
Introduction to
Data AcQuisition

Andrea.Negri@pv.infn.it Catania, 13rd Jun 2022

ISOTDAQ 2022: 12th International School of Trigger and Data Acquisition

Andrea.Negri@unipv.it Intro to DAQ 2

Acknowledgment
● Lecture inherited from Wainer Vandelli

– Material and ideas taken from: Roberto Ferrari,
Clara Gaspar, Niko Neufeld, Lauren Tompkins, ...

● Errors and flaws are mine

Andrea.Negri@unipv.it Intro to DAQ 3

Introduction
● Aim of this lesson is to introduce the

basic DAQ concepts avoiding as many
technological details as possible
– The following lectures will cover these aspects

– w/ links to the lectures and labs in agenda

Andrea.Negri@unipv.it Intro to DAQ 4

Outline
● Introduction

– What is DAQ?
– Overall framework

● Basic DAQ concepts
– Digitization, Latency
– Deadtime, Busy, Backpressure
– De-randomization

● Scaling up
– Readout and Event Building
– Buses vs Network

● Data encoding

Andrea.Negri@unipv.it Intro to DAQ 5

[Wikipedia]

● Data AcQuisition (DAQ) is
– the process of sampling signals
– that measure real world physical conditions
– and converting the resulting samples into digital

numeric values that can be manipulated by a PC

● Components:
– Sensors: convert physical quantities to

electrical signals
– Analog-to-digital converters: convert conditioned

sensor signals to digital values
– Processing and storage elements

noprint

What is DAQ?

Andrea.Negri@unipv.it Intro to DAQ 6

● Data AcQuisition (DAQ) is
– the process of sampling signals
– that measure real world physical conditions
– and converting the resulting samples into digital

numeric values that can be manipulated by a PC

● Components:
– Sensors: convert physical quantities to

electrical signals
– Analog-to-digital converters: convert conditioned

sensor signals to digital values
– Processing and storage elements

[Wikipedia]What is DAQ?

Andrea.Negri@unipv.it Intro to DAQ 7

What is DAQ?
● DAQ is an heterogeneous field

– Boundaries not well defined

● An alchemy of
– physics
– electronics
– computer science
– networking
– hacking
– experience

● Money and manpower
matter as well

Andrea.Negri@unipv.it Intro to DAQ 8

Something interesting
● Main role of DAQ

– process the signals
generated in a detector

– and saving the
interesting information
on a permanent
storage

● What does it mean
interesting?
– When does this

happen?

● We need a trigger

Andrea.Negri@unipv.it Intro to DAQ 9

Trigger
● Either selects interesting events or rejects

boring ones, in real time
– Selective: efficient for “signal”

and resistant to “background”
– Simple and robust
– Quick

● With minimal controlled latency
– time it takes to form and distribute its decision

● The trigger system generates a prompt signal
used to start the data-acquisition processes
– To be distributed to front end electronics

Andrea.Negri@unipv.it Intro to DAQ 10

Double paths
● Trigger path

– From dedicated detectors to trigger logic

● Data path
– From all the detectors to storage
– On positive trigger decision

Trigger and DAQ
trigger
path

decisions

Storage
data
path

Trigger

DAQ

trigger decisions

Andrea.Negri@unipv.it Intro to DAQ 11

Trigger(less)
● Triggered: data is readout from detector only

when a trigger signal is raised

● Triggerless: the detector push data at its speed
and the downstream daq must keep the pace

DAQ

DAQ
trigger

Andrea.Negri@unipv.it Intro to DAQ 12

Trigger(less)
● Triggered: data is readout from detector only

when a trigger signal is raised

● Triggerless: the detector push data at its speed
and the downstream daq must keep the pace

DAQ

DAQ
trigger

Andrea.Negri@unipv.it Intro to DAQ 13

trigger@isotdaq2022
● Introduction to trigger

– Gokhan Unel

● Trigger HW
– Dinyar Rabady

● Timing in DAQ
– Eduardo Brandao De Souza Mendes

● Streaming data acquisition system
for electron scattering experiments
– Mariangela Bondi

● Intelligent triggering: pattern
recognition with Associative Memories and other tools
– Kostas Kordas

Andrea.Negri@unipv.it Intro to DAQ 14

DAQ duties
● Gather data produced by detectors

– Readout

● Form complete events
– Data Collection and Event Building

● Possibly feed other trigger levels
– High Level Trigger

● Store event data
– Data Logging

● Manage the operations
– Run Control, Configuration, Monitoring

Data Flow

Andrea.Negri@unipv.it Intro to DAQ 15

T-DAQ

Front End Electronics

Readout/Event Building

 High
 Level
 Trigger

Storage

Trigger

M
o

n
ito

rin
g

 &
 C

o
n

tro
l &

 C
o

n
fig

u
ratio

n

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

noprint

Andrea.Negri@unipv.it Intro to DAQ 16

Readout/Event Building

 High
 Level
 Trigger

Storage

M
o

n
ito

rin
g

 &
 C

o
n

tro
l &

 C
o

n
fig

u
ratio

n

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger
Front End Electronics

noprint

T-DAQ

Andrea.Negri@unipv.it Intro to DAQ 17

 High
 Level
 Trigger

Storage

M
o

n
ito

rin
g

 &
 C

o
n

tro
l &

 C
o

n
fig

u
ratio

n

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger
Front End Electronics

Readout/Event Building

T-DAQ

Andrea.Negri@unipv.it Intro to DAQ 18

DAQHW@isotdaq2022
● Introduction to detector readout

– Gokhan Unel

● Microelectronic technologies for HEP
instrumentation
– Alessandro Marchioro

● Optical Links
– Paolo Durante

Andrea.Negri@unipv.it Intro to DAQ 19

FPGA@isotdaq2022
● FPGAs are becoming the bred&butter of TDAQ

– Signal processing, data formatting, parallelizable
tasks (pattern recognition), machine learning, ...

● Introduction to FPGAs
– Hannes Sakulin

● Advanced FPGA
programming
– Manoel Barros Marin

● FPGA programming
– Lab 5

● System on Chip (SoC) FPGA
– Lab 13

Andrea.Negri@unipv.it Intro to DAQ 20

 High
 Level
 Trigger

Storage

M
o

n
ito

rin
g

 &
 C

o
n

tro
l &

 C
o

n
fig

u
ratio

n

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger
Front End Electronics

Readout/Event Building

T-DAQ

Andrea.Negri@unipv.it Intro to DAQ 21

Storage

M
o

n
ito

rin
g

 &
 C

o
n

tro
l &

 C
o

n
fig

u
ratio

n

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger
Front End Electronics

Readout/Event Building

 High
 Level
 Trigger

noprint

T-DAQ

Andrea.Negri@unipv.it Intro to DAQ 22

Storage

M
o

n
ito

rin
g

 &
 C

o
n

tro
l &

 C
o

n
fig

u
ratio

n

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger
Front End Electronics

Readout/Event Building

 High
 Level
 Trigger

T-DAQ

Andrea.Negri@unipv.it Intro to DAQ 23

Storage@isotdaq2022
● Storage device technologies gaining importance

in HEP
– Storage data rate increasing with luminosity
– Distributed file systems being

used as data-flow frameworks
● CMS, ATLAS run 4, ...

● Storage
– Enrico Gamberini

● Storage exercise
– lab 11

Andrea.Negri@unipv.it Intro to DAQ 24

Storage

M
o

n
ito

rin
g

 &
 C

o
n

tro
l &

 C
o

n
fig

u
ratio

n

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

Trigger
Front End Electronics

Readout/Event Building

 High
 Level
 Trigger

noprint

T-DAQ

Andrea.Negri@unipv.it Intro to DAQ 25

Front End Electronics

Readout/Event Building

 High
 Level
 Trigger

Storage

Trigger

M
o

n
ito

rin
g

 &
 C

o
n

tro
l &

 C
o

n
fig

u
ratio

n

DAQ

Run!

