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1. I show that 4-loop sunrise integrals with 5 unit internal masses

give Bessel moments that evaluate periods and quasi-periods of

modular forms with levels 6, 14 and 34 and weights up to 4.

2. When the external mass is unity, such integrals contribute to the

magnetic moment of the electron and give the periods and

quasi-periods of a modular form of level 6 and weight 4.

3. The relevant external parameters for levels 14 and 34 are
√
−7

and
√
17− 4, where Feynman integrals determine the areas of the

event horizons of black holes obtained from compactifying a

10-dimensional supergravity theory on a Calabi-Yau threefold.



1 Dramatis personæ

The principal characters in this narrative are Bessel moments of the form

Mm,n(z) =

∫ ∞
0

I0(xz)[I0(x)]m[K0(x)]5−mx2n+1dx

Nm,n(z) = z

∫ ∞
0

I1(xz)[I0(x)]m[K0(x)]5−mx2n+2dx

with m ∈ {0, 1, 2}, integers n ≥ 0 and real z2 < (5− 2m)2. The relations

θzMm,n(z) = Nm,n(z), θzNm,n(z) = z2Mm,n+1(z),

with θz = z(d/dz), follow from differentiation of Bessel functions.

Also prominent are the integers an of a sequence beginning with
1,5,45,545,7885,127905,2241225,41467725,798562125,15855173825,

for n = 0 . . . 9. It is generated by the fifth power of a Bessel function:

(I0(x))5 =

(∑
n≥0

(
xn

2nn!

)2
)5

=
∑
n≥0

an

(
xn

2nn!

)2

.



The explicit formula

an =
∑

i+j+k+l+m=n

(
n!

i!j!k!l!m!

)2

shows that an enumerates the number of self-returning walks of length 2n on a
4-dimensional diamond lattice. To compute this sequence recursively let

P0(t) = t4, P1(t) = 35t4 + 42t2 + 3,

P2(t) = 259t4 + 104t2, P3(t) = 225(t2 − 1)2.

Then for n > 2 the recursion is

3∑
k=0

(−1)kPk(2n− k)an−k = 0.

The fourth order Calabi-Yau differential equation for y0(x) =
∑

n≥0 anx
n is

3∑
k=0

(−x)kPk(2θx + k)y0(x) = 0

with θx = x(d/dx). For general x, there are 16 periods, formed from 4 solutions
and their first three derivatives.



The map x→ 1/z2 gives 4th-order differential equations for Feynman integrals:

3∑
k=0

(−z2)1−kPk(θz + 2− k)Mm,0(z) = 5!δm,0

for m = 0, 1, 2, with an inhomogeneous constant in the sole case m = 0, for the
4-loop sunrise diagram with 5 uncut internal lines.

The moments Mm,n(z) and Nm,n(z) with n > 1 are determined by recursion. For
example, one may determine Mm,2(z) from

16(5− z2)Mm,0(z) + 32(7− z2)Nm,0(z)− 4(285− 168z2 + 11z4)Mm,1(z)

−4(259− 70z2 + 3z4)Nm,1(z) +D(z)Mm,2(z) = 5!δm,0

at the seemingly daunting expense of dividing by

D(z) = (1− z)(1 + z)(3− z)(3 + z)(5− z)(5 + z).

A delightful feature of the special point z =
√
−7 is that

D
(√
−7
)

= (1 + 7)(9 + 7)(25 + 7) = 212.



An even more remarkable trick is performed by u =
√

17− 4, a unit of Q(
√

17).
The norm of a rational function f(u) is f(u)f(−1/u). Each of the 6 factors of
D(u) = (1− u)(1 + u)(3− u)(3 + u)(5− u)(5 + u) has a norm of the form ±2n.
The norm of (1− u) is 52 − 17 = 23 and the norm of D(u) is −225 = −33554432,
which follows from the splendid quintic identity

(1 + u)(3− u)(3 + u)(5− u)(5 + u) = 211u.

It is hard to imagine better regular points at which to evaluate the integrals.

The special values z =
√
−7 and z =

√
17− 4 come from discoveries by Philip

Candelas, Xenia de la Ossa, Mohamed Elmi and Duco van Straten.

