Feynman integrals, quasi-periods and black holes

David Broadhurst, Open University, 10 September 2020
at Elliptics and Beyond, a workshop hosted by MITP Mainz

1. I show that 4-loop sunrise integrals with 5 unit internal masses give Bessel moments that evaluate periods and quasi-periods of modular forms with levels 6,14 and 34 and weights up to 4 .
2. When the external mass is unity, such integrals contribute to the magnetic moment of the electron and give the periods and quasi-periods of a modular form of level 6 and weight 4.
3. The relevant external parameters for levels 14 and 34 are $\sqrt{-7}$ and $\sqrt{17}-4$, where Feynman integrals determine the areas of the event horizons of black holes obtained from compactifying a 10-dimensional supergravity theory on a Calabi-Yau threefold.

1 Dramatis personæ

The principal characters in this narrative are Bessel moments of the form

$$
\begin{aligned}
M_{m, n}(z) & =\int_{0}^{\infty} I_{0}(x z)\left[I_{0}(x)\right]^{m}\left[K_{0}(x)\right]^{5-m} x^{2 n+1} \mathrm{~d} x \\
N_{m, n}(z) & =z \int_{0}^{\infty} I_{1}(x z)\left[I_{0}(x)\right]^{m}\left[K_{0}(x)\right]^{5-m} x^{2 n+2} \mathrm{~d} x
\end{aligned}
$$

with $m \in\{0,1,2\}$, integers $n \geq 0$ and real $z^{2}<(5-2 m)^{2}$. The relations

$$
\theta_{z} M_{m, n}(z)=N_{m, n}(z), \quad \theta_{z} N_{m, n}(z)=z^{2} M_{m, n+1}(z),
$$

with $\theta_{z}=z(\mathrm{~d} / \mathrm{d} z)$, follow from differentiation of Bessel functions.
Also prominent are the integers a_{n} of a sequence beginning with $1,5,45,545,7885,127905,2241225,41467725,798562125,15855173825$, for $n=0 \ldots 9$. It is generated by the fifth power of a Bessel function:

$$
\left(I_{0}(x)\right)^{5}=\left(\sum_{n \geq 0}\left(\frac{x^{n}}{2^{n} n!}\right)^{2}\right)^{5}=\sum_{n \geq 0} a_{n}\left(\frac{x^{n}}{2^{n} n!}\right)^{2} .
$$

The explicit formula

$$
a_{n}=\sum_{i+j+k+l+m=n}\left(\frac{n!}{i!j!k!l!m!}\right)^{2}
$$

shows that a_{n} enumerates the number of self-returning walks of length $2 n$ on a 4 -dimensional diamond lattice. To compute this sequence recursively let

$$
\begin{gathered}
P_{0}(t)=t^{4}, P_{1}(t)=35 t^{4}+42 t^{2}+3 \\
P_{2}(t)=259 t^{4}+104 t^{2}, P_{3}(t)=225\left(t^{2}-1\right)^{2}
\end{gathered}
$$

Then for $n>2$ the recursion is

$$
\sum_{k=0}^{3}(-1)^{k} P_{k}(2 n-k) a_{n-k}=0
$$

The fourth order Calabi-Yau differential equation for $y_{0}(x)=\sum_{n \geq 0} a_{n} x^{n}$ is

$$
\sum_{k=0}^{3}(-x)^{k} P_{k}\left(2 \theta_{x}+k\right) y_{0}(x)=0
$$

with $\theta_{x}=x(\mathrm{~d} / \mathrm{d} x)$. For general x, there are $\mathbf{1 6}$ periods, formed from 4 solutions and their first three derivatives.

