

Total charm cross-section in pp collisions

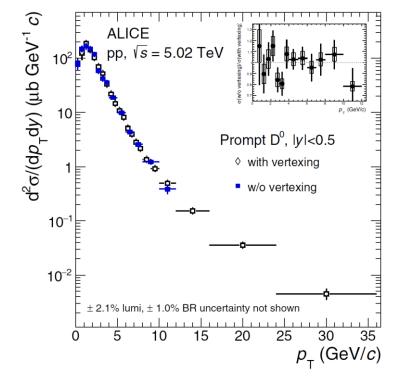
- The measurement of the total charm cross section could be one of the most promising area for combining measurements from different experiments.
- Our first goal is to combine open charm results obtained by the four collaborations in pp collisions, to derive a total charm cross-section.
- Collect existing open charm measurements from the four collaborations
- \circ Compare results, and study $p_{\rm T}$ and rapidity dependence.

Decay channel	Fragmentation fraction Phys. Lett. B667 (2008) 1.
$D^0 \to K^- \pi^+$	$f(c \to D^0) = 0.565 \pm 0.032$
$D^+ \to K^- \pi^+ \pi^+$	$f(c \to D^+) = 0.246 \pm 0.020$
$D_s^+ \to (K^-K^+)_\phi \pi^+$	$f(c \rightarrow D_s^+) = 0.080 \pm 0.017$
$D^{*+} \to D^0 (\to K^- \pi^+) \pi^+$	$f(c \rightarrow D^{*+}) = 0.224 \pm 0.028$

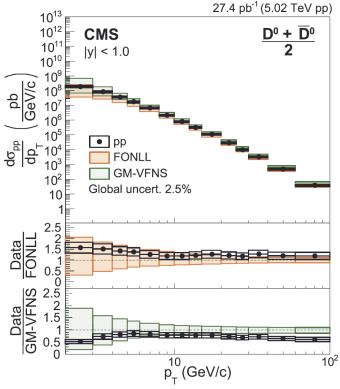
Summary of open charm meson results in pp

 \circ Collected open charm meson $(D^0, D^{\pm}, D_s^{\pm}, D^{*\pm})$ results

pp	ALICE	LHCb	CMS	ATLAS
5TeV	Eur. Phys. J. C79 (2019) 388 $\boldsymbol{D^0}, \boldsymbol{D^\pm}, \boldsymbol{D_s^\pm}, \boldsymbol{D}^{*\pm}$	JHEP 06 (2017) 147 $D^0, D^{\pm}, D_s^{\pm}, D^{*\pm}$	Phys. Lett. B 782 (2018) 474 D ⁰	
7TeV	Eur. Phys. J. C77 (2017) 550 $D^0, D^{\pm}, D_s^{\pm}, D^{*\pm}$	Nucl. Phys. B871 (2013) 1 $D^0, D^{\pm}, D_s^{\pm}, D^{*\pm}, \Lambda_c^+$		Nucl. Phys. B 907 (2016) 717 $D^{\pm}, D_s^{\pm}, D^{*\pm}$
13TeV		JHEP 05 (2017) 074, JHEP 09 (2016) 013 $\boldsymbol{D^0}, \boldsymbol{D^{\pm}}, \boldsymbol{D_s^{\pm}}, \boldsymbol{D}^{*\pm}$		

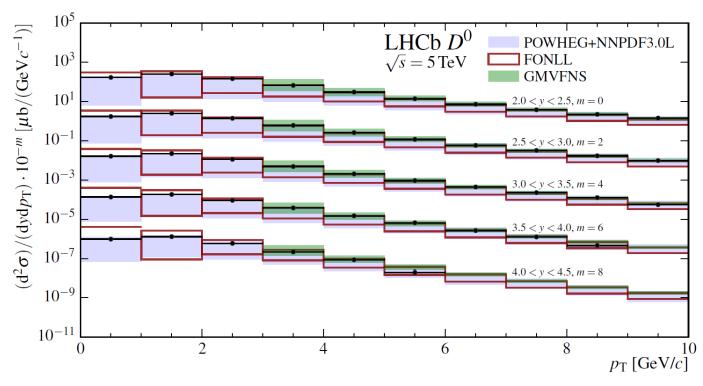

• The 5TeV results seem to be a good starting point:

D^0 in 5TeV pp	ALICE	LHCb	CMS
$p_{\mathrm{T}}[\mathrm{GeV}/c]$	0 36	0 10	2 100
Rapidity	y < 0.5	2.0 < y < 4.5	y < 1.0


Prompt D^0 meson p_T spectrum

• ALICE:

- $0 < p_{\rm T} < 36 \ {\rm GeV}/c$
- \circ |y| < 0.5
- Average of D^0 and \overline{D}^0
- Table from <u>HEPDATA</u>


- CMS
- $2 < p_{\rm T} < 100 \text{ GeV/}c$
- |y| < 1.0
- Average of D^0 and \overline{D}^0
- Table from <u>HEPDATA</u>

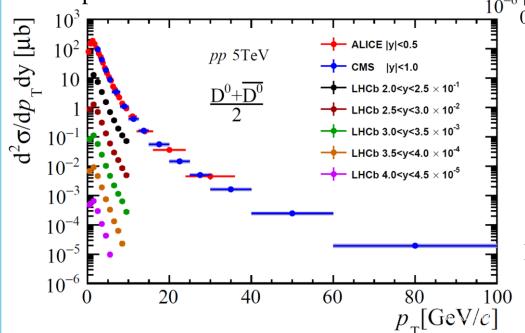
Phys. Lett. B 782 (2018) 474

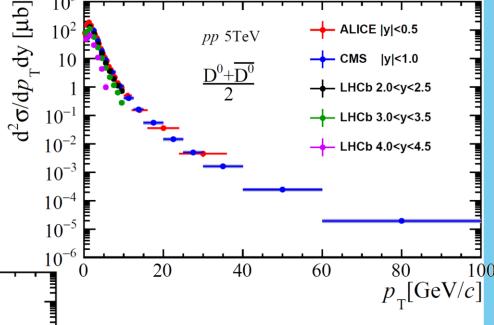
Prompt D^0 meson p_T spectrum

- LHCb
- $0 < p_{\rm T} < 10 \ {\rm GeV}/c$
- 2 < y < 4.5, in $\Delta y = 0.5$ bins
- Sum of D^0 and \overline{D}^0
- Tables from <u>HEPDATA</u>