They worked on the Calabi-Yau side, oblivious to Feynman integrals.

They identified x = −1/7 and x = 33 + 8
√

17 as interesting arguments for the
analytic continuation of y0(x) =

∑
n≥0 anx

n, which converges for |x| < 1/25.

Hearing of this on a visit to Oxford in November 2019, I transferred unsolved
Calabi-Yau problems to the Feynman side, where they are eminently soluble.



2 The Laporta case with z = 1 at level 6

The 4-loop unit-mass uncut sunrise diagram in two spacetime dimensions gives

M0,0(z) =

∫ ∞
0

I0(xz)K5
0(x)xdx

=

(
4∏

n=1

∫ ∞
0

dxn
2xn

)
1

Φ(x1, x2, x3, x4, 1; z2)
,

Φ(x1, x2, x3, x4, x5; z
2) =

(
5∑

j=1

xj

)(
5∑

k=1

1

xk

)
− z2

and appears at z = 1 in Stefano Laporta’s heroic evaluation of 4-loop
contributions to the magnetic moment of the electron, along with M0,1(1).

For m = 0, 1, the integrals Nm,n(1) can be eliminated, using

M0,0(1) + 3N0,0(1)

35
=
ζ(3)

16
,

M1,0(1) + 3N1,0(1)

3
=
ζ(2)

4
and recursions. That leaves 4 integrals at z = 1, with a quadratic relation

det

[
M0,0(1) M0,1(1)
M1,0(1) M1,1(1)

]
=

π4

242
.



2.1 Modular forms for the Laporta case

Let η(τ) = q1/24
∏

k>0(1− qk) with q = exp(2πiτ) and τ in the upper half plane.
The periods are Eichler integrals of f4,6(τ) = (η1η2η3η6)

2 with ηn denoting η(nτ).
Let w(τ) = 3(η3/η1)

4(η2/η6)
2. The quasi-periods are Eichler integrals of

f̂4,6 = µf4,6, µ =
1

32

(
w +

3

w

)4

− 9

16

(
w +

3

w

)2

= −1 + 28q +O(q2).

It takes merely 3 seconds to compute 10,000 digits of the 4 Eichler lintegrals

Ωs

(2π)s
=

∫ ∞
1/
√
3

f4,6

(
1 + iy

2

)
ys−1dy,

Ω̂s

(2π)s
=

∫ ∞
1/
√
3

f̂4,6

(
1 + iy

2

)
ys−1dy,

with s = 1, 2. Then Laporta’s intersection number is the determinant of

M =
24

π2

[
4M0,0(1) 36

5 (M0,0(1) +M0,1(1))
5
3M1,0(1) 3 (M1,0(1) +M1,1(1))

]
= 12

[
−Ω2 Ω̂2

−Ω1 Ω̂1

]
namely detM = 12. David Roberts and I conjectured explicit forms of all such
quadratic relations for all loops. Javier Fresán, Claude Sabbah and
Jeng-Daw Yu have proven our formulas up to 20 loops.



3 The space-like case z =
√
−7 at level 14

A Frobenius basis for the Calabi-Yau equation near x = 0 is completed by

y1 = y0L+ f1, y2 = y0L
2 + 2f1L+ f2, y3 = y0L

3 + 3f1L
2 + 3f2L+ f3

where L = log(x). The series expansions of y0 =
∑

n≥0 anx
n and

f1 = 8x+O(x2), f2 = 2x+O(x2), f3 = −12x+O(x2)

have rational coefficients that are readily developed by recursion.

These series converge for |x| < 1/25, with the asymptotic expansion

(4π)2an

25n+1
√

5
=

1

n2
− 1

2n3
+

7

16n4
+

15

32n5
+

411

256n6
+

443

64n7
+O

(
1

n8

)
revealing a dilogarithmic singularity of y0(x) at x = 1/25.

To reach x = −1/7, outside this domain of convergence, Candelas et al. resorted
to Runge-Kutta integration of the fourth-order differential equation.

In quantum field theory we have no such problem. The Feynman integrals
Mm,n(z) and Nm,n(z) are readily computable at the space-like point z =

√
−7.