The map $x \rightarrow 1 / z^{2}$ gives 4th-order differential equations for Feynman integrals:

$$
\sum_{k=0}^{3}\left(-z^{2}\right)^{1-k} P_{k}\left(\theta_{z}+2-k\right) M_{m, 0}(z)=5!\delta_{m, 0}
$$

for $m=0,1,2$, with an inhomogeneous constant in the sole case $m=0$, for the 4-loop sunrise diagram with 5 uncut internal lines.
The moments $M_{m, n}(z)$ and $N_{m, n}(z)$ with $n>1$ are determined by recursion. For example, one may determine $M_{m, 2}(z)$ from

$$
\begin{gathered}
16\left(5-z^{2}\right) M_{m, 0}(z)+32\left(7-z^{2}\right) N_{m, 0}(z)-4\left(285-168 z^{2}+11 z^{4}\right) M_{m, 1}(z) \\
-4\left(259-70 z^{2}+3 z^{4}\right) N_{m, 1}(z)+D(z) M_{m, 2}(z)=5!\delta_{m, 0}
\end{gathered}
$$

at the seemingly daunting expense of dividing by

$$
D(z)=(1-z)(1+z)(3-z)(3+z)(5-z)(5+z)
$$

A delightful feature of the special point $z=\sqrt{-7}$ is that

$$
D(\sqrt{-7})=(1+7)(9+7)(25+7)=2^{12} .
$$

An even more remarkable trick is performed by $u=\sqrt{\mathbf{1 7}}-4$, a unit of $Q(\sqrt{17})$. The norm of a rational function $f(u)$ is $f(u) f(-1 / u)$. Each of the 6 factors of $D(u)=(1-u)(1+u)(3-u)(3+u)(5-u)(5+u)$ has a norm of the form $\pm 2^{n}$. The norm of $(1-u)$ is $5^{2}-17=2^{3}$ and the norm of $D(u)$ is $-2^{25}=-33554432$, which follows from the splendid quintic identity

$$
(1+u)(3-u)(3+u)(5-u)(5+u)=2^{11} u .
$$

It is hard to imagine better regular points at which to evaluate the integrals. The special values $z=\sqrt{-7}$ and $z=\sqrt{17}-4$ come from discoveries by Philip Candelas, Xenia de la Ossa, Mohamed Elmi and Duco van Straten.
They worked on the Calabi-Yau side, oblivious to Feynman integrals.
They identified $x=-1 / 7$ and $x=33+8 \sqrt{17}$ as interesting arguments for the analytic continuation of $y_{0}(x)=\sum_{n \geq 0} a_{n} x^{n}$, which converges for $|x|<1 / 25$. Hearing of this on a visit to Oxford in November 2019, I transferred unsolved Calabi-Yau problems to the Feynman side, where they are eminently soluble.

2 The Laporta case with $z=1$ at level 6

The 4-loop unit-mass uncut sunrise diagram in two spacetime dimensions gives

$$
\begin{aligned}
M_{0,0}(z) & =\int_{0}^{\infty} I_{0}(x z) K_{0}^{5}(x) x \mathrm{~d} x \\
& =\left(\prod_{n=1}^{4} \int_{0}^{\infty} \frac{\mathrm{d} x_{n}}{2 x_{n}}\right) \frac{1}{\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}, 1 ; z^{2}\right)} \\
\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; z^{2}\right) & =\left(\sum_{j=1}^{5} x_{j}\right)\left(\sum_{k=1}^{5} \frac{1}{x_{k}}\right)-z^{2}
\end{aligned}
$$

and appears at $z=1$ in Stefano Laporta's heroic evaluation of 4-loop contributions to the magnetic moment of the electron, along with $M_{0,1}(1)$. For $m=0,1$, the integrals $N_{m, n}(1)$ can be eliminated, using

$$
\frac{M_{0,0}(1)+3 N_{0,0}(1)}{35}=\frac{\zeta(3)}{16}, \quad \frac{M_{1,0}(1)+3 N_{1,0}(1)}{3}=\frac{\zeta(2)}{4}
$$

and recursions. That leaves 4 integrals at $z=1$, with a quadratic relation

$$
\operatorname{det}\left[\begin{array}{ll}
M_{0,0}(1) & M_{0,1}(1) \\
M_{1,0}(1) & M_{1,1}(1)
\end{array}\right]=\frac{\pi^{4}}{24^{2}} .
$$

