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Feynman periods

Let G be a graph, perhaps a scalar Feynman diagram.

ΨG =

PG =

Eg

PG is a period in the sense of Kontsevich and Zagier
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In fact you know these already

The Feynman periods are part of the story of Feynman integrals.

In textbooks.

Folks like David Broadhurst calculated them decades ago.

Contribution to β-function.

Simplified sufficiently that higher loops is what is interesting.
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In various forms

As with the Feynman integral can write them in position space,
momentum space, or parametric space.
Can write them projectively or affinely.
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Why?

Why should you care?

As a physicist

It is a part of what you need.

It is relatively computable.

Simplifications like this one seem to postpone, not remove,
interesting complexity, while making the structure clearer.

As a mathematician

It looks like algebraic geometry.

It looks like algebraic graph theory.

It asks interesting questions.
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Graph structure

You already know this too – since Feynman diagrams began, you,
as a physicist, used the graph structure to help you find the best
way to integrate a given graph, to simplify integrals, or to find
connections between integrals.

Feynman periods are good for computing edge-by-edge with
graphical functions (Schnetz) or hyperlogarithms (Panzer, . . . ).
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Period invariant graph operations – completion
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Period invariant graph operations – dual

The Fourier transform symmetry between position and momentm
space in 4-dimensions is the planar dual of graphs.
(or more generally a matroidal dual)
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Period invariant graph operations – twist

(due to Schnetz)
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Period invariant graph operations – Fourier split

(from Hu, Schnetz, Shaw, Y, based on an observation of Golz,
Panzer, Schnetz)
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3-join
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Double triangle

This is a graph reduction that appears to preserve transcendental
co-weight

Of particular interest, what is the structure of all graphs that
reduce to K5?
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The c2 invariant

Recall ΨG .

c
(p)
2 (G ) =

[ΨG ]p
p2

mod p
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Why?
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Same or compatible graph symmetries?

The c2 invariant either has or is conjectured to have

completion invariance (conjectured)

duality invariance (proven in planar case and more,
conjectured in general)

twist invariance (conjectured)

Fourier split invariance (conjectured)

3-join gives 0 (proven)

Double triangle invariance (proven)

Conjectured: if two graphs have the same c2 then they have the
same period (converse is false)
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Other graph invariants with the symmetries

Iain Crump’s permanent invariant, made from stacking signed
incidence matrices.

Erik Panzer’s Hepp invariant made by taking only the dominant
term of Ψ in each sector.
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Why Hepp?

Conjecturally two graphs have the same Hepp bound if and only if
they have the same period.

Empirically, when suitably scaled it matches the value of the period
very well
(from Panzer, arXiv:1908.09820)
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Elliptics and beyond

Back to c2, what sequences do we see? (Brown and Schnetz)

constants 0 and −1

constant except for p = 2 or requiring a root of unity

modular

unknown, eg (i53) 0,1,1,4,6,6,14,5,15,11,21,23,1,33,33,. . .
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A c2 result

with Simone Hu.

The completion conjecture holds for c2 when p = 2.

That is, for a 4-regular graph K , and v , w two vertices of K

c
(2)
2 (K − v) = c

(2)
2 (K − w)