3.1 Modular forms for the space-like case

Within a day of hearing of interest in x = −1/7, I found that

f4,14(τ) =
(η2η7)

6

(η1η14)2
− 4(η1η2η7η14)

2 +
(η1η14)

6

(η2η7)2

is the relevant modular form of weight 4 and level 14, for z =
√
−7. Its periods

are critical values of the L-function L(f4,14, s) = ((2π)s/Γ(s))
∫∞
0 f4,14(iy)ys−1dy,

with

L(f4,14, 3) = M1,0(
√
−7) =

∫ ∞
0

J0(
√

7x)I0(x)K4
0(x)xdx =

π2

7
L(f4,14, 1)

1
2L(f4,14, 2) = M2,0(

√
−7) =

∫ ∞
0

J0(
√

7x)I20(x)K3
0(x)xdx.

There is also a modular form of weight 2 to consider, f2,14(τ) = η1η2η7η14. This
provides a modular parametrization of a quartic elliptic curve, namely

y2 = (1 + x)(1 + 8x)(1 + 5x+ 8x2),

x =

(
η2η14
η1η7

)3

= q + 3q2 + 6q3 + 13q4 +O(q5),

y =
q

f2,14

dx

dq
= 1 + 7q + 27q2 + 92q3 + 259q4 +O(q5).



The periods of f2,14 are computable at lightning speed by the process of the
arithmetic-geometric mean, yielding an L-value and a j-invariant:

L(f2,14, 1) =
ω+

3
, j

(
ω+ + iω−

2ω+

)
=

(
5× 43

28

)3

,

ω± =
2π

agm
(√

29/2 ± 13, 211/4
) .

These elliptic periods are also determined by Feynman integrals:

ω+

2
= 3M2,0(

√
−7) + 4N2,0(

√
−7),

πω−
2

= 3M1,0(
√
−7) + 4N1,0(

√
−7).

3.2 Erik Panzer’s big question

When I arrived at this stage in December 2019, Erik shrewdly asked me, in Padova:
“Can you really derive all 16 Calabi-Yau periods from Feynman integrals?”

I answer in the affirmative. In fact, 6 Feynman integrals suffice at z =
√
−7.



3.3 Quasi-periods at level 14

The 16 Calabi-Yau periods are analytic continuations of θjxyk(x), with
j = 0, 1, 2, 3 and k = 0, 1, 2, 3, to x = −1/7. They are linear combinations of
8 Feynman integrals Mm,n(

√
−7) and Nm,n(

√
−7), with m = 1, 2 and n = 0, 1.

The quasi-periods at weight 2 are ω̂±, with

3ω̂+

16
= 7M2,0(

√
−7) + 8N2,0(

√
−7) + 28M2,1(

√
−7),

3πω̂−
16

= 7M1,0(
√
−7) + 8N1,0(

√
−7) + 28M1,1(

√
−7).

Suppressing the argument z =
√
−7, I obtain the quadratic relation

det

[
3M2,0 + 4N2,0 M2,0 + 28M2,1

3M1,0 + 4N1,0 M1,0 + 28M1,1

]
= −3π2

32

from Legendre’s relation for complete elliptic integrals. At weight 4 I found

det

[
M2,0 39N2,0 − 427M2,1 − 112N2,1

M1,0 39N1,0 − 427M1,1 − 112N1,1

]
=

3π2

32

as the quadratic relation between the periods and quasi-periods of f4,14.

Hence only 6 Feynman integrals are algebraically independent.



4 The time-like case z =
√
17− 4 at level 34

The 8 Feynman integrals at z = u =
√

17− 4 satisfy 2 quadratic relations.

Let χ(n) be the Dirichlet character defined for prime p by χ(17) = 0 and
otherwise by χ(p) = ±1 according as whether 17 is or is not a square modulo p.

There are 12 cusp forms of level 34 and weight 4 with this character.
Feynman integrals choose a pair of newforms whose Fourier coefficients, A4(n)
and A4(n), are Gaussian integers, related by complex conjugation.

Let L4(s) be the analytic continuation of

L4(s) =
∑
n>0

A4(n)

ns
=

1

1 + 21−s

∏
p>2

1

1− A4(p)p−s + χ(p)p3−2s

with the choice of sign A4(3) = 2i. For prime p, A4(p) is real if χ(p) = +1 and
imaginary if χ(p) = −1, while A4(17)/17 = 1− 4i is truly complex.