Detector Channels

Readout Network

Event Building Network

T-DAQ

Andrea.Negri@unipv.it Intro to DAQ 26

The glue of your experiment
● Configuration

– The data taking setup

● Control
– Orchestrate applications

participating to data taking
– Via distributed

Finite State Machine

● Monitoring of data
taking operations
– What is going on?
– What happened?

When? Where?

Andrea.Negri@unipv.it Intro to DAQ 27

The glue of your experiment
● Control of DAQ.

DAQ Online Software
– Lab 12

● Design and
implementation of a
monitoring system
– Serguei Kolos

Andrea.Negri@unipv.it Intro to DAQ 28

● Introduction
– What is DAQ?
– Overall framework

● Basic DAQ concepts
– Digitization, Latency
– Deadtime, Busy, Backpressure
– De-randomization

● Scaling up
– Readout and Event Building
– Buses vs Network

● Data encoding

Outline

Via a toy model

Andrea.Negri@unipv.it Intro to DAQ 29

● Eg: measure temperature at a fixed frequency
– Clock trigger

● ADC performs analog to digital conversion,
digitization (our front-end electronics)
– Encoding analog value into binary representation

● CPU does
– Readout, Processing, Storage

Basic DAQ: periodic trigger

ADC CardT sensor CPU
 Physical View

disk

noprint

Andrea.Negri@unipv.it Intro to DAQ 30

● Encoding an analog value
into binary representation
– Comparing entity with a ruler

● We will see
– ADC: Analog to Digital Converter
– QDC: Charge to Digital Converter
– TDC: Time to Digital Converter

● DAQ HW
– Vincenzo Izzo

● ADC basics for TDAQ
– Lab 8

Digitization

Entity to be measured

Ruler unit

Andrea.Negri@unipv.it Intro to DAQ 31

Basic DAQ: periodic trigger

ADC CardT sensor CPU
 Physical View

Processing

ADC

disk

● System clearly limited by the
time to process an “event”
– ADC conversion +

CPU processing +
Storage

● The DAQ maximum sustainable
rate is simply the inverse of e.g.:
– E.g.: = 1 ms R = 1/ = 1 kHz

=

 1
 m

s

TRIGGER

disk

Andrea.Negri@unipv.it Intro to DAQ 32

Basic DAQ: “real” trigger

Processing

ADC

disk

● Events asynchronous and
unpredictable
– E.g.: beta decay studies

● A physics trigger is needed
– Discriminator: generates an

output digital signal if amplitude
of the input pulse is greater
than a given threshold

● NB: delay introduced
to compensate for the
trigger latency
– Signal split in trigger and data paths

start

interrupt

delay

TRIGGER

discriminator

=

 1
 m

s

noprint

Andrea.Negri@unipv.it Intro to DAQ 33

Basic DAQ: “real” trigger

Processing

ADC

disk

● Events asynchronous and
unpredictable
– E.g.: beta decay studies

● A physics trigger is needed
– Discriminator: generates an

output digital signal if amplitude
of the input pulse is greater
than a given threshold

● NB: delay introduced
to compensate for the
trigger latency
– Signal split in trigger and data paths

start

interrupt

delay

TRIGGER

discriminator

=

 1
 m

s

Andrea.Negri@unipv.it Intro to DAQ 34

Discriminator
● Discriminator:

– generates a digital output signal
– if the amplitude of the input pulse

is greater than a given threshold

● In lab 2, 3, 4 we will see a
couple of NIM discriminators

threshold

Andrea.Negri@unipv.it Intro to DAQ 35

Basic DAQ: “real” trigger

Processing

ADC

disk

● Events asynchronous and
unpredictable
– E.g.: beta decay studies

● A physics trigger is needed
– Discriminator: generates an

output digital signal if amplitude
of the input pulse is greater
than a given threshold

● NB: delay introduced
to compensate for the
trigger latency
– Signal split in trigger and data paths

start

interrupt

delay

TRIGGER

discriminator

=

 1
 m

s

Data path

Trigger path

Andrea.Negri@unipv.it Intro to DAQ 36

● Stochastic process
– Fluctuations in time between events

● Let's assume for example
– physics rate f = 1 kHz, i.e. = 1 ms

– and, as before, = 1 ms

Basic DAQ: “real” trigger

Processing

ADC

disk

start

interrupt

delay

TRIGGER

=

 1
 m

s

Probability of time (in ms)
between events for average
decay rate of f=1kHz → =1ms

Probability of time (in ms)
between events for average
decay rate of f=1kHz → =1ms

noprint

Andrea.Negri@unipv.it Intro to DAQ 37

● Stochastic process
– Fluctuations in time between events

● Let's assume for example
– physics rate f = 1 kHz, i.e. = 1 ms

– and, as before, = 1 ms

Basic DAQ: “real” trigger

Processing

ADC

disk

start

interrupt

delay

TRIGGER

=

 1
 m

s

Probability of time (in ms)
between events for average
decay rate of f=1kHz → =1ms

Probability of time (in ms)
between events for average
decay rate of f=1kHz → =1ms

noprint

Probability of time (in ms)
between events for average
decay rate of f=1kHz → =1ms

Andrea.Negri@unipv.it Intro to DAQ 38

● Stochastic process
– Fluctuations in time between events

● Let's assume for example
– physics rate f = 1 kHz, i.e. = 1 ms

– and, as before, = 1 ms

Basic DAQ: “real” trigger

Processing

ADC

disk

start

interrupt

delay

TRIGGER

=

 1
 m

s

Probability of time (in ms)
between events for average
decay rate of f=1kHz → =1ms

Probability of time (in ms)
between events for average
decay rate of f=1kHz → =1ms

Probability of time (in ms)
between events for average
decay rate of f=1kHz → =1ms

Andrea.Negri@unipv.it Intro to DAQ 39

● Stochastic process
– Fluctuations in time between events

● Let's assume for example
– physics rate f = 1 kHz, i.e. = 1 ms

– and, as before, = 1 ms

Basic DAQ: “real” trigger

Processing

ADC

disk

start

interrupt

delay

TRIGGER

=

 1
 m

s

Probability of time (in ms)
between events for average
decay rate of f=1kHz → =1ms

Probability of time (in ms)
between events for average
decay rate of f=1kHz → =1ms

Probability of time (in ms)
between events for average
decay rate of f=1kHz → =1msWhat if a trigger is

created when the
system is busy?

Andrea.Negri@unipv.it Intro to DAQ 40

● If a new trigger arrives when
the system is still processing
the previous event
– The processing of the previous

event can be screwed up

System still processing ...

Probability of time (in ms)
between events for average
decay rate of f=1kHz → =1ms

Probability of time (in ms)
between events for average
decay rate of f=1kHz → =1ms

Probability of time (in ms)
between events for average
decay rate of f=1kHz → =1msWhat if a trigger is

created when the
system is busy?

Processing

ADC

disk

start

interrupt

delay

TRIGGER

=

 1
 m

s

Andrea.Negri@unipv.it Intro to DAQ 41

Pause to regroup
● For stochastic processes, our trigger and daq

system needs to be able to:
– Determine if there is an “event” (trigger)
– Process and store the data from the event (daq)
– Have a feedback mechanism,

to know if the data
processing pipeline
is free to process
a new event:
busy logic

Andrea.Negri@unipv.it Intro to DAQ 42

Busy logic

ADC

disk

=

 1
 m

s

TRIGGER

delay

f = 1 kHz
= 1 ms

Processing
interrupt

start

=

 1
 m

s

● The busy logic
avoids triggers while
the system is busy in
processing

● A minimal busy
logic can be
implemented with
– an AND gate
– a NOT gate
– a flip-flop (flip-flop)

● More in lab 2

noprint

Andrea.Negri@unipv.it Intro to DAQ 43

Busy logic

ADC

disk

=

 1
 m

s

TRIGGER

delay

f = 1 kHz
= 1 ms

NOT

AND

BUSY
LOGIC

ProcessingCLEAR

SET
Q

flip-flop

ready

start

=

 1
 m

s

● The busy logic
avoids triggers while
the system is busy in
processing

● A minimal busy
logic can be
implemented with
– an AND gate
– a NOT gate
– a flip-flop