2.1 Modular forms for the Laporta case

Let $\eta(\tau)=q^{1 / 24} \prod_{k>0}\left(1-q^{k}\right)$ with $q=\exp (2 \pi \mathrm{i} \tau)$ and τ in the upper half plane. The periods are Eichler integrals of $f_{4,6}(\tau)=\left(\eta_{1} \eta_{2} \eta_{3} \eta_{6}\right)^{2}$ with η_{n} denoting $\eta(n \tau)$. Let $w(\tau)=3\left(\eta_{3} / \eta_{1}\right)^{4}\left(\eta_{2} / \eta_{6}\right)^{2}$. The quasi-periods are Eichler integrals of

$$
\widehat{f}_{4,6}=\mu f_{4,6}, \quad \mu=\frac{1}{32}\left(w+\frac{3}{w}\right)^{4}-\frac{9}{16}\left(w+\frac{3}{w}\right)^{2}=-1+28 q+O\left(q^{2}\right) .
$$

It takes merely 3 seconds to compute 10,000 digits of the 4 Eichler lintegrals

$$
\frac{\Omega_{s}}{(2 \pi)^{s}}=\int_{1 / \sqrt{3}}^{\infty} f_{4,6}\left(\frac{1+\mathrm{i} y}{2}\right) y^{s-1} d y, \quad \frac{\widehat{\Omega}_{s}}{(2 \pi)^{s}}=\int_{1 / \sqrt{3}}^{\infty} \widehat{f}_{4,6}\left(\frac{1+\mathrm{i} y}{2}\right) y^{s-1} d y
$$

with $s=1,2$. Then Laporta's intersection number is the determinant of

$$
\mathcal{M}=\frac{24}{\pi^{2}}\left[\begin{array}{cc}
4 M_{0,0}(1) & \frac{36}{5}\left(M_{0,0}(1)+M_{0,1}(1)\right) \\
\frac{5}{3} M_{1,0}(1) & 3\left(M_{1,0}(1)+M_{1,1}(1)\right)
\end{array}\right]=12\left[\begin{array}{cc}
-\Omega_{2} & \widehat{\Omega}_{2} \\
-\Omega_{1} & \widehat{\Omega}_{1}
\end{array}\right]
$$

namely $\operatorname{det} \mathcal{M}=12$. David Roberts and I conjectured explicit forms of all such quadratic relations for all loops. Javier Fresán, Claude Sabbah and Jeng-Daw Yu have proven our formulas up to 20 loops.

3 The space-like case $z=\sqrt{-7}$ at level 14

A Frobenius basis for the Calabi-Yau equation near $x=0$ is completed by

$$
y_{1}=y_{0} L+f_{1}, y_{2}=y_{0} L^{2}+2 f_{1} L+f_{2}, y_{3}=y_{0} L^{3}+3 f_{1} L^{2}+3 f_{2} L+f_{3}
$$

where $L=\log (x)$. The series expansions of $y_{0}=\sum_{n \geq 0} a_{n} x^{n}$ and

$$
f_{1}=8 x+O\left(x^{2}\right), \quad f_{2}=2 x+O\left(x^{2}\right), \quad f_{3}=-12 x+O\left(x^{2}\right)
$$

have rational coefficients that are readily developed by recursion.
These series converge for $|x|<1 / 25$, with the asymptotic expansion

$$
\frac{(4 \pi)^{2} a_{n}}{25^{n+1} \sqrt{5}}=\frac{1}{n^{2}}-\frac{1}{2 n^{3}}+\frac{7}{16 n^{4}}+\frac{15}{32 n^{5}}+\frac{411}{256 n^{6}}+\frac{443}{64 n^{7}}+O\left(\frac{1}{n^{8}}\right)
$$

revealing a dilogarithmic singularity of $y_{0}(x)$ at $x=1 / 25$.
To reach $x=-1 / 7$, outside this domain of convergence, Candelas et al. resorted to Runge-Kutta integration of the fourth-order differential equation.
In quantum field theory we have no such problem. The Feynman integrals $M_{m, n}(z)$ and $N_{m, n}(z)$ are readily computable at the space-like point $z=\sqrt{-7}$.

