Physics and graph theory of Feynman periods

Karen Yeats
Department of Combinatorics and Optimization, University of Waterloo

September 9, 2020, Elliptics and Beyond conference

Feynman periods

Let G be a graph, perhaps a scalar Feynman diagram.
variable ae for each edge e of graph G

P_{G} is a period in the sense of Kontsevich and Zagier

In fact you know these already

The Feynman periods are part of the story of Feynman integrals.
In textbooks.

Folks like David Broadhurst calculated them decades ago.
Contribution to β-function.
Simplified sufficiently that higher loops is what is interesting.

In various forms

As with the Feynman integral can write them in position space, momentum space, or parametric space.
Can write them projectively or affinely.

$$
\begin{aligned}
& \int_{e}^{\pi d p_{b}} \frac{\pi\left(p_{e}^{2}\right)}{\left.\right|_{p_{i}=1}}=\int \frac{\Omega(p)}{\prod_{e}\left(p_{e}^{2}\right)} \\
& p_{e}=\sum_{l} \pm p_{l}
\end{aligned}
$$

Why?

Why should you care?
As a physicist

- It is a part of what you need.
- It is relatively computable.
- Simplifications like this one seem to postpone, not remove, interesting complexity, while making the structure clearer.
As a mathematician
- It looks like algebraic geometry. \leftarrow
- It looks like algebraic graph theory. \leftarrow
- It asks interesting questions. \leftarrow

Graph structure

You already know this too - since Feynman diagrams began, you, as a physicist, used the graph structure to help you find the best way to integrate a given graph, to simplify integrals, or to find connections between integrals.

Feynman periods are good for computing edge-by-edge with graphical functions (Schnetz) or hyperlogarithms (Panzer, ...).

Period invariant graph operations - completion

Period invariant graph operations - dual

The Fourier transform symmetry between position and moment space in 4-dimensions is the planar dual of graphs.
(or more generally a matroidal dual)

\uparrow graphic matroids cogrephic matrices (duals of greps)

Period invariant graph operations - twist
To state it nicely wok at the level of the completed graph

Period invariant graph operations - Fourier split

(from Hu, Schnetz, Shaw, Y, based on an observation of Golz, Panzer, Schnetz)

3-join

$$
\begin{aligned}
(35) & P=357 \\
& =P \cdot P \cdot P
\end{aligned}
$$

Double triangle

This is a graph reduction that appears to preserve transcendental co-weight

Of particular interest, what is the structure of all graphs that reduce to K_{5} ?

The c_{2} invariant
Recall Ψ_{G}.

$$
\begin{aligned}
& c_{2}^{(p)}(G)=\frac{\left[\Psi_{G}\right]_{p}}{p^{2}} \bmod p \\
& G \quad \rightarrow \quad\left(c_{2}^{(2)}(b), c_{2}^{(3)}(G), V_{c}^{(5)}(G), \ldots .\right)
\end{aligned}
$$

Why?
if all May then should be some FALSE good matumatial
so should be rests Mixed Tate
so $[\psi]_{p}$ should be polynomial in p in that ire $c_{2}^{(0)}(G)$ is the quadratic ref of he polynomial (lowe cells most be 0) \rightarrow index of p
Ever still $c_{2}^{(p)}$ is an intecty messue of what sort of this stall be going on in P_{G} ad its geonety

Same or compatible graph symmetries?

The c_{2} invariant either has or is conjectured to have

- completion invariance (conjectured)
- duality invariance (proven in planar case and more, conjectured in general) Daryn
- twist invariance (conjectured)
- Fourier split invariance (conjectured)
- 3-join gives 0 (proven)
- Double triangle invariance (proven)

Other graph invariants with the symmetries
lain Crump's permanent invariant, made from stacking signed incidence matrices. E with we me remord ($\mathrm{L} \| \mathrm{l}$ rank

$$
E=\left[\begin{array}{l}
\text { edges } \\
+1 \\
-1
\end{array}\right] \text { vices }
$$

$\operatorname{Perm}\left[\begin{array}{l}E \\ E\end{array}\right] \bmod 3$

Erik Panzer's Hepp invariant made by taking only the dominant term of Ψ in each sector.

$$
\int \frac{1}{\psi^{2}}=\int \frac{1}{\max }(\psi)^{2}
$$

Why Hepp?

Conjecturally two graphs have the same Hepp bound if and only if they have the same period. \leftarrow for 4 -regules ase (dippored nove geeerlly by Schretz)
Empirically, when suitably scaled it matches the value of the period very well
(from Panzer, arXiv:1908.09820)

Figure 23: ϕ^{4} periods from [90] and their Hepp bounds (products not included). Graphs with 6 and 8 loops are highlighted with orange diamonds and blue circles.

Elliptics and beyond

Back to c_{2}, what sequences do we see? (Brown and Schnetz)

- constants 0 and -1
- constant except for $p=2$ or requiring a root of unity
- modular a few prow most empriced obsenation

TAble 2. The weight a nd level of modular graphs for 11 loops and below. All modular forms are newforms. A box indicates that a modular graph of this weight and level was found. The $\phi^{>4}$ sup erscript indicates that this modular form appears in non- ϕ^{4} theory, ie. it comes from a graph with valence greater than 4 . The superscript number indicates which loop or er it was first found. The subscript P indicates that a modular graph was found and roved to be modular for all p in [7] or [19].

- unknown, eg (iss) 0,1,1,4,6,6,14,5,15,11,21,23,1,33,33,...

Brown schrete modish form in QFT

A c_{2} result
with Simone Mu.
The completion conjecture holds for c_{2} when $p=2$.
That is, for a 4-regular graph K, and v, w two vertices of K

$$
c_{2}^{(2)}(K-v)=c_{2}^{(2)}(K-w)
$$

idea of proof: reduce calculady c_{2} to country $(p=2)$ edge bipull'ts of graph with orte.t emprise
Need to kine same parity of counts
Find a lied point free involution-
I did tho for sore lat...
Simere finished it.