● More in lab 2

Andrea.Negri@unipv.it Intro to DAQ 44

Flip Flop 1/5
● Flip-flop

– a bistable circuit that changes state (Q) by signals
applied to the control inputs (SET, CLEAR)

● Before: stable state, Q up and Q down

1

0

Andrea.Negri@unipv.it Intro to DAQ 45

Flip Flop 2/5
● Flip-flop

– a bistable circuit that changes state (Q) by signals
applied to the control inputs (SET, CLEAR)

● At some point, signal injected in R

1

0

Andrea.Negri@unipv.it Intro to DAQ 46

Flip Flop 3/5
● Flip-flop

– a bistable circuit that changes state (Q) by signals
applied to the control inputs (SET, CLEAR)

● At some point, signal injected in R
– Q switched down and the feedback travels to S

1

0

Andrea.Negri@unipv.it Intro to DAQ 47

Flip Flop 4/5
● Flip-flop

– a bistable circuit that changes state (Q) by signals
applied to the control inputs (SET, CLEAR)

● At some point, signal injected in R
– Q becomes up and the feedback travels to R

1

0

Andrea.Negri@unipv.it Intro to DAQ 48

Flip Flop 5/5
● Flip-flop

– a bistable circuit that changes state (Q) by signals
applied to the control inputs (SET, CLEAR)

● After: stable state, Q down and Q up:
– End of pulse

1

0

Andrea.Negri@unipv.it Intro to DAQ 49

ADC

disk

=

 1
 m

s

TRIGGER

delay

f = 1 kHz
= 1 ms

NOT

AND

BUSY
LOGIC

ProcessingCLEAR

SET

flip-flop

ready

start

=

 1
 m

s

1

0
Q

● Start of run
– the flip-flop output

is down (ground
state)

– via the NOT, one
of the port of the
AND gate is set to
up (opened)

● i.e. system ready
for new triggers

Busy logic

Andrea.Negri@unipv.it Intro to DAQ 50

ADC

disk

=

 1
 m

s

TRIGGER

delay

f = 1 kHz
= 1 ms

NOT

AND

BUSY
LOGIC

ProcessingCLEAR

SET

flip-flop

ready

start

=

 1
 m

s

1

0
Q

● If a trigger arrives, the
signal finds the AND
gate open, so:
– The ADC is started
– The processing is started
– The flip-flop is flipped
– One of the AND inputs is

now steadily down
(closed)

● Any new trigger is
inhibited by the AND
gate (busy)

noprint

Busy logic

Andrea.Negri@unipv.it Intro to DAQ 51

ADC

disk

=

 1
 m

s

TRIGGER

delay

f = 1 kHz
= 1 ms

NOT

AND

BUSY
LOGIC

ProcessingCLEAR

SET

flip-flop

ready

start

=

 1
 m

s

1

0
Q

● If a trigger arrives, the
signal finds the AND
gate open, so:
– The ADC is started
– The processing is started
– The flip-flop is flipped
– One of the AND inputs is

now steadily down
(closed)

● Any new trigger is
inhibited by the AND
gate (busy)

noprint

Busy logic

Andrea.Negri@unipv.it Intro to DAQ 52

Busy logic

ADC

disk

=

 1
 m

s

TRIGGER

delay

f = 1 kHz
= 1 ms

NOT

AND

BUSY
LOGIC

ProcessingCLEAR

SET
Q

flip-flop

ready

start

=

 1
 m

s

0

1

● If a trigger arrives, the
signal finds the AND
gate open, so:
– The ADC is started
– The processing is started
– The flip-flop is flipped
– One of the AND inputs is

now steadily down
(closed)

● Any new trigger is
inhibited by the AND
gate (busy)

noprint

Andrea.Negri@unipv.it Intro to DAQ 53

Busy logic

ADC

disk

=

 1
 m

s

TRIGGER

delay

f = 1 kHz
= 1 ms

NOT

AND

BUSY
LOGIC

ProcessingCLEAR

SET
Q

flip-flop

ready

start

=

 1
 m

s

BUSY
0

1

● If a trigger arrives, the
signal finds the AND
gate open, so:
– The ADC is started
– The processing is started
– The flip-flop is flipped
– One of the AND inputs is

now steadily down
(closed)

● Any new trigger is
inhibited by the AND
gate (busy)

Andrea.Negri@unipv.it Intro to DAQ 54

Busy logic

ADC

disk

=

 1
 m

s

TRIGGER

delay

f = 1 kHz
= 1 ms

NOT

AND

BUSY
LOGIC

ProcessingCLEAR

SET
Q

flip-flop

ready

start

=

 1
 m

s

0

1

● At the end of processing
a ready signal is sent to
the flip-flop
– The flip-flop flips again
– The gate is now opened
– The system is ready to

accept a new trigger

noprint

Andrea.Negri@unipv.it Intro to DAQ 55

Busy logic

ADC

disk

=

 1
 m

s

TRIGGER

delay

f = 1 kHz
= 1 ms

NOT

AND

BUSY
LOGIC

ProcessingCLEAR

SET
Q

flip-flop

ready

start

=

 1
 m

s

1

0

● At the end of processing
a ready signal is sent to
the flip-flop
– The flip-flop flips again
– The gate is now opened
– The system is ready to

accept a new trigger

● i.e. busy logic avoids
triggers while daq
is busy in processing
– New triggers do not

interfere w/ previous data

Andrea.Negri@unipv.it Intro to DAQ 56

Deadtime and efficiency
● So the busy

mechanism protects
our electronics from
unwanted triggers
– New signals are

accepted only when
the system in ready
to process them

● Which (average) DAQ rate can we achieve now?
– How much we lose with the busy logic?

– Reminder: with a clock trigger and = 1 ms the limit
was 1 kHz

Andrea.Negri@unipv.it Intro to DAQ 57

Deadtime and efficiency
● Definitions

– f: average rate of
physics (input)

– average rate of
DAQ (output)

– deadtime, needed
to process an event,
without being able to handle other triggers

– probabilities: P[busy] = P[free] = 1 -

● Therefore:

ν=f P [free] ⇒ ν=f (1−ν τ) ⇒ ν=
f

1+ f τ

noprint

Andrea.Negri@unipv.it Intro to DAQ 58

● Definitions
– f: average rate of

physics (input)

– average rate of
DAQ (output)

– deadtime, needed
to process an event,
without being able to handle other triggers

– probabilities: P[busy] = P[free] = 1 -

● Therefore:

Deadtime and efficiency

ν=f P [free] ⇒ ν=f (1−ν τ) ⇒ ν=
f

1+ f τ

noprint

Andrea.Negri@unipv.it Intro to DAQ 59

● Definitions
– f: average rate of

physics (input)

– average rate of
DAQ (output)

– deadtime, needed
to process an event,
without being able to handle other triggers

– probabilities: P[busy] = P[free] = 1 -

● Therefore:

Deadtime and efficiency

ν=f P [free] ⇒ ν=f (1−ν τ) ⇒ ν=
f

1+ f τ

noprint

Andrea.Negri@unipv.it Intro to DAQ 60

Deadtime and efficiency

ν=f P [free] ⇒ ν=f (1−ν τ) ⇒ ν=
f

1+ f τ

● Definitions
– f: average rate of

physics (input)

– average rate of
DAQ (output)

– deadtime, needed
to process an event,
without being able to handle other triggers

– probabilities: P[busy] = P[free] = 1 -

● Therefore:

Andrea.Negri@unipv.it Intro to DAQ 61

Deadtime and efficiency
● Due to stochastic fluctuations

– DAQ rate always < physics rate

– Efficiency always < 100%

● So, in our specific example
– Physics rate 1 kHz
– Deadtime 1 ms

ϵ=
N saved

N tot

=
1

1+ f τ
< 100 %

∣ f=1kHz
τ=1ms

→ ∣ ν=500 Hz
ϵ=50%

ν =
f

1+ f τ
< f

noprint

Andrea.Negri@unipv.it Intro to DAQ 62

Deadtime and efficiency
● Due to stochastic fluctuations

– DAQ rate always < physics rate

– Efficiency always < 100%

● So, in our specific example
– Physics rate 1 kHz
– Deadtime 1 ms

ϵ=
N saved

N tot

=
1

1+ f τ
< 100 %

| f=1kHz
τ=1ms

→ | ν=500 Hz
ϵ=50%

ν =
f

1+ f τ
< f

Andrea.Negri@unipv.it Intro to DAQ 63

Deadtime and efficiency

ϵ=
N saved

N tot

=
1

1+ f τ

ν=
f

1+ f τ

● In order to obtain ~100% (i.e.: ~f) f << 1 <<
– E.g.: ~99% for f = 1 kHz < 0.01 ms > 100 kHz
– To cope with the input signal fluctuations,

we have to over-design our DAQ system by a factor 100!

