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Motivation

The complexity of amplitude computations arising from the number of 
integral topologies often requires automated approaches.

Perturbative amplitudes and their integrals naturally setup in algebraic 
geometry. 

In recent years we have developed algebraic toolkit which handles algebra 
well, however, multi-dimensional geometry is a hard-to-crack bottleneck

We will discuss a few geometric properties and how they can be obtained 
from algebraic ones. The vehicle/language are vector fields. No direct relevant 
to elliptic integrals but potentially useful tools. 



Numerical Amplitude Methods
Parametrisation for amplitude integrand in terms of surface 
terms (= total derivatives) and master integrals. 

Generalised unitarity & numerical evaluation in finite fields to 
determine coefficients.

Numerical formulation of dimensional regularisation (treatment 
of fermions)

Reconstruction of dimensional regulator D=4-2ε

Replace integrals by function basis (ε-expansion) 

Extract finite remainder

Analytic reconstruction in Mandelstam variables (in finite field) 

Simplify coefficients unique partial-fraction decomposition 
(Leinartes-like algorithm) and reconstruct rationals from finite 
field

Requires vector fields 
for surface terms.

Aided by good 
function-basis.

many recent contributions [Abreu, Febres 
Cordero, Dormans, Ita, Page, Sotnikov, Ruf, 
Klinkert, Zeng;  Badger, Hartanto, Bronnum-
Hansen, Peraro; Larsen, Zhang; Mastrolia, 
Mirabela, Ossola]



Cut surface

We consider Feynman integrals in momentum space.

Feynman integrals modulo pinches lead to algebraic varieties,

defined by propagator ideal. Insertions modulo pinches means polynomials 
modulo the propagator ideal. 

The propagator ideal defines an algebraic variety which corresponds 
geometrically to setting propagators to zero as in generalised cuts, i.e. the 
maximal cut surface.

The insertions modulo propagators are the interesting functions on the cut 
surface.

I = ∫ dnDℓ
t(ℓ, k)
ρ1⋯ρm

mod pinches → t(ℓ, k) mod ⟨ρ1, . . . , ρn⟩



Natural coordinates
Natural coordinates for integrals lead to the Baikov/Cutkosky 
parametrisation in terms of propagators and irreducible scalar products (ISP),

,       .

The measure factor, the Baikov polynomial is a Gram determinant. It signals 
the loss of dimension of the loop momentum,

.

Measure factor is volume of internal space that is fibered over the affine 
space of the ISP variables and propagators. Surfaces without boundary are 
then open surfaces that end on the zero-set of the Baikov polynomial.

Cut integrals appear naturally after taking residues at  and include the 
measure factor .

{ℓμ
i } → {ρj, αk} I ∼ ∫ ∏

i

dρi∏
j

dαj
t(α, ρ)Bd(D)(α, ρ)

ρ1⋯ρm

B = det G(ℓ1, ℓ2, . . . , k1, . . . )

ρi = 0
Bd(D)(α,0)



Example:

Cut surface is double-cover of the affine space of the ISP variables, i.e.  the 
loop momenta are quadratically related to ISP variables, 

 .0 = ρ1 = (ℓ4d)2 + (ℓϵ)2 = (ℓ ⋅ pi)(ℓ ⋅ pj)(pi ⋅ pj)−1 + (ℓϵ)2

[Huot, Larsen `12]

4-dim slice: B = 0

[Tancredi Primo `16; Bosma, 
Sogaard, Zhang `17; ]
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B = 0

cut surface:  -planeα1, α2

two ISPs: {α1, α2}



Properties of cut surfaces

Comparison of exact versus closed polynomials give master integrals.

Dimension foliations: minors of Gram matrix  define 
distinguished surfaces. These corresponds to cuts in various dimensions when 
the loop momenta  are lined up with external momenta .

Regular versus singular Baikov surface,

.

For maximal co-dimension singularities see below. 

Experience: the more singularities the simpler, and also ‘less elliptic’. 
Mechanism for simplicity (e.g. in IBP reduction) unclear. 