Prompt D^0 cross-section vs. p_T

Average of D^0 and \overline{D}^0 LHCb results divided by 2

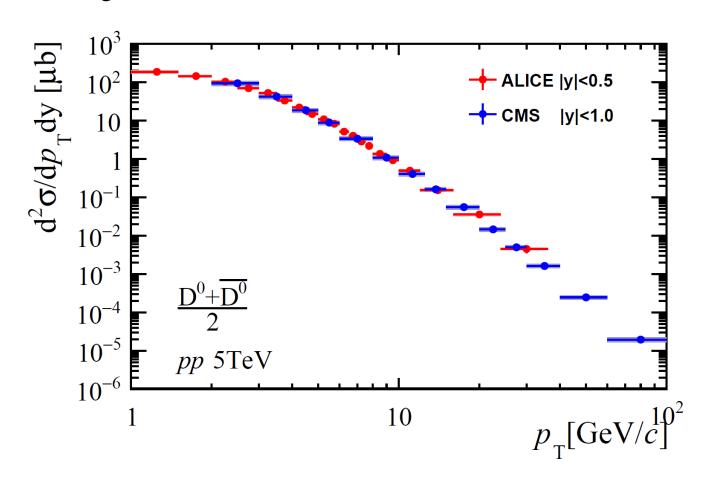

Divided by Δy


CMS $\Delta y = 2.0$

ALICE $\Delta y = 1.0$

LHCb $\Delta y = 0.5$

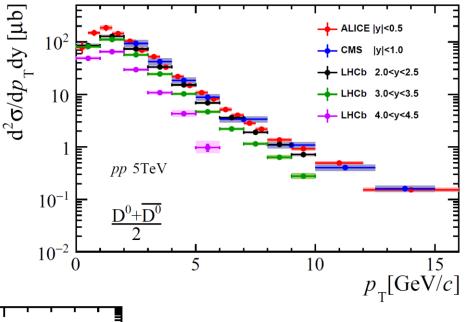
Comparison to FONLL in the future

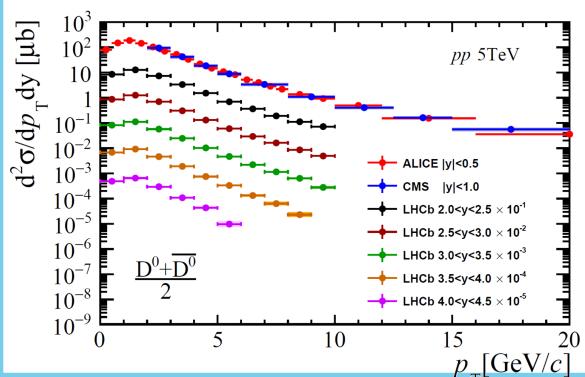


LHCb points scaled for better visibility

Prompt D^0 cross-section vs. p_T higher p_T

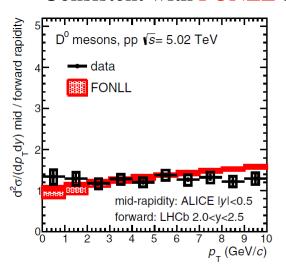
Nice agreement between ALICE and CMS

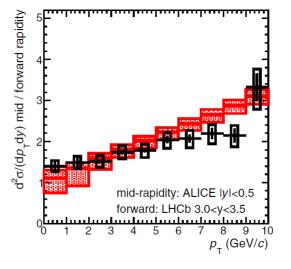


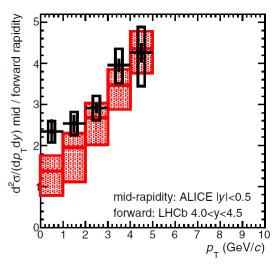

Prompt D^0 cross-section lower p_T

LHCb and ALICE reach $p_{\rm T} \sim 0$

Comparison of mid/forward rapidity: shape change in p_T ?

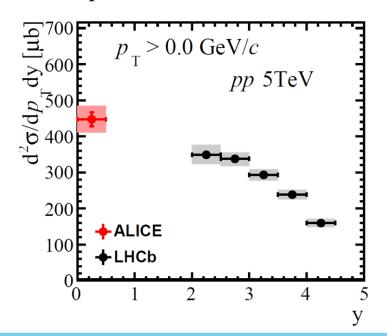

Comparison to FONLL

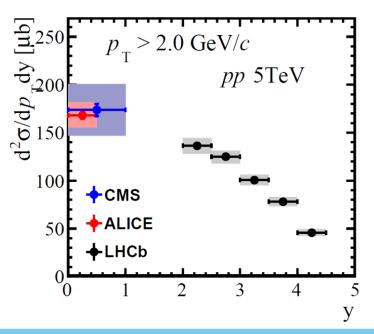




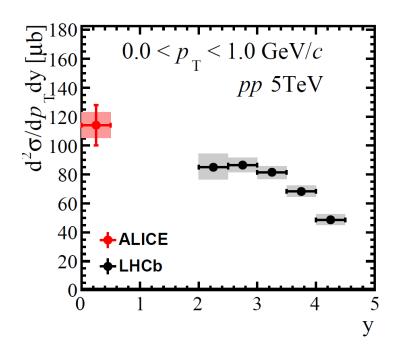
Prompt D^0 cross-section vs. p_T ALICE/LHCb ratio vs. p_T

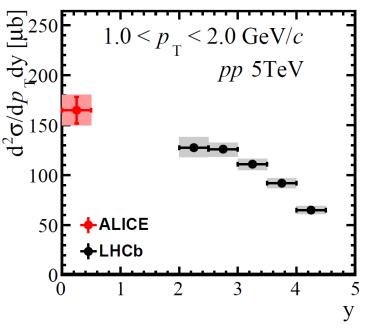
- ALICE/LHCb ratio already published in the ALICE paper.
- \circ Mid/forward rapidity ratio vs. $p_{\rm T}$
 - LHCb 2.0 < y < 2.5 bin: flat distribution vs. p_T
 - Larger rapidity bins: ratio increases with increasing p_T
 - Slope increases with increasing y
- Consistent with FONLL calculations