● How can we mitigate this effect?

noprint

Andrea.Negri@unipv.it Intro to DAQ 64

Deadtime and efficiency

ϵ=
N saved

N tot

=
1

1+ f τ

ν=
f

1+ f τ

● In order to obtain ~100% (i.e.: ~f) f << 1 <<
– E.g.: ~99% for f = 1 kHz < 0.01 ms > 100 kHz
– To cope with the input signal fluctuations,

we have to over-design our DAQ system by a factor 100!

● How can we mitigate this effect?

noprint

Andrea.Negri@unipv.it Intro to DAQ 65

Deadtime and efficiency

ν=
f

1+ f τ

● In order to obtain ~100% (i.e.: ~f) f << 1 <<
– E.g.: ~99% for f = 1 kHz < 0.01 ms > 100 kHz
– To cope with the input signal fluctuations,

we have to over-design our DAQ system by a factor 100!

● How can we mitigate this effect?

Andrea.Negri@unipv.it Intro to DAQ 66

De-randomization
● What if we were able to make

the system more
deterministic and less
dependent on the arrival time
of our signals?
– Then we could ensure that

events don’t arrive when the
system is busy

– This is called de-randomization

● How it can be achieved?
– by buffering the data (having a

holding queue where we can slot
it up to be processed)

Inter-arrival
time distribution

ms

ms

noprint

Data access
time distribution

Andrea.Negri@unipv.it Intro to DAQ 67

● What if we were able to make
the system more
deterministic and less
dependent on the arrival time
of our signals?
– Then we could ensure that

events don’t arrive when the
system is busy

– This is called de-randomization

● How it can be achieved?
– by buffering the data (having a

holding queue where we can slot
it up to be processed)

De-randomization
Inter-arrival
time distribution

ms

ms

Data access
time distribution

noprint

Andrea.Negri@unipv.it Intro to DAQ 68

● What if we were able to make
the system more
deterministic and less
dependent on the arrival time
of our signals?
– Then we could ensure that

events don’t arrive when the
system is busy

– This is called de-randomization

● How it can be achieved?
– by buffering the data (having a

holding queue where we can slot
it up to be processed)

De-randomization
Inter-arrival
time distribution

ms

ms

Data access
time distribution

FIFO

(ms) f (Hz)

(ms) (Hz)

Andrea.Negri@unipv.it Intro to DAQ 69

Queuing theory

● Efficiency vs traffic intensity () for different queue depths
– > 1: the system is overloaded ()

– << 1: the output is over-designed ()

– ~ 1: using a queue, high efficiency obtained even w/ moderate depth

● Analytic calculation possible for very simple systems only
– Otherwise MonteCarlo simulation is required

(ms), f (Hz)

(ms), (Hz)

ms

ms

Inter-arrival time
distribution

access time
distribution

FIFO

noprint

Andrea.Negri@unipv.it Intro to DAQ 70

Queuing theory

● Efficiency vs traffic intensity () for different queue depths
– > 1: the system is overloaded ()

– << 1: the output is over-designed ()

– ~ 1: using a queue, high efficiency obtained even w/ moderate depth

● Analytic calculation possible for very simple systems only
– Otherwise MonteCarlo simulation is required

(ms), f (Hz)

(ms), (Hz)

ms

ms

Inter-arrival time
distribution

access time
distribution

FIFO

noprint

Andrea.Negri@unipv.it Intro to DAQ 71

Queuing theory

● Efficiency vs traffic intensity () for different queue depths
– > 1: the system is overloaded ()

– << 1: the output is over-designed ()

– ~ 1: using a queue, high efficiency obtained even w/ moderate depth

● Analytic calculation possible for very simple systems only
– Otherwise MonteCarlo simulation is required

(ms), f (Hz)

(ms), (Hz)

ms

ms

Inter-arrival time
distribution

access time
distribution

FIFO

noprint

Andrea.Negri@unipv.it Intro to DAQ 72

Queuing theory

● Efficiency vs traffic intensity () for different queue depths
– > 1: the system is overloaded ()

– << 1: the output is over-designed ()

– ~ 1: using a queue, high efficiency obtained even w/ moderate depth

● Analytic calculation possible for very simple systems only
– Otherwise MonteCarlo simulation is required

(ms), f (Hz)

(ms), (Hz)

ms

ms

Inter-arrival time
distribution

access time
distribution

FIFO

noprint

Andrea.Negri@unipv.it Intro to DAQ 73

Queuing theory

● Efficiency vs traffic intensity () for different queue depths
– > 1: the system is overloaded ()

– << 1: the output is over-designed ()

– ~ 1: using a queue, high efficiency obtained even w/ moderate depth

● Analytic calculation possible for very simple systems only
– Otherwise MonteCarlo simulation is required

(ms), f (Hz)

(ms), (Hz)

ms

ms

Inter-arrival time
distribution

access time
distribution

FIFO

Andrea.Negri@unipv.it Intro to DAQ 74

De-randomization

ADC

disk

=

 1
 m

s

TRIGGER

delay

● Input fluctuations can be
absorbed and smoothed by
a queue
– A FIFO can provide a ~steady

and de-randomized
output rate

– The effect of the queue
depends on its depth

● Busy is now defined by
the buffer occupancy
– Processor pulls data from

the buffer at fixed rate,
separating the event receiving
and data processing steps

f = 1 kHz
= 1 ms

NOT

AND

BUSY
LOGIC

ProcessingCLEAR

SET
Q

interrupt
ready

start

=

 1
 m

s

noprint

Andrea.Negri@unipv.it Intro to DAQ 75

De-randomization

ADC

disk

=

 1
 m

s

TRIGGER

delay

f = 1 kHz
= 1 ms ● Input fluctuations can be

absorbed and smoothed by
a queue
– A FIFO can provide a ~steady

and de-randomized
output rate

– The effect of the queue
depends on its depth

● Busy is now defined by
the buffer occupancy
– Processor pulls data from

the buffer at fixed rate,
separating the event receiving
and data processing steps

NOT

AND

BUSY
LOGIC

Processing

start

data
ready

busy (full) FIFO

noprint

Andrea.Negri@unipv.it Intro to DAQ 76

De-randomization

ADC

disk

=

 1
 m

s

TRIGGER

delay

f = 1 kHz
= 1 ms

NOT

AND

BUSY
LOGIC

Processing

start

data
ready

busy (full) FIFO

● Input fluctuations can be
absorbed and smoothed by
a queue
– A FIFO can provide a ~steady

and de-randomized
output rate

– The effect of the queue
depends on its depth

● Busy is now defined by
the buffer occupancy
– Processor pulls data from

the buffer at fixed rate,
separating the event receiving
and data processing steps

Andrea.Negri@unipv.it Intro to DAQ 77

De-randomization summary

ADC

disk

TRIGGER

f = 1 kHz
= 1 ms

NOT

AND

BUSY
LOGIC

Processing

start

data
ready

busy (full) FIFO

● The FIFO decouples the
low latency front-end from
the data processing
– Minimize the amount of

“unnecessary” fast components

● ~100% efficiency w/ minimal
deadtime achievable if
– ADC can operate at rate >> f
– Data processing and storing

operate at a rate ~ f

● Could the delay be replaced
with a “FIFO”?
– Analog pipelines, heavily used in

LHC DAQs

delay

=

 1
 m

s

noprint

Andrea.Negri@unipv.it Intro to DAQ 78

De-randomization summary

ADC

disk

TRIGGER

p
i
p
e
l
i
n
e

f = 1 kHz
= 1 ms

NOT

AND

BUSY
LOGIC

Processing

start

data
ready

busy (full) FIFO

● The FIFO decouples the
low latency front-end from
the data processing
– Minimize the amount of

