \pi_1(\mathbb{P}^1_{\mathbb{C}} \setminus \{0,1,\infty\},0,z) \text{"}$

Compact Riemann surfaces

- X_g compact Riemann surface of genus $g \ge 1$ (donuts)
- $\pi_1(X_g, x) = \langle A_1, \dots, A_g, B_1, \dots, B_g \mid \prod_i A_i B_i A_i^{-1} B_i^{-1} = 1 \rangle$
- $H_1^{\operatorname{Sing}}(X_g, \mathbb{Q}) = \mathbb{Q}^{2g}$
- \bullet $\Omega^1_{\mathrm{alg}}(X_g,\mathbb{C}):=$ meromorphic differentials on X_g
- $\omega \in \Omega^1_{\mathrm{alg}}(X_g,\mathbb{C})$ "1st kind" if holomorphic ($\leadsto H^{1,0}(X_g)$)
- \bullet $\,\omega\in\Omega^1_{\mathrm{alg}}(X_g,\mathbb{C})$ "2nd kind" if meromorphic with no residues
- $\bullet \ H^1_{\mathrm{dR},\mathrm{alg}}(X_g,\mathbb{C}) := \tfrac{\{\mathrm{2nd\ kind\ differentials}\}}{d\mathcal{M}(X)}$
- $H^1_{\mathrm{dR,alg}}(X_g,\mathbb{C}) \tilde{\to} H^1_{\mathrm{Sing}}(X_g,\mathbb{Q}) \otimes \mathbb{C}$ via integration: $\int \omega : \sigma \to \int_{\sigma} \omega$ well-defined by residue theorem!

"Algebraic" version of Chen's theorem for curves (Hain)

{"Iterated integrals of 2nd kind"} $\otimes \mathbb{C} \tilde{\to} \mathcal{O}(\pi_1^{\mathrm{un}}(X_q, x)) \otimes \mathbb{C}$

Configuration spaces

- X possibly punctured compact Riemann surface
- $C(X,n):=\{(x_1,\dots x_n)\in X^n\,|\, x_i\neq x_j\}$ configuration space of n distinct points on X
- $\pi_1(C(X,n),x) \leadsto$ theory of braid groups
- Periods of $\pi_1(C(\mathbb{P}^1_{\mathbb{C}}\setminus\{0,1,\infty\},n),0,z)=\pi_1(\mathfrak{M}_{0,n+3},x)$ given by multiple polylogs in several variables

$$\sum_{n_1 < \dots < n_r} \frac{z_1^{n_1} \dots z_r^{n_r}}{n_1^{k_1} \dots n_r^{k_r}}$$

Why important for us?

Configuration spaces of Riemann surfaces are very natural geometric objects related to computation of **string theory amplitudes**

What's known?

Kriz and Totaro described the cohomology rings, **but** the description is not explicit for $g \geq 2 \leadsto$ hard to build models \leadsto hard to construct periods of fundamental groups

Outline

Genus zero

- Classical polylogarithms and genus zero amplitudes
- Periods of fundamental groups
- 3 Elliptic polylogarithms and genus one amplitudes