3.1 Modular forms for the space-like case

Within a day of hearing of interest in $x=-1 / 7$, I found that

$$
f_{4,14}(\tau)=\frac{\left(\eta_{2} \eta_{7}\right)^{6}}{\left(\eta_{1} \eta_{14}\right)^{2}}-4\left(\eta_{1} \eta_{2} \eta_{7} \eta_{14}\right)^{2}+\frac{\left(\eta_{1} \eta_{14}\right)^{6}}{\left(\eta_{2} \eta_{7}\right)^{2}}
$$

is the relevant modular form of weight 4 and level 14 , for $z=\sqrt{-7}$. Its periods are critical values of the L-function $L\left(f_{4,14}, s\right)=\left((2 \pi)^{s} / \Gamma(s)\right) \int_{0}^{\infty} f_{4,14}(\mathrm{i} y) y^{s-1} \mathrm{~d} y$, with

$$
\begin{aligned}
L\left(f_{4,14}, 3\right) & =M_{1,0}(\sqrt{-7})=\int_{0}^{\infty} J_{0}(\sqrt{7} x) I_{0}(x) K_{0}^{4}(x) x \mathrm{~d} x=\frac{\pi^{2}}{7} L\left(f_{4,14}, 1\right) \\
\frac{1}{2} L\left(f_{4,14}, 2\right) & =M_{2,0}(\sqrt{-7})=\int_{0}^{\infty} J_{0}(\sqrt{7} x) I_{0}^{2}(x) K_{0}^{3}(x) x \mathrm{~d} x
\end{aligned}
$$

There is also a modular form of weight 2 to consider, $f_{2,14}(\tau)=\eta_{1} \eta_{2} \eta_{7} \eta_{14}$. This provides a modular parametrization of a quartic elliptic curve, namely

$$
\begin{aligned}
y^{2} & =(1+x)(1+8 x)\left(1+5 x+8 x^{2}\right) \\
x & =\left(\frac{\eta_{2} \eta_{14}}{\eta_{1} \eta_{7}}\right)^{3}=q+3 q^{2}+6 q^{3}+13 q^{4}+O\left(q^{5}\right) \\
y & =\frac{q}{f_{2,14}} \frac{\mathrm{~d} x}{\mathrm{~d} q}=1+7 q+27 q^{2}+92 q^{3}+259 q^{4}+O\left(q^{5}\right)
\end{aligned}
$$

The periods of $f_{2,14}$ are computable at lightning speed by the process of the arithmetic-geometric mean, yielding an \mathbf{L}-value and a \mathbf{j}-invariant:

$$
\begin{aligned}
L\left(f_{2,14}, 1\right) & =\frac{\omega_{+}}{3}, \quad j\left(\frac{\omega_{+}+\mathrm{i} \omega_{-}}{2 \omega_{+}}\right)=\left(\frac{5 \times 43}{28}\right)^{3} \\
\omega_{ \pm} & =\frac{2 \pi}{\operatorname{agm}\left(\sqrt{2^{9 / 2} \pm 13}, 2^{11 / 4}\right)}
\end{aligned}
$$

These elliptic periods are also determined by Feynman integrals:

$$
\begin{aligned}
\frac{\omega_{+}}{2} & =3 M_{2,0}(\sqrt{-7})+4 N_{2,0}(\sqrt{-7}), \\
\frac{\pi \omega_{-}}{2} & =3 M_{1,0}(\sqrt{-7})+4 N_{1,0}(\sqrt{-7}) .
\end{aligned}
$$

3.2 Erik Panzer's big question

When I arrived at this stage in December 2019, Erik shrewdly asked me, in Padova:
"Can you really derive all 16 Calabi-Yau periods from Feynman integrals?"
I answer in the affirmative. In fact, 6 Feynman integrals suffice at $z=\sqrt{-7}$.

3.3 Quasi-periods at level 14

The 16 Calabi-Yau periods are analytic continuations of $\theta_{x}^{j} y_{k}(x)$, with $j=0,1,2,3$ and $k=0,1,2,3$, to $x=-1 / 7$. They are linear combinations of 8 Feynman integrals $M_{m, n}(\sqrt{-7})$ and $N_{m, n}(\sqrt{-7})$, with $m=1,2$ and $n=0,1$. The quasi-periods at weight 2 are $\widehat{\omega}_{ \pm}$, with

$$
\begin{aligned}
\frac{3 \widehat{\omega}_{+}}{16} & =7 M_{2,0}(\sqrt{-7})+8 N_{2,0}(\sqrt{-7})+28 M_{2,1}(\sqrt{-7}) \\
\frac{3 \pi \widehat{\omega}_{-}}{16} & =7 M_{1,0}(\sqrt{-7})+8 N_{1,0}(\sqrt{-7})+28 M_{1,1}(\sqrt{-7})
\end{aligned}
$$