“unnecessary” fast components

● ~100% efficiency w/ minimal
deadtime achievable if
– ADC can operate at rate >> f
– Data processing and storing

operate at a rate ~ f

● Could the delay be replaced
with a “FIFO”?
– Analog pipelines, heavily used in

LHC DAQs

=

 1
 m

s

Andrea.Negri@unipv.it Intro to DAQ 79

Collider setup

ADC

disk

TRIGGER

● Do we need de-randomization
buffers also in collider setups?
– Particle collisions are

synchronous
– But the time distribution of

triggers is random: good events
are unpredictable

● De-randomization still needed
● More complex busy logic to

protect buffers and detectors
– Eg: accept n events every m

bunch crossings
– Eg: prevent some

dangerous trigger patterns

BUSY
LOGIC

Processing

start

data
ready

busy (full) FIFO

BX

TIMING

AND

NOT abort

p
i
p
e
l
i
n
e

noprint

Andrea.Negri@unipv.it Intro to DAQ 80

Collider setup
● Do we need de-randomization

buffers also in collider setups?
– Particle collisions are

synchronous
– But the time distribution of

triggers is random: good events
are unpredictable

● De-randomization still needed
● More complex busy logic to

protect buffers and detectors
– Eg: accept n events every m

bunch crossings
– Eg: prevent some

dangerous trigger patterns

ADC

disk

TRIGGER

BUSY
LOGIC

Processing

start

data
ready

busy (full) FIFO

BX

TIMING

AND

NOT abort

p
i
p
e
l
i
n
e

Andrea.Negri@unipv.it Intro to DAQ 81

● Introduction
– What is DAQ?
– Overall framework

● Basic DAQ concepts
– Digitization, Latency
– Deadtime, Busy, Backpressure
– De-randomization

● Scaling up
– Readout and Event Building
– Buses vs Network

● Data encoding

Outline

Andrea.Negri@unipv.it Intro to DAQ 82

ScalingUp@isotdaq2022
● LabView

– Gary Boorman

● TDAQ design: from test beam
to medium size experiment
– Roberto Ferrari

● TDAQ for the LHC
experiments and upgrades
– Francesca Pastore

● An Introduction to medical
imaging devices
– Martin Lothar Purschke

Andrea.Negri@unipv.it Intro to DAQ 83

Adding more channels

storage

Processing

ADC

TRIGGER
1 channel

● Adding more channels requires a hierarchical structure
committed to the data handling and conveyance

Front-End

Readout

Event Building

Event Filtering

Event Logging

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

data digitization
data buffering

noprint

Andrea.Negri@unipv.it Intro to DAQ 84

Adding more channels

storage

ADCADCADC

TRIGGER

Processing

N channels

● Adding more channels requires a hierarchical structure
committed to the data handling and conveyance

Front-End

Readout

Event Building

Event Filtering

Event Logging

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

data digitization
data buffering

Andrea.Negri@unipv.it Intro to DAQ 85

For example
● Minimal setup with Arduino and a PC

– Arduino has ADCs to read sensors

● Microcontrollers
– Mauricio Feo

Trigger signal

Data
readout

Readout
 - Data formatting
 - Processing
 - Storage

Front End
 - Digitization

● Microcontrollers Exercise
– Lab 10

Andrea.Negri@unipv.it Intro to DAQ 86

Adding more channels

storage

ADCADCADC

TRIGGER

Processing

N channels

● Adding more channels requires a hierarchical structure
committed to the data handling and conveyance

Front-End

Readout

Event Building

Event Filtering

Event Logging

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

data digitization
data buffering

Andrea.Negri@unipv.it Intro to DAQ 87

Adding more channels

storage

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

● Adding more channels requires a hierarchical structure
committed to the data handling and conveyance

Front-End

Readout

Event Building

Event Filtering

Event Logging

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

data digitization
data buffering

noprint

Andrea.Negri@unipv.it Intro to DAQ 88

Adding more channels

storage

Processing

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

● Adding more channels requires a hierarchical structure
committed to the data handling and conveyance

Front-End

Readout

Event Building

Event Filtering

Event Logging

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

data digitization
data buffering

noprint

Andrea.Negri@unipv.it Intro to DAQ 89

Adding more channels

storage

Processing

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER

Front-End

Readout

Event Building

Event Filtering

Event Logging

N channels N channels N channels

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

● Adding more channels requires a hierarchical structure
committed to the data handling and conveyance

data digitization
data buffering

Andrea.Negri@unipv.it Intro to DAQ 90

Adding more channels

storage

Processing

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER

Front-End

Readout

Event Building

Event Filtering

Event Logging

N channels N channels N channels

data extraction
data formatting
data buffering

event assembly
event buffering

event rejection
event buffering

file storage
file buffering

● Buffering usually needed at every level
– DAQ can be seen as a multi level buffering system

data digitization
data buffering

Andrea.Negri@unipv.it Intro to DAQ 91

Backpressure

storage

Processing

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

● If a system/buffer gets saturated
– the “pressure” is propagated upstream (back-pressure)

Andrea.Negri@unipv.it Intro to DAQ 92

Backpressure

storage

Processing

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

● If a system/buffer gets saturated
– the “pressure” is propagated upstream (back-pressure)

Andrea.Negri@unipv.it Intro to DAQ 93

Backpressure

storage

Processing

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

● If a system/buffer gets saturated
– the “pressure” is propagated upstream (back-pressure)

Andrea.Negri@unipv.it Intro to DAQ 94

Backpressure

storage

Processing

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

● If a system/buffer gets saturated
– the “pressure” is propagated upstream (back-pressure)

● Up to exert busy to the
trigger system

● Debugging: where is
the source of
backpressure?
– follow the buffers

occupancy via the
monitoring system

Andrea.Negri@unipv.it Intro to DAQ 95

Backpressure

storage

Processing

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

● If a system/buffer gets saturated
– the “pressure” is propagated upstream (back-pressure)

In this case?
Who is the guilty?

noprint

● Up to exert busy to the
trigger system

● Debugging: where is
the source of
backpressure?
– follow the buffers

occupancy via the
monitoring system

Andrea.Negri@unipv.it Intro to DAQ 96

Backpressure

storage

Processing

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

● If a system/buffer gets saturated
– the “pressure” is propagated upstream (back-pressure)

Backpressure
from processing

● Up to exert busy to the
trigger system

● Debugging: where is
the source of
backpressure?
– follow the buffers

occupancy via the
monitoring system

Andrea.Negri@unipv.it Intro to DAQ 97

Building blocks

storage

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

● Reading out data or building events out
of many channels requires many components

● In the design of our
hierarchical data-collection
system, we have better
define “building blocks”
– Readout crates
– HLT racks
– event building groups
– daq slices

Farm Farm Farm….

Andrea.Negri@unipv.it Intro to DAQ 98

Front End electronics
noprint

Andrea.Negri@unipv.it Intro to DAQ 99

Front End electronics
noprint

Andrea.Negri@unipv.it Intro to DAQ 100

Front End electronics
noprint

Andrea.Negri@unipv.it Intro to DAQ 101

Front End electronics

Andrea.Negri@unipv.it Intro to DAQ 102

Readout Boards (Counting Room)

Andrea.Negri@unipv.it Intro to DAQ 103

Building blocks

storage

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

● Reading out data or building events out
of many channels requires many components

● In the design of our
hierarchical data-collection
system, we have better
define “building blocks”
– Readout crates
– HLT racks
– event building groups
– daq slices

Farm Farm Farm….