G(ℓ1, ℓ2, . . . , k1, . . . )

ℓi ki

0 = ∂1B = . . . = ∂nB = B



Maximal Singularities
Singularities determined by loss of rank of the differential of defining 
equations:

These singularities are common being the four-dimensional foliation:

Considers the singularities of the singularity varieties. Recursive construction: 
vanishing minors of differential of vanishing minors [see books by Arnold, 
Gusein-Zade, Varchenko]

where index ‘i’ labels minors and ‘k’ the type of minor. One chooses the 
minimal ‘k’ such that the minors still have a common zero.

rank(∂1B . . . ∂nB) |B=0 = 0 → I1 = ⟨∂1B, . . . , ∂nB, B⟩

B = det(pi ⋅ pj)(μ11μ22 − μ2
12) → ∂iB ∼ μjk

rank(∂i∂1B . . . ∂i∂nB) |∂iB=B=0 = minimal → I2 = ⟨minorik(∂l∂mB), ∂iB, B⟩



Motivation: vector fields
1) Vector fields appear naturally in derivations of IBP relations and play a 
central role in integral parametrisation,

2) Vector fields trivially give rise to dlog forms,

which count multiplicities of zeros of the vectors.

3) Critical points (=zeros) of vector fields are related to topological 
information of underlying surfaces. Connection between vanishing cycles 
(=change of topology) and new vectors (and IBP relations). 

0 = ∫ dnDℓ
n

∑
i=1

∂
∂ℓμ

i

vμ
i

ρ1⋯ρm
, vμ

i = polynomial

∫ dnDℓ∏
i,μ

dlog(vμ
i )



Properties of vector fields

The polynomial vector fields are naturally tangent to surfaces of reduced 
dimension: The expressions,  

 

imply where  points into D dimensions,  will point into D dimensions. 

Algebraic formulations [Larsen, Zhang `15, Abreu et al `17]:

Statement follows also from integral measures in Baikov coordinates and 
measures including .

vμ
i = pi(ℓ, k)ℓμ

i + qi(ℓ, k)kμ
i

ℓμ
i vμ

i

vμ
i

∂
∂ℓμ

i
B ∼ B , vν

i
∂

∂ℓν
i

μij ∼ linear combination of μij

dμij



Natural vectors fields

Introduced as vector fields that do not double propagators in a given 
topology [Gluza, Kajda, Kosower `11],

Geometric meaning of equations is that the vectors are tangent to cut 
surface of topology and all its pinches. (Note correlation of propagator of rhs 
and lhs.)

vμ
i (ℓ, k)

∂
∂ℓμ

i
ρj(ℓ, k) = fj(ℓ, k)ρj(ℓ, k), ρj ∈ topology



Equivalently in natural coordinates: give up dimensionality condition and 
impose propagator condition by hand [Larsen, Zhang; Ita `15],

for propagators  and irreducible scalar products  .

For on-shell form of vectors -terms are dropped,

 .

These off-shell and on-shell ‘syzygy equations’ can be solved by computational algebraic 
geometry (e.g. Singular program). The fewer variables the better.  

{ℓμ
i } → {ρm, αn} : ∑

m∈ props∪ISP

vm(ρ, α)
∂

∂ρm
ρj = fj(ρ, α)ρj → vm(ρ, α) = fm(ρ, α)ρm

∑
m∈ props

fm(ρ, α)ρm
∂

∂ρm
B(α, ρ) + ∑

n∈ISP

vn(ρ, α)
∂

∂αn
B(α, ρ) = fB(ρ, α)B(α, ρ)

ρi αi

ρi

∑
n∈ISP

vn(α)
∂

∂αn
B(α,0) = fB(α)B(α,0) , vm = fmρm = 0



Types of vector fields

Direct impact of topology change and appearance of singularities:

1) Generic vector fields from crossing: 

 

 

2) Non-trivial syzygy relations if zero set of Baikov is singular [see e.g. lecture 
notes of Y. Zhang `16]

Examples:   

                         

vg = p(α)(∂2B, − ∂1B,0,...)

vb = p(α)(B,0,...,∂1B)

generic: 
            
scaling: 

B = (α1)2 + (α2)2

vg = (α2, − α1,0,...)
vb = [(α1)2 + (α2)2,0,α1]

vs = (α1, α2,2)

generic: 
            

B = (α1)2 + (α2)2 + c(sij)
vg = (α2, − α1,0,...)
vb = [(α1)2 + (α2)2,0,α1]

singular
no master

non-singular
one master



Vector components
Two types of components in syzygy, the true vector components  and the 
coefficient of the B-term . 