Feyman integrals determine the critical L-values at weight 4:

L4(3) =

(
13− u+ (1 + 13u)i

17

)
M1,0(u),

L4(2) = 4

(
5− 3u+ (3 + 5u)i

17

)
M2,0(u),

L4(1) =

(
7− 11u+ (11 + 7u)i

π2

)
M1,0(u).

At weight 2 they determine the periods and quasi-periods of the elliptic curve

y2 =

(
x+

5− u
8

)(
x+

5 + u

8

)(
x+

3 + u

2

)
whose real and imaginary periods are

ω1 =
4π

agm
(√

4u,
√

14 + 10u
) , ω2 =

−4πi

agm
(√

14 + 6u,
√

14 + 10u
) .



The elliptic periods ω1,2 and quasi-periods ω̂1,2 are determined by

ω1

4
= P2 = (2 + 3u)M2,0(u) + 4(4 + u)N2,0(u)

πiω2

4
= P1 = (2 + 3u)M1,0(u) + 4(4 + u)N1,0(u)

3ω̂1

8(1 + u)
= P̂2 = M2,0(u) + 2(5 + u)N2,0(u) + 2u(3 + u)(4 + u)M2,1(u)

3πiω̂2

8(1 + u)
= P̂1 = M1,0(u) + 2(5 + u)N1,0(u) + 2u(3 + u)(4 + u)M1,1(u)

with Legendre’s condition giving P1P̂2 − P2P̂1 = 3(π/4)2/(1 + u).

At weight 4, the periods Hm = Mm,0(u) and quasi-periods

Ĥm = 81Mm,0(u) + 3(2 + u)(u− 6)Nm,0(u)

+ u2(2 + u)(4 + u)(96 + 11u)Mm,1(u) + 136(1− u)Nm,1(u)

yield the intersection number H1Ĥ2 −H2Ĥ1 = 3(π/8)2/u.



5 Black holes and identification of constants

Feynman integrals determine the area of the event horizon of a black hole
with charges specified by (k, `) studied by Candelas at al. namely

A = 34π

(
k2

v
+ `2v

)
, v = 4π

M2,0(u)

M1,0(u)
= 4π

∫∞
0 I0(ux)I20(x)K3

0(x)xdx∫∞
0 I0(ux)I0(x)K4

0(x)xdx

where u =
√

17− 4 is the external mass in the 4-loop sunrise diagram, with
two internal propagators cut in the numerator of v and one in the denominator.
Similarly, M2,0(

√
−7)/M1,0(

√
−7) determines the area for their level 14 problem.

Candelas et al. lacked identification of 6 constants found approximately by
numerical integration of the Calabi-Yau equation from x = 0 to the points
x = −1/7 and x = 33± 8

√
17. Following a lead from Francis Brown and Dick

Hain, I identified these as originating from 4 permanents of matrices of
Feynman integrals whose determinants gives the intersection numbers at
levels 14 and 34. In this I was greatly aided by my work with Kevin Acres on
Rademacher sums, whose details I have omitted here for the sake of brevity.



6 Summary

1. Candelas, de la Ossa, Elmi and van Straten made the fine discovery that a
Calabi-Yau equation giving periods of a level 6 modular form at a singular
point also gives periods of modular forms of levels 14 and 34 at regular points.

2. Laporta and I had fully mastered the level 6 case, on the Feynman side. I was
thus in the happy position of being able to bring expertise from quantum field
theory to bear on unsolved Calabi-Yau problems at levels 14 and 34.

3. The 48 constants that determine the expansions of the 4 Calabi-Yau solutions
in the 3 neighourhoods of the modular points x = −1/7 and x = 33± 8

√
17

are determined by 16 Feynman integrals satisfying 4 quadratic relations.

4. I computed 10,000 good digits of each of the 16 Feynman integrals with ease,
exploiting the intersection numbers, modularity and the pleasing inequalities

exp(−π/
√

7) < 0.306, exp(−2π/
√

34) < 0.341, 25(33− 8
√

17) < 0.379.

5. Two ratios of these Feynman integrals determine areas of black hole horizons.