Andrea.Negri@unipv.it Intro to DAQ 104

Farm (@surface)

Andrea.Negri@unipv.it Intro to DAQ 105

sw@isotdaq2022
● Programming for today's

physicist and engineers
– Dinyar Rabady

● DAQ software
– Enrico

Pasqualucci

● Why you should
consider machine learning
– Satchit Chatterji

● Machine Learning
– Sioni Paris Summers

Andrea.Negri@unipv.it Intro to DAQ 106

GPU
● Used since a while by Alice, NA62, etc

– increase processing power for parallelizable tasks

● Part of LHC upgrades
– LHC-b, CMS, ATLAS

● GPU in HEP: online
high quality trigger
processing
– Gianluca Lamanna

● Introduction to GPU
programming
– Lab 14

Andrea.Negri@unipv.it Intro to DAQ 107

Building blocks

storage

Processing

Data Collection

ADCADCADC

Processing Processing

ADC ADCADCADCADCADC

TRIGGER
N channels N channels N channels

● Reading out data or building events out
of many channels requires many components

● In the design of our
hierarchical data-collection
system, we have better
define “building blocks”
– Readout crates
– HLT racks
– event building groups
– daq slices

Farm Farm Farm….

Andrea.Negri@unipv.it Intro to DAQ 108

Readout Topology
● How to organize the interconnections inside the

building blocks and between building blocks?
– How to connect data sources and data destinations?

– Two main classes: bus or network

data sources

data processors

network

bus

bus bus

noprint

Andrea.Negri@unipv.it Intro to DAQ 109

Readout Topology

data sources

data processors

network

bus

bus bus

● How to organize the interconnections inside the
building blocks and between building blocks?
– How to connect data sources and data destinations?

– Two main classes: bus or network

Andrea.Negri@unipv.it Intro to DAQ 110

Buses
● Devices connected via a shared bus

– Bus → group of electrical lines

● Sharing implies arbitration
– Devices can be master or slave
– Devices can be addresses (uniquely identified) on the bus

● E.g.: SCSI, Parallel ATA, VME, PCI …
– local, external, crate, long distance, ...

Select Line

Device
1

Device
2

Device
3

Device
4

Data Lines

MASTERSLAVE

Andrea.Negri@unipv.it Intro to DAQ 111

Bus facts
● Simple :-)

– Fixed number of lines (bus-width)
– Devices have to follow well defined interfaces

● Mechanical, electrical, communication, ...

● Scalability issues :-(
– Bus bandwidth is shared among all the devices
– Maximum bus width is limited
– Maximum number of devices depends on bus length
– Maximum bus frequency is inversely proportional to

the bus length
– On the long term, other “effects” might limit the

scalability of your system

Andrea.Negri@unipv.it Intro to DAQ 112

Bus facts
● Simple :-)

– Fixed number of lines (bus-width)
– Devices have to follow well defined interfaces

● Mechanical, electrical, communication, ...

● Scalability issues :-(
– Bus bandwidth is shared among all the devices
– Maximum bus width is limited
– Maximum bus frequency is inversely proportional to

the bus length
– Maximum number of devices depends on bus length
– On the long term, other “effects” might limit the

scalability of your system
On the long term, other “effects” might
limit the scalability of your system

Andrea.Negri@unipv.it Intro to DAQ 113

bus@isotdaq2022
● Modular electronics

– Markus Joos
● PCI express

– Paolo Durante
● VME bus programming [Lab 1]
● μATCA [Lab 6]

Andrea.Negri@unipv.it Intro to DAQ 114

Network
● All devices are equal

– They communicate directly with
each other via messages

– No arbitration, simultaneous
communications

● Eg: Telephone, Ethernet, Infiniband, …

Andrea.Negri@unipv.it Intro to DAQ 115

Network
● In switched networks,

switches move
messages between
sources and
destinations
– Find the right path

● How congestions
(two messages with the
same destination at the
same time) are
handled?
– The key is buffering

Andrea.Negri@unipv.it Intro to DAQ 116

Network
● In switched networks,

switches move
messages between
sources and
destinations
– Find the right path

● How congestions
(two messages with the
same destination at the
same time) are
handled?
– The key is buffering

Andrea.Negri@unipv.it Intro to DAQ 117

Network
● Networks scale well (and allow redundancy)

– They are the backbones of LHC DAQ systems

● Networking for
data acquisition
systems
– Vesa Simola

● Networking for
data acquisition
systems
– Lab 9

Andrea.Negri@unipv.it Intro to DAQ 118

● Introduction
– What is DAQ?
– Overall framework

● Basic DAQ concepts
– Digitization, Latency
– Deadtime, Busy, Backpressure
– De-randomization

● Scaling up
– Readout and Event Building
– Buses vs Network

● Data encoding

Outline

 119

00000004 00000001 0000c89c aa1234aa 00003227 0000001c 04000000 00793c29 00000001 00000000
00000000 50753e27 0ab16f70 00097a2b 00000000 00033dac 00000063 920117d5 00000aa8 00000081
00000018 00020000 40000000 00000000 00000000 00000000 00000000 00000000 00000000 00020000
00000000 dd1234dd 0000002d 00000009 04000000 00210000 00000002 00000000 92011d7f 00000001
ee1234ee 00000009 03010000 00210000 00033dac 920117d5 00000aa8 00000081 00000000 2003e766
2013e282 201490d2 9c122017 ef322018 9d562023 dfa22039 c2224000 2040aa82 2041c3a2 204282b3
20489082 2057efb2 205a8616 2063cce2 2066aee2 2068a0c2 20768ff7 99522077 de72207b d8224000
00000000 00000000 00000002 00000015 00000001 d04326b2 dd1234dd 0000002d 00000009 04000000
00210001 00000002 00000000 92011d80 00000001 ee1234ee 00000009 03010000 00210001 00033dac
920117d5 00000aa8 00000081 00000000 2004af72 2010a3f2 20128ec2 2017c212 202083c2 9ec22025
c6c22026 a3022034 afb74000 20488602 2053c7c2 20548512 95829672 2063c2e2 e512ee02 20648fb2
2074a5e2 2075d5b2 207aa892 ad32207b ed72ee32 00000000 00000000 00000002 00000015 00000001
3de510d4 dd1234dd 00000031 00000009 04000000 00210002 00000002 00000000 92011d80 00000001
ee1234ee 00000009 03010000 00210002 00033dac 920117d5 00000aa8 00000081 00000000 20109ef2
2011ee42 efc22012 93222013 e2822014 97022017 e182201b e0222025 eaa22027 cab22028 80d3202a
84b22035 c5c2ccb2 2036ebc2 20389672 20508002 95a22051 d3172056 9ee22057 ef42205b cee2eca2
2060ad62 2061c4a2 2063ddb7 20649542 00000000 00000000 00000002 00000019 00000001 f631054a
dd1234dd 00000029 00000009 04000000 00210003 00000002 00000000 92011d80 00000001 ee1234ee
00000009 03010000 00210003 00033dac 920117d5 00000aa8 00000081 00000000 2027d422 203088a2
2031d692 20369542 2037ed92 20409c92 ace22044 9a822046 a9e22047 d3422048 8fb2204a 8a12204b
e172205b c4872060 8f822065 ea222067 c3f24000 00000000 00000000 00000002 00000011 00000001
aeaa0e15 dd1234dd 00000039 00000009 04000000 00210004 00000002 00000000 92011d80 00000001
ee1234ee 00000009 03010000 00210004 00033dac 920117d5 00000aa8 00000081 00000000 2006af12
2017eb47 201a8e76 2025e6d2 20268fa2 a292202b dff74000 2040a152 20469122 20529182 2060aea2
2061c4c2 d722d942 2063c5e2 2064a772 206aa152 206bc322 c7c22070 89d22072 8ad22073 c0b7800f
c187c1a7 c1f7c227 c287c2c7 c2e7c3a7 c3c7800f c3f7c417 c497c4d7 c547c5b7 c5e7c637 c657c677
c6b7c727 c767c7a7 00000000 00000000 00000002 00000021 00000001 a1feebf3 dd1234dd 0000002d
00000009 04000000 00210005 00000002 00000000 92011d80 00000001 ee1234ee 00000009 03010000

Andrea.Negri@unipv.it Intro to DAQ 120

Data Encoding
● Data encoded in digital format

– Arrays of words of fixed size: 2, 4, 8 bytes

● The quantum of information must contain
– A digital value + an unique channel identifier