Complex (one-punctured) tori

Genus zero

- $\tau \in \mathbb{H}$ (i.e. $\text{Im}(\tau) > 0$)
- $\mathbb{T}_{\tau} := \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ complex tori \iff genus-one Riemann surfaces
- $\mathbb{T}_{\tau}^* := \mathbb{T}_{\tau} \setminus \{0\}$ one-punctured genus-one Riemann surfaces
- \bullet $\pi_1(\mathbb{T}_\tau, x) = \mathbb{Z}^2$, $\pi_1(\mathbb{T}_\tau^*, x) = \mathbb{Z} * \mathbb{Z}$
- $H^1(\mathbb{T}_{\tau},\mathbb{O}) = H^1(\mathbb{T}_{\tau}^*,\mathbb{O}) = \mathbb{O}^2$
- $H^2(\mathbb{T}_{\tau}, \mathbb{O}) = \mathbb{O}, H^2(\mathbb{T}_{\tau}^*, \mathbb{O}) = 0$
- $\mathcal{P}(z) := \frac{1}{z^2} + \sum_{k>2} (k+1) G_{k+2}(\tau) z^n$, $G_k(\tau) := \sum_{m,n} \frac{1}{(m\tau + n)^k}$, $\mathcal{O}(\mathbb{T}_{\pi}^*)$ polynomials in $\mathcal{P}(z)$ and $\mathcal{P}'(z)$
- $H^1_{\mathrm{dR alg}}(\mathbb{T}_{\tau},\mathbb{C}) \simeq H^1_{\mathrm{dR alg}}(\mathbb{T}_{\tau}^*,\mathbb{C}) \simeq \mathbb{C}[dz] + \mathbb{C}[\mathcal{P}(z)dz],$ \rightsquigarrow "periods" $(1,\tau)$ and "quasi-periods" $(G_2(\tau), 2\pi i + \tau G_2(\tau))$
- $H^1_{\mathrm{dR an}}(\mathbb{T}_{\tau},\mathbb{C}) \simeq H^1_{\mathrm{dR an}}(\mathbb{T}_{\tau}^*,\mathbb{C}) \simeq \mathbb{C}[dz] + \mathbb{C}[d\bar{z}]$
- $H^1_{\mathrm{dB,an}}(\mathbb{T}_{\tau},\mathbb{C}) \simeq H^1_{\mathrm{dB,alg}}(\mathbb{T}_{\tau},\mathbb{C})$ via $\frac{\pi}{\operatorname{Im}(\tau)}d\bar{z} = \left(\frac{\pi}{\operatorname{Im}(\tau)} - G_2(\tau)\right)dz - \mathcal{P}(z)dz + df(z)$

The Kronecker function

For
$$z\in\mathbb{T}_{ au}^*$$
 consider $\zeta:=e^{2\pi iz}$, $q:=e^{2\pi i au}$. Define $heta(z):=q^{1/12}(\zeta^{1/2}-\zeta^{-1/2})\prod_{j\geq 1}(1-q^j\zeta)(1-q^j\zeta^{-1})$ and set $F(z,\alpha):=rac{\theta'(0)\theta(z+\alpha)}{\theta(z)\theta(\alpha)}$

Rmk 1: Multi-valued function of z on \mathbb{T}_{τ}^* , because $F(z+1,\alpha)=F(z,\alpha)$ but $F(z+\tau,\alpha)=\exp(-2\pi i\alpha)F(z,\alpha)$, simple pole at z=0 Rmk 2: Writing $F(z,\alpha)=:\sum_{n\geq 0}g^{(n)}(z)\alpha^{n-1}$, we find

$$g^{(0)}(z) = 1$$
 $g^{(1)}(z) = \frac{1}{z} - \sum_{n \geq 1} G_{n+1}(\tau) z^n = \zeta(z) - G_2(\tau) z,$ $g^{(n)}(z) \in \mathcal{O}(\mathbb{T}^*_{\tau})[g^{(1)}(z)],$ holomorphic at $z = 0$

$g^{(i)}(z) \in \mathcal{O}(\mathbb{T}_{\tau}^*)[g^{(i)}(z)]$, holomorphic at z=0

Elliptic multiple polylogarithms (first definition)

$$\tilde{\Gamma}(n_1,\ldots,n_r\,|\,z) := \int_0^z g^{(n_1)}(z)dz\cdots g^{(n_r)}(z)dz \qquad (z \in \mathbb{C})$$

Natural def. in string theory, limit $au o i\infty \leadsto {
m genus-0}$ multiple polylogs

The Brown-Levin approach

Consider the formal 1-form $\Omega(z,\alpha) := \exp\left(2\pi i \alpha \frac{\operatorname{Im}(z)}{\operatorname{Im}(\tau)}\right) F(z,\alpha) dz$. $\Omega(z,\alpha)$ is well-defined on \mathbb{T}_{τ}^* , because $\frac{2\pi i \operatorname{Im}(z+\tau)}{\operatorname{Im}(\tau)} = \frac{2\pi i \operatorname{Im}(z)}{\operatorname{Im}(\tau)} + 2\pi i$ compensates for the monodromy of F, and is real analytic

Genus one

00000000000

Theorem (Brown-Levin)