Suppressing the argument $z=\sqrt{-7}$, I obtain the quadratic relation

$$
\operatorname{det}\left[\begin{array}{ll}
3 M_{2,0}+4 N_{2,0} & M_{2,0}+28 M_{2,1} \\
3 M_{1,0}+4 N_{1,0} & M_{1,0}+28 M_{1,1}
\end{array}\right]=-\frac{3 \pi^{2}}{32}
$$

from Legendre's relation for complete elliptic integrals. At weight 4 I found

$$
\operatorname{det}\left[\begin{array}{ll}
M_{2,0} & 39 N_{2,0}-427 M_{2,1}-112 N_{2,1} \\
M_{1,0} & 39 N_{1,0}-427 M_{1,1}-112 N_{1,1}
\end{array}\right]=\frac{3 \pi^{2}}{32}
$$

as the quadratic relation between the periods and quasi-periods of $f_{4,14}$. Hence only 6 Feynman integrals are algebraically independent.

4 The time-like case $z=\sqrt{17}-4$ at level 34

The 8 Feynman integrals at $z=u=\sqrt{17}-4$ satisfy 2 quadratic relations.
Let $\chi(n)$ be the Dirichlet character defined for prime p by $\chi(17)=0$ and otherwise by $\chi(p)= \pm 1$ according as whether 17 is or is not a square modulo p.
There are 12 cusp forms of level 34 and weight 4 with this character.
Feynman integrals choose a pair of newforms whose Fourier coefficients, $A_{4}(n)$ and $\bar{A}_{4}(n)$, are Gaussian integers, related by complex conjugation.
Let $L_{4}(s)$ be the analytic continuation of

$$
L_{4}(s)=\sum_{n>0} \frac{A_{4}(n)}{n^{s}}=\frac{1}{1+2^{1-s}} \prod_{p>2} \frac{1}{1-A_{4}(p) p^{-s}+\chi(p) p^{3-2 s}}
$$

with the choice of $\operatorname{sign} A_{4}(3)=2$ i. For prime $p, A_{4}(p)$ is real if $\chi(p)=+1$ and imaginary if $\chi(p)=-1$, while $A_{4}(17) / 17=1-4 \mathrm{i}$ is truly complex.

Feyman integrals determine the critical L-values at weight 4:

$$
\begin{aligned}
& L_{4}(3)=\left(\frac{13-u+(1+13 u) \mathrm{i}}{17}\right) M_{1,0}(u), \\
& L_{4}(2)=4\left(\frac{5-3 u+(3+5 u) \mathrm{i}}{17}\right) M_{2,0}(u), \\
& L_{4}(1)=\left(\frac{7-11 u+(11+7 u) \mathrm{i}}{\pi^{2}}\right) M_{1,0}(u) .
\end{aligned}
$$

At weight 2 they determine the periods and quasi-periods of the elliptic curve

$$
y^{2}=\left(x+\frac{5-u}{8}\right)\left(x+\frac{5+u}{8}\right)\left(x+\frac{3+u}{2}\right)
$$

whose real and imaginary periods are

$$
\omega_{1}=\frac{4 \pi}{\operatorname{agm}(\sqrt{4 u}, \sqrt{14+10 u})}, \quad \omega_{2}=\frac{-4 \pi \mathrm{i}}{\operatorname{agm}(\sqrt{14+6 u}, \sqrt{14+10 u})} .
$$