Properties following from defining equation:

 

a) @ extrema of function ,   we find that  .

b) @ singularities of zero set of  the  we have  and 
 .

Observations: 

a) Taking a complete set of vectors and counting the zeros of
 matches the number of master integrals on the cut. 

(Compare to [Lee, Pomeransky ’13].)

b) The solutions to  give maximal co-dimension 
singularities of  surface.

vi
fB

v1∂1B + v2∂2B + . . . − fBB = 0

B ∂iB = 0 fB = 0

B = 0 B = ∂iB = 0 vi = 0
fB ≠ 0

0 = f1
B = f 2

B = . . .

0 = vi
1 = vi

2 = . . .
B = 0



Surface terms
Surface terms from divergence of vectors with respect of proper measure,

                 

Observations: 

 and  vanish at singular surface 

 vanishes at extrema

all surface terms vanish at extrema, if polynomial  does.

mg = div(vg) = ∂2B∂1p − ∂1B∂2p

mb = div(vb) = ∂1pB + (d(D) + 1) p∂1B

ms = div(pvs) = vi
s∂ip + fsBd(D)p + p∂ivi

s

mg mb B = ∂iB = 0

mg

p



IBP reduction
Reduction modulo pinches amounts to solving the linear system,

 

for the coefficients .

System can be solved numerically by evaluating on random values of the ISPs 
. Often analytic expressions are obtained from reconstruction [Peraro 

`16;  Abreu et al. `17; Maitre, Laurentis `19; Klappert, Lange `19]. 

The number of coefficients determines size of system. Choice of masters and 
relations can impact analytic form of solution

Given vanishing properties of surface terms it is natural to sample specific 
points:

- singular surfaces or maximum co-dimension singularities

- sub surfaces of reduced dimensions

t(α) = ∑
i∈ surface terms

ci(skl, D) mi(α) + ∑
i∈ masters

ci(skl, D)mi(α)

ci , i ∈ masters

{αi}



Algebraic analog to evaluating on particular surfaces is to expand functions in 
powers of the vanishing ideal. These lead to generalisations of Taylor 
expansions called Weierstrass expansions,

ideal associated to maximal co-dimension singularities

finite set of polynomials modulo the ideal 

   (follows from polynomial division)

Recursive application of formula ( to the  ) gives formal Taylor series of 
 in terms of  .

Vector components are in ideal . Surface terms can be expanded 
in   and their effect can be analysed in a transparent way. 

It will be interesting to see if these structures will be strong enough to turn 
IBP system to (block) triangular form. 

Linking singularities of IR-properties suggests that functions vanishing on 
singularities are candidates for finite integrals. This implies that the insertion’s 
expansion starts at subheading order.

⟨ f1, f2, . . . ⟩ =

{e1, e2, . . . } = ⟨ f1, f2, . . . ⟩

t(α) = ∑
i

hi(skl, D) ei(α) + ∑
k

gk(α)fk(α)

gk(α)
t(α) fi(α)

⟨ f1, f2, . . . ⟩
fi



Conclusion
Vector fields are a natural structure associated to Feynman integrals, so we 
should learn to use them.

Vanishing properties of vector fields impact IBP-reduction.

Interesting properties of integrals can be extracted from vectors: 

- Maximal co-dimension singularities. Can we automate the computation 
of leading singularities?

- Count master integrals in momentum space without reduction. Can we 
extract further topological information about cut spaces?

Geometric understanding of vectors can help with computing them, when 
hard to obtain. We learned that their components live in the space of 
functions that vanish at singularities.