Let
$$\Omega(z,\alpha) =: \sum_{n \geq 0} \omega^{(n)} \alpha^{n-1}$$
, and let $\nu := 2\pi i \, d(\operatorname{Im}(z)/\operatorname{Im}(\tau)) \leadsto \mathbb{Q}$ -model $A^{\bullet}(\mathbb{T}^*_{\tau}) := \mathbb{Q} \oplus (\mathbb{Q} \nu \oplus \mathbb{Q} \omega^{(0)} \oplus \mathbb{Q} \omega^{(1)} \oplus \cdots) \hookrightarrow \Omega^{\bullet}(\mathbb{T}^*_{\tau})$ (in particular, $[\nu]$ and $[\omega_0] = [dz]$ basis of $H^1_{\mathrm{dR,an}}(\mathbb{T}^*_{\tau},\mathbb{C})$)

Rmk: Similar construction for $C(\mathbb{T}_{\tau}^*, n)$ using $\omega^{(n)}(z_i - z_j)$

Theorem / second definition (Brown-Levin)

 $\omega_{BL}(x_0,x_1):=\nu x_0+\Omega(z,-\mathsf{ad}_{x_0})(x_1)\ \mathsf{Lie}_{\mathbb{C}}[x_0,x_1]^{\wedge}$ -valued, then periods of $\pi_1^{\mathrm{un}}(\mathbb{T}_{\tau}^*,0,z)$ (elliptic multiple polylogs) are the coefficients of $1 + \int_0^z \omega_{BL}(x_0, x_1) + \int_0^z \omega_{BL}(x_0, x_1) \omega_{BL}(x_0, x_1) + \dots$

Fact: Can be written in terms of Im(z) and $\tilde{\Gamma}(n_1, \ldots, n_r \mid z)!$

The Levin-Racinet approach

Genus zero

Consider the formal 1-form $H(z,\alpha) := \exp(-\alpha q^{(1)}(z))F(z,\alpha)dz$.

 $H(z,\alpha)$ is well-defined (and holomorphic) on \mathbb{T}_{τ}^* , because $q^{(1)}(z+\tau)=q^{(1)}(z)-2\pi i$ compensates for the monodromy of F

Primitives are $2\pi i \operatorname{Im}(z)/\operatorname{Im}(\tau)$ and $-q^{(1)}(z)$, respectively!

Let
$$H(z,\alpha)=:\sum_{n\geq 0}\eta^{(n)}\alpha^{n-1}$$

- $\eta^{(n)}$ 2-nd kind differential forms
- By Hain's Theorem, periods of $\pi_1^{\mathrm{un}}(\mathbb{T}_{\tau}^*,z_1,z_2)$ are all the homotopy invariant iterated integrals constructed with $\eta^{(n)}$

Alternative construction

 $\omega_{LR}(x_0, x_1) := (G_2(\tau) + \mathcal{P}(z))dz \, x_0 + H(z, -\mathsf{ad}_{x_0})(x_1),$ then periods of $\pi_1^{\mathrm{un}}(\mathbb{T}_{\tau}^*, z_1, z_2)$ are the coefficients of $1 + \int_{z_1}^{z_2} \omega_{LR}(x_0, x_1) + \int_{z_2}^{z_2} \omega_{LR}(x_0, x_1) \omega_{LR}(x_0, x_1) + \dots$

Other approaches

"Classical" (Bloch, Zagier, Beilinson, Levin, Brown, ...)

Regularized infinite averages of genus-zero multiple polylogarithms (many variables) on $(\mathbb{T}_{\tau}^*)^n = (\mathbb{C}^*/q^{\mathbb{Z}} = ^n \leadsto \text{holomorphic multi-valued functions}$ on $C(\mathbb{T}_{\tau}^*, n)$, can be written in terms of $\tilde{\Gamma}(n_1, \ldots, n_r \mid z)$, generate all periods of $\pi_1^{\mathrm{un}}(C(\mathbb{T}_{\tau}^*, n), 0, z)$ (Brown-Levin).

Related to this: "ELi-functions" (Adams, Bogner, Weinzierl, ...)

"Algebraic" (Broedel, Duhr, Dulat, Tancredi, ...)