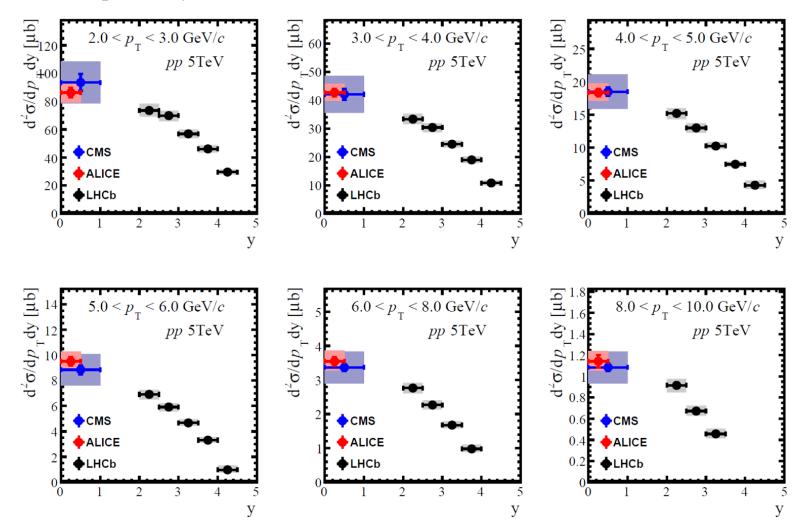


Prompt D^0 cross-section vs. y


- Summing all p_T bins:
 - ALICE: $0 < p_T < 36 \text{ GeV/}c$
 - CMS: $2 < p_T < 100 \text{ GeV}/c$
 - \circ LHCb: $0 < p_T < 10 \text{ GeV/}c$
- Conservative systematic uncertainties:
 - Assuming totally correlated systematic across bins for now
- Comparison to FONLL in the future



Prompt D^0 cross-section vs. y in common p_T bins


- No CMS measurement below $p_T = 2 \text{GeV}/c$
- Conservative systematic uncertainties:
 - Assuming totally correlated systematic across bins for now

Prompt D^0 cross-section vs. y in common p_T bins

 \circ Gap at 1 < y < 2

For the next step...

 \circ Comparisons of D_s^{\pm} meson (ALICE LHCb CMS)

pp	ALICE	LHCb	CMS	ATLAS
5TeV	Eur. Phys. J. C79 (2019) 388 $D^0, D^{\pm}, D_s^{\pm}, D^{*\pm}$	JHEP 06 (2017) 147 $D^0, D^{\pm}, D_s^{\pm}, D^{*\pm}$	Phys. Lett. B 782 (2018) 474 $\boldsymbol{D^0}$ $\boldsymbol{D_s^{\pm}}$ (preliminary)	
7TeV	Eur. Phys. J. C77 (2017) 550 $\boldsymbol{D^0}, \boldsymbol{D^{\pm}}, \boldsymbol{D_s^{\pm}}, \boldsymbol{D}^{*\pm}$	Nucl. Phys. B871 (2013) 1 $D^0, D^{\pm}, D_s^{\pm}, D^{*\pm}, \Lambda_c^+$		Nucl. Phys. B 907 (2016) 717 $\boldsymbol{D}^{\pm}, \boldsymbol{D}_{s}^{\pm}, \boldsymbol{D}^{*\pm}$
13TeV		JHEP 05 (2017) 074, JHEP 09 (2016) 013 $\boldsymbol{D^0}, \boldsymbol{D^{\pm}}, \boldsymbol{D_s^{\pm}}, \boldsymbol{D}^{*\pm}$		

- Comparisons of Λ_c^+ baryon (ALICE LHCb CMS)
- Comparison to FONLL calculations whenever possible
- A twiki page for collecting results:
 - https://twiki.cern.ch/twiki/bin/view/Honexcomb/HonexcombCharmSection
- After collecting all the results, we will have a clear picture of what is worth combining with a real statistical procedure.