● Example
– Drift chambers: channel ID and TDC counts
– Calorimeters: channel ID and ADC counts

● For example, one can split a word in two
– e.g. n bits for module id, 32-n bits for TDC/ADC counts
– Number of used bits depends on ADC/TDC range

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Andrea.Negri@unipv.it Intro to DAQ 121

In case of multiple subdetectors
● Several data fragments

– from different parts of
the detector (sources)

– flowing via
buses and networks
from readout system
to event filter
to data storage

– to be assembled
together in the
event builder

– to be stored on self
consistent files

D
a

ta
F

lo
w

Event fragments

Full Event

File

Andrea.Negri@unipv.it Intro to DAQ 122

Event Format

Data

Event Format Libraryonline offline

● Necessary to define an event format
– How event data is encoded, stored and decoded

● It is the core of your experiment
– The bridge between online and offline worlds
– Online for shipping data among data-flow

components and for storage
– Offline to access and decode the data for analysis

● The library implementing the format must be
unique and shared between online and offline

Andrea.Negri@unipv.it Intro to DAQ 123

Event Format
● Identify every chunk of data, w/ a source id

– Both during data taking and offline

● Associate data to the proper bunch-crossing
– to collect all fragments belonging to the same event

● Keep track of the event format version number
– That may evolve during experiment lifetime

● Possibility to easily extend the format
– e.g.: adding sub-detectors

● w/ some redundancies
– For debugging purpose

Andrea.Negri@unipv.it Intro to DAQ 124

Header and payload

 H

 E

 A

 D

 E

 R

 P

 A

 Y

 L

 O

 A

 D

32 bit word
● Each data fragment composed by

– A payload: the actual detector data
– An header: that describes the payload
– In some cases a trailer

● Header structure
– Checkword: begin of frag. (0xEE1234EE)

– Fragment size: where actual data ends
– Header size: where actual data starts
– Time/bunchID: timestamp
– Source ID: where data is coming from
– Event ID: event counter
– Error/status word(s): truncations, bad

detector status, missing elements, ...

noprint

Andrea.Negri@unipv.it Intro to DAQ 125

Header and payload

Checkword

Fragment size

Header size

Time stamp

Source ID

Status word

...

Data word 0

Data word 1

Data word 2

Data word n

● Each data fragment composed by
– A payload: the actual detector data
– An header: that describes the payload
– In some cases a trailer

● Header structure
– Checkword: begin of frag. (0xEE1234EE)

– Fragment size: where actual data ends
– Header size: where actual data starts
– Time/bunchID: timestamp
– Source ID: where data is coming from
– Event ID: event counter
– Error/status word(s): truncations, bad

detector status, missing elements, ...

H
ea

d
er

 S
iz

e
F

ra
g

m
en

t
S

iz
e

32 bit word

Andrea.Negri@unipv.it Intro to DAQ 126

Full event

full event
header1

 "
1

.2
 " 1st data

fragment

1
.2

 " nth data
fragment

...

...

● A full event is a collection
of fragments
– There could be intermediate containers

● A full event is composed by
– A payload: the “array” of data fragments
– An header: that describes the event and is

the portal to the collection of fragments

● Application reading a file must be able to
– Find the 1st full event header
– Navigate among the fragments

● NB: fragment size word in each header
– Up to the next event or the end of file

noprint

Andrea.Negri@unipv.it Intro to DAQ 127

Full event
● A full event is a collection

of fragments
– There could be intermediate containers

● A full event is composed by
– A payload: the “array” of data fragments
– An header: that describes the event and is

the portal to the collection of fragments

● Application reading a file must be able to
– Find the 1st full event header
– Navigate among the fragments

● NB: fragment size word in each header
– Up to the next event or the end of file

full event
header1

 "
1

.2
 " 1st data

fragment

1
.2

 " nth data
fragment

...

...

Andrea.Negri@unipv.it Intro to DAQ 128

Full event header
● Checkword: begin of frag (e.g.: 0xAA1234AA)

● Fragment size: where actual data ends
● Header size: where actual data starts
● Time/bunchID: timestamp
● Run number
● Event classification
● Error words
● Array of offset (one for each fragment)

– Implemented only if random access is required
– Otherwise, just navigate from fragment to

fragment

full event
header1

 "
1

.2
 " 1st data

fragment

1
.2

 " nth data
fragment

...

...

 129

00000004 00000001 0000c89c aa1234aa 00003227 0000001c 04000000 00793c29 00000001 00000000
00000000 50753e27 0ab16f70 00097a2b 00000000 00033dac 00000063 920117d5 00000aa8 00000081
00000018 00020000 40000000 00000000 00000000 00000000 00000000 00000000 00000000 00020000
00000000 dd1234dd 0000002d 00000009 04000000 00210000 00000002 00000000 92011d7f 00000001
ee1234ee 00000009 03010000 00210000 00033dac 920117d5 00000aa8 00000081 00000000 2003e766
2013e282 201490d2 9c122017 ef322018 9d562023 dfa22039 c2224000 2040aa82 2041c3a2 204282b3
20489082 2057efb2 205a8616 2063cce2 2066aee2 2068a0c2 20768ff7 99522077 de72207b d8224000
00000000 00000000 00000002 00000015 00000001 d04326b2 dd1234dd 0000002d 00000009 04000000
00210001 00000002 00000000 92011d80 00000001 ee1234ee 00000009 03010000 00210001 00033dac
920117d5 00000aa8 00000081 00000000 2004af72 2010a3f2 20128ec2 2017c212 202083c2 9ec22025
c6c22026 a3022034 afb74000 20488602 2053c7c2 20548512 95829672 2063c2e2 e512ee02 20648fb2
2074a5e2 2075d5b2 207aa892 ad32207b ed72ee32 00000000 00000000 00000002 00000015 00000001
3de510d4 dd1234dd 00000031 00000009 04000000 00210002 00000002 00000000 92011d80 00000001
ee1234ee 00000009 03010000 00210002 00033dac 920117d5 00000aa8 00000081 00000000 20109ef2
2011ee42 efc22012 93222013 e2822014 97022017 e182201b e0222025 eaa22027 cab22028 80d3202a
84b22035 c5c2ccb2 2036ebc2 20389672 20508002 95a22051 d3172056 9ee22057 ef42205b cee2eca2
2060ad62 2061c4a2 2063ddb7 20649542 00000000 00000000 00000002 00000019 00000001 f631054a
dd1234dd 00000029 00000009 04000000 00210003 00000002 00000000 92011d80 00000001 ee1234ee
00000009 03010000 00210003 00033dac 920117d5 00000aa8 00000081 00000000 2027d422 203088a2
2031d692 20369542 2037ed92 20409c92 ace22044 9a822046 a9e22047 d3422048 8fb2204a 8a12204b
e172205b c4872060 8f822065 ea222067 c3f24000 00000000 00000000 00000002 00000011 00000001
aeaa0e15 dd1234dd 00000039 00000009 04000000 00210004 00000002 00000000 92011d80 00000001
ee1234ee 00000009 03010000 00210004 00033dac 920117d5 00000aa8 00000081 00000000 2006af12
2017eb47 201a8e76 2025e6d2 20268fa2 a292202b dff74000 2040a152 20469122 20529182 2060aea2
2061c4c2 d722d942 2063c5e2 2064a772 206aa152 206bc322 c7c22070 89d22072 8ad22073 c0b7800f
c187c1a7 c1f7c227 c287c2c7 c2e7c3a7 c3c7800f c3f7c417 c497c4d7 c547c5b7 c5e7c637 c657c677
c6b7c727 c767c7a7 00000000 00000000 00000002 00000021 00000001 a1feebf3 dd1234dd 0000002d
00000009 04000000 00210005 00000002 00000000 92011d80 00000001 ee1234ee 00000009 03010000