Iterated integrals using algebraically defined integration kernels with at most simple poles \leadsto generate same space as $\tilde{\Gamma}(n_1,\ldots,n_r\,|\,z)$. Related to constructing all primitives of rational fcts on elliptic curves

Elliptic multiple zeta values

A-elliptic multiple zeta values (Enriquez)

$$I^A(n_1,\ldots,n_r\,|\,\tau) := \tilde{\Gamma}(n_1,\ldots,n_r\,|\,1)$$

B-elliptic multiple zeta values (Enriquez)

$$I^{B}(n_{1},...,n_{r} \mid \tau) := \tau^{r-n_{1}-\cdots-n_{r}} I^{A}(n_{1},...,n_{r} \mid -1/\tau)$$

- A=[0,1] and $B=[0,\tau]$ standard cycles of $\mathbb{T}_{ au}^*$, I^A iterated integrals along A, I^B iterated integrals along B
- Coefficients of "elliptic associator" associated with "KZB-equation" (genus-one analogue of Drinfeld associator and KZ equation)
- $I^{A}(n_{1},...,n_{r} | \tau) = \sum_{j>0} a_{j}q^{j}$, $a_{j} \in \mathcal{Z}[2\pi i]$
- $I^B(n_1, \ldots, n_r \mid \tau) = \sum_{k=1-n_1-\cdots-n_r}^r \sum_{j\geq 0} b_{k,j} (2\pi i \tau)^k q^j$, $b_{k,j} \in \mathcal{Z}$
- $I^{\bullet}(n_1, \dots, n_r \mid \tau)$ can be written as (special) combinations of iterated integrals $\int_{\tau}^{i\infty} G_{k_1}(\tau')d\tau' \cdots G_{k_s}(\tau')d\tau'$

Genus-one Green's function $G(z_i,z_j):=-\log|\theta(z)|^2+\frac{2\pi \mathrm{Im}(z_i-z_j)}{\mathrm{Im}(\tau)}$

Closed string integral prototype:

$$\int_{\mathfrak{M}_{1,1}} \int_{C(\mathbb{T}_{\tau}^*,N)} \exp\Big(\sum_{1 \leq i < j \leq N+1} s_{ij} G(z_i,z_j) f(z_1,\bar{z}_1,\ldots,z_N,\bar{z}_N) d\mu$$

where $z_{N+1} \equiv 0$, f made out of $\partial_z G$ and $\partial_{\bar{z}} G$

Open string integral prototype:

$$\int_{i\mathbb{R}^+} \int_{0 \le z_1 \le \dots \le z_N \le 1} \exp\Big(\sum_{1 \le i < j \le N+1} s_{ij} G(z_i, z_j) g(z_1, \dots, z_N) d\mu$$

where $z_{N+1} \equiv 0$, f made out of $\partial_z G$

Genus-one Green's function $G(z_i,z_j):=-\log|\theta(z)|^2+\frac{2\pi \mathrm{Im}(z_i-z_j)}{\mathrm{Im}(\tau)}$

Closed string integral prototype:

$$\int_{\mathfrak{M}_{1,1}} \int_{C(\mathbb{T}_{\tau}^*,N)} \exp\Big(\sum_{1 \leq i < j \leq N+1} s_{ij} G(z_i,z_j) f(z_1,\bar{z}_1,\ldots,z_N,\bar{z}_N) d\mu$$

where $z_{N+1} \equiv 0$, f made out of $\partial_z G$ and $\partial_{\bar{z}} G$

Open string integral prototype:

$$\int_{i\mathbb{R}^+} \int_{0 \le z_1 \le \dots \le z_N \le 1} \exp\Big(\sum_{1 \le i < j \le N+1} s_{ij} G(z_i, z_j) g(z_1, \dots, z_N) d\mu$$

where $z_{N+1} \equiv 0$, f made out of $\partial_z G$

Genus-one Green's function $G(z_i, z_j) := -\log |\theta(z)|^2 + \frac{2\pi \text{Im}(z_i - z_j)}{\text{Im}(z_i)}$

Closed string integral prototype:

$$\int_{C(\mathbb{T}_{\tau}^*,N)} \exp\left(\sum_{1 \leq i < j \leq N+1} s_{ij} G(z_i, z_j) d\mu\right)$$

$$= \sum_{l_{ij} \geq 0} \prod_{ij} \frac{s_{ij}^{l_{ij}}}{l_{ij}!} \int_{C(\mathbb{T}_{\tau}^*,N)} \prod_{1 \leq i < j \leq N+1} G(z_i, z_j)^{l_{ij}} d\mu$$