The elliptic periods $\omega_{1,2}$ and quasi-periods $\widehat{\omega}_{1,2}$ are determined by

$$
\begin{aligned}
\frac{\omega_{1}}{4} & =\mathcal{P}_{2}=(2+3 u) M_{2,0}(u)+4(4+u) N_{2,0}(u) \\
\frac{\pi \mathrm{i} \omega_{2}}{4} & =\mathcal{P}_{1}=(2+3 u) M_{1,0}(u)+4(4+u) N_{1,0}(u) \\
\frac{3 \widehat{\omega}_{1}}{8(1+u)} & =\widehat{\mathcal{P}}_{2}=M_{2,0}(u)+2(5+u) N_{2,0}(u)+2 u(3+u)(4+u) M_{2,1}(u) \\
\frac{3 \pi \mathrm{i} \widehat{\omega}_{2}}{8(1+u)} & =\widehat{\mathcal{P}}_{1}=M_{1,0}(u)+2(5+u) N_{1,0}(u)+2 u(3+u)(4+u) M_{1,1}(u)
\end{aligned}
$$

with Legendre's condition giving $\mathcal{P}_{1} \widehat{\mathcal{P}}_{2}-\mathcal{P}_{2} \widehat{\mathcal{P}}_{1}=3(\pi / 4)^{2} /(1+u)$.
At weight 4 , the periods $\mathcal{H}_{m}=M_{m, 0}(u)$ and quasi-periods

$$
\begin{aligned}
\widehat{\mathcal{H}}_{m} & =81 M_{m, 0}(u)+3(2+u)(u-6) N_{m, 0}(u) \\
& +u^{2}(2+u)(4+u)(96+11 u) M_{m, 1}(u)+136(1-u) N_{m, 1}(u)
\end{aligned}
$$

yield the intersection number $\mathcal{H}_{1} \widehat{\mathcal{H}}_{2}-\mathcal{H}_{2} \widehat{\mathcal{H}}_{1}=3(\pi / 8)^{2} / u$.

5 Black holes and identification of constants

Feynman integrals determine the area of the event horizon of a black hole with charges specified by (k, ℓ) studied by Candelas at al. namely

$$
A=\mathbf{3 4} \pi\left(\frac{k^{2}}{v}+\ell^{2} v\right), \quad v=4 \pi \frac{M_{2,0}(u)}{M_{1,0}(u)}=4 \pi \frac{\int_{0}^{\infty} I_{0}(u x) I_{0}^{2}(x) K_{0}^{3}(x) x \mathrm{~d} x}{\int_{0}^{\infty} I_{0}(u x) I_{0}(x) K_{0}^{4}(x) x \mathrm{~d} x}
$$

where $u=\sqrt{\mathbf{1 7}}-4$ is the external mass in the 4-loop sunrise diagram, with two internal propagators cut in the numerator of v and one in the denominator. Similarly, $M_{2,0}(\sqrt{-7}) / M_{1,0}(\sqrt{-7})$ determines the area for their level 14 problem.
Candelas et al. lacked identification of 6 constants found approximately by numerical integration of the Calabi-Yau equation from $x=0$ to the points $x=-1 / 7$ and $x=33 \pm 8 \sqrt{17}$. Following a lead from Francis Brown and Dick Hain, I identified these as originating from 4 permanents of matrices of Feynman integrals whose determinants gives the intersection numbers at levels 14 and 34. In this I was greatly aided by my work with Kevin Acres on Rademacher sums, whose details I have omitted here for the sake of brevity.

6 Summary

1. Candelas, de la Ossa, Elmi and van Straten made the fine discovery that a Calabi-Yau equation giving periods of a level 6 modular form at a singular point also gives periods of modular forms of levels 14 and 34 at regular points.
2. Laporta and I had fully mastered the level 6 case, on the Feynman side. I was thus in the happy position of being able to bring expertise from quantum field theory to bear on unsolved Calabi-Yau problems at levels 14 and 34 .
3. The 48 constants that determine the expansions of the 4 Calabi-Yau solutions in the 3 neighourhoods of the modular points $x=-1 / 7$ and $x=33 \pm 8 \sqrt{17}$ are determined by 16 Feynman integrals satisfying 4 quadratic relations.
4. I computed 10,000 good digits of each of the 16 Feynman integrals with ease, exploiting the intersection numbers, modularity and the pleasing inequalities

$$
\exp (-\pi / \sqrt{7})<0.306, \quad \exp (-2 \pi / \sqrt{34})<0.341, \quad 25(33-8 \sqrt{17})<0.379
$$

5. Two ratios of these Feynman integrals determine areas of black hole horizons.