Open string integral prototype:

$$\int_{0 \le z_1 \le \dots \le z_N \le 1} \exp\left(\sum_{1 \le i < j \le N+1} s_{ij} G(z_i, z_j) d\mu \right)$$

$$= \sum_{l_{ij} \ge 0} \prod_{ij} \frac{s_{ij}^{l_{ij}}}{l_{ij}!} \int_{0 \le z_1 \le \dots \le z_N \le 1} \prod_{1 \le i < j \le N+1} G(z_i, z_j)^{l_{ij}} d\mu$$

Genus-one Green's function $G(z_i, z_j) := -\log |\theta(z)|^2 + \frac{2\pi \text{Im}(z_i - z_j)}{\text{Im}(z_i)}$

Closed string integral prototype:

$$\int_{C(\mathbb{T}_{\tau}^*,N)} \exp\left(\sum_{1 \leq i < j \leq N+1} s_{ij} G(z_i, z_j) d\mu\right)$$

$$= \sum_{l_{ij} \geq 0} \prod_{ij} \frac{s_{ij}^{l_{ij}}}{l_{ij}!} \int_{C(\mathbb{T}_{\tau}^*,N)} \prod_{1 \leq i < j \leq N+1} G(z_i, z_j)^{l_{ij}} d\mu$$

Blue integrals are called modular graph functions

Open string integral prototype:

$$\int_{0 \le z_1 \le \dots \le z_N \le 1} \exp\left(\sum_{1 \le i < j \le N+1} s_{ij} G(z_i, z_j) d\mu\right)$$

$$= \sum_{l_{ij} \ge 0} \prod_{ij} \frac{s_{ij}^{l_{ij}}}{l_{ij}!} \int_{0 \le z_1 \le \dots \le z_N \le 1} \prod_{1 \le i < j \le N+1} G(z_i, z_j)^{l_{ij}} d\mu$$

State of the art

- Coefficients of open string integrals are A-elliptic multiple zeta values
- Modular graph functions new interesting class of real-analytic modular functions, contains real-analytic Eisenstein series, many algebraic and differential relations, asymptotic limit involves single-valued MZVs (see D'Hoker's talk)
- Single-valued-like projection from "symmetrized open integrals on B-cycle" (holomorphic graph functions) to modular graph functions
- Modular graph functions are combinations of holomorphic and anti-holomorphic elliptic MZVs
- Conjecture: Limits of N-point genus-one integrals related to N+2-point genus-zero integrals (known in open case or N=2)
- Recursions based on KZB-equation (see Kaderli's talk)
- No known KLT-like relations
- Partial results on moduli space integrals for closed strings

Green, Russo, Vanhove, Broedel, Matthes, Mafra, Schlotterer, D'Hoker, Zerbini, Zagier, Gurdogan, Brown, Basu, Kaidi, Kleinschmidt, Gerken, Kaderli...

Beyond

Outline

- Classical polylogarithms and genus zero amplitudes
- Periods of fundamental groups
- 3 Elliptic polylogarithms and genus one amplitudes
- Beyond genus one

String amplitudes

D'Hoker, Green, Pioline: Higher-genus analogues of modular graph functions!

New interesting class of modular $(Sp_{2g}(\mathbb{Z}))$ invariant functions containing Zhang-Kawazumi invariant textcolorred(see D'Hoker's talk)

	Open Strings	Closed Strings
g = 0	MZVs	svMZVs
g=1	Elliptic MZVs	Modular graph functions
g=2	?	Modular graph functions
g > 2	?	Modular graph functions?

Hope / expectation: open and closed string related by KLT relations (single-valued projections) at higher genus

Higher-genus analogues of polylogarithms

Enriquez: higher-genus analogue of KZB form

- Induces connection (on non-trivial bundle) which is flat, multi-valued, regular singular at one point
- Reduces to Kronecker function at genus-one
- Not explicit in higher genus

```
First step: single-valued (flat) version?
```

Two possible ways: 1) real analytic (Brown-Levin)

2) meromorphic (Levin-Racinet)

Second way easier (but lose regular singularity)

Possible to deduce one from the other?

Second step: use it to generate periods of $\pi_1^{\mathrm{un}}(X_q, x, y)$, i.e.

higher-genus analogues of polylogs

Question: do we get all of them?

(Work in progress with B. Enriquez)

THE END

Thanks for your attention!