 130

00000004 00000001 0000c89c aa1234aa 00053227 0000001c 04000000 00793c29 0003d16e 00000000
00000000 50753e27 0ab16f70 00097a2b 00000000 00033dac 00000063 920117d5 00000aa8 00000081
00000018 00020000 40000000 00000000 00000000 00000000 00000000 00000000 00000000 00020000
00000000 dd1234dd 0000002d 00000009 04000000 00210000 00000002 00000000 92011d7f 00000001
ee1234ee 00000009 03010000 00210000 00033dac 920117d5 00000aa8 00000081 00000000 2003e766
2013e282 201490d2 9c122017 ef322018 9d562023 dfa22039 c2224000 2040aa82 2041c3a2 204282b3
20489082 2057efb2 205a8616 2063cce2 2066aee2 2068a0c2 20768ff7 99522077 de72207b d8224000
00000000 00000000 00000002 00000015 00000001 d04326b2 dd1234dd 0000002d 00000009 04000000
00210001 00000002 00000000 92011d80 00000001 ee1234ee 00000009 03010000 00210001 00033dac
920117d5 00000aa8 00000081 00000000 2004af72 2010a3f2 20128ec2 2017c212 202083c2 9ec22025
c6c22026 a3022034 afb74000 20488602 2053c7c2 20548512 95829672 2063c2e2 e512ee02 20648fb2
2074a5e2 2075d5b2 207aa892 ad32207b ed72ee32 00000000 00000000 00000002 00000015 00000001
3de510d4 dd1234dd 00000031 00000009 04000000 00210002 00000002 00000000 92011d80 00000001
ee1234ee 00000009 03010000 00210002 00033dac 920117d5 00000aa8 00000081 00000000 20109ef2
2011ee42 efc22012 93222013 e2822014 97022017 e182201b e0222025 eaa22027 cab22028 80d3202a
84b22035 c5c2ccb2 2036ebc2 20389672 20508002 95a22051 d3172056 9ee22057 ef42205b cee2eca2
2060ad62 2061c4a2 2063ddb7 20649542 00000000 00000000 00000002 00000019 00000001 f631054a
dd1234dd 00000029 00000009 04000000 00210003 00000002 00000000 92011d80 00000001 ee1234ee
00000009 03010000 00210003 00033dac 920117d5 00000aa8 00000081 00000000 2027d422 203088a2
2031d692 20369542 2037ed92 20409c92 ace22044 9a822046 a9e22047 d3422048 8fb2204a 8a12204b
e172205b c4872060 8f822065 ea222067 c3f24000 00000000 00000000 00000002 00000011 00000001
aeaa0e15 dd1234dd 00000039 00000009 04000000 00210004 00000002 00000000 92011d80 00000001
ee1234ee 00000009 03010000 00210004 00033dac 920117d5 00000aa8 00000081 00000000 2006af12
2017eb47 201a8e76 2025e6d2 20268fa2 a292202b dff74000 2040a152 20469122 20529182 2060aea2
2061c4c2 d722d942 2063c5e2 2064a772 206aa152 206bc322 c7c22070 89d22072 8ad22073 c0b7800f
c187c1a7 c1f7c227 c287c2c7 c2e7c3a7 c3c7800f c3f7c417 c497c4d7 c547c5b7 c5e7c637 c657c677
c6b7c727 c767c7a7 00000000 00000000 00000002 00000021 00000001 a1feebf3 dd1234dd 0000002d
00000009 04000000 00210005 00000002 00000000 92011d80 00000001 ee1234ee 00000009 03010000

Full Event
Header

Full Event
Size

Header
Size

Source ID
0x79 =

Event Builder

Run
number

 131

00000004 00000001 0000c89c aa1234aa 00053227 0000001c 04000000 00793c29 0003d16e 00000000
00000000 50753e27 0ab16f70 00097a2b 00000000 00033dac 00000063 920117d5 00000aa8 00000081
00000018 00020000 40000000 00000000 00000000 00000000 00000000 00000000 00000000 00020000
00000000 dd1234dd 0000002d 00000009 04000000 00610000 00000002 00000000 92011d7f 00000001
ee1234ee 00000009 03010000 00610000 00033dac 920117d5 00000aa8 00000081 00000000 2003e766
2013e282 201490d2 9c122017 ef322018 9d562023 dfa22039 c2224000 2040aa82 2041c3a2 204282b3
20489082 2057efb2 205a8616 2063cce2 2066aee2 2068a0c2 20768ff7 99522077 de72207b d8224000
00000000 00000000 00000002 00000015 00000001 d04326b2 dd1234dd 0000002d 00000009 04000000
00610001 00000002 00000000 92011d80 00000001 ee1234ee 00000009 03010000 00610001 00033dac
920117d5 00000aa8 00000081 00000000 2004af72 2010a3f2 20128ec2 2017c212 202083c2 9ec22025
c6c22026 a3022034 afb74000 20488602 2053c7c2 20548512 95829672 2063c2e2 e512ee02 20648fb2
2074a5e2 2075d5b2 207aa892 ad32207b ed72ee32 00000000 00000000 00000002 00000015 00000001
3de510d4 dd1234dd 00000031 00000009 04000000 00610002 00000002 00000000 92011d80 00000001
ee1234ee 00000009 03010000 00610002 00033dac 920117d5 00000aa8 00000081 00000000 20109ef2
2011ee42 efc22012 93222013 e2822014 97022017 e182201b e0222025 eaa22027 cab22028 80d3202a
84b22035 c5c2ccb2 2036ebc2 20389672 20508002 95a22051 d3172056 9ee22057 ef42205b cee2eca2
2060ad62 2061c4a2 2063ddb7 20649542 00000000 00000000 00000002 00000019 00000001 f631054a
dd1234dd 00000029 00000009 04000000 00610003 00000002 00000000 92011d80 00000001 ee1234ee
00000009 03010000 00610003 00033dac 920117d5 00000aa8 00000081 00000000 2027d422 203088a2
2031d692 20369542 2037ed92 20409c92 ace22044 9a822046 a9e22047 d3422048 8fb2204a 8a12204b
e172205b c4872060 8f822065 ea222067 c3f24000 00000000 00000000 00000002 00000011 00000001
aeaa0e15 dd1234dd 00000039 00000009 04000000 00610004 00000002 00000000 92011d80 00000001
ee1234ee 00000009 03010000 00610004 00033dac 920117d5 00000aa8 00000081 00000000 2006af12
2017eb47 201a8e76 2025e6d2 20268fa2 a292202b dff74000 2040a152 20469122 20529182 2060aea2
2061c4c2 d722d942 2063c5e2 2064a772 206aa152 206bc322 c7c22070 89d22072 8ad22073 c0b7800f
c187c1a7 c1f7c227 c287c2c7 c2e7c3a7 c3c7800f c3f7c417 c497c4d7 c547c5b7 c5e7c637 c657c677
c6b7c727 c767c7a7 00000000 00000000 00000002 00000021 00000001 a1feebf3 dd1234dd 0000002d
00000009 04000000 00610005 00000002 00000000 92011d80 00000001 ee1234ee 00000009 03010000

1600
fragments

 132

00000004 00000001 0000c89c aa1234aa 00053227 0000001c 04000000 00793c29 0003d16e 00000000
00000000 50753e27 0ab16f70 00097a2b 00000000 00033dac 00000063 920117d5 00000aa8 00000081
00000018 00020000 40000000 00000000 00000000 00000000 00000000 00000000 00000000 00020000
00000000 dd1234dd 0000002d 00000009 04000000 00610000 00000002 00000000 92011d7f 00000001
ee1234ee 00000009 03010000 00610000 00033dac 920117d5 00000aa8 00000081 00000000 2003e766
2013e282 201490d2 9c122017 ef322018 9d562023 dfa22039 c2224000 2040aa82 2041c3a2 204282b3
20489082 2057efb2 205a8616 2063cce2 2066aee2 2068a0c2 20768ff7 99522077 de72207b d8224000
00000000 00000000 00000002 00000015 00000001 d04326b2 dd1234dd 0000002d 00000009 04000000
00610001 00000002 00000000 92011d80 00000001 ee1234ee 00000009 03010000 00610001 00033dac
920117d5 00000aa8 00000081 00000000 2004af72 2010a3f2 20128ec2 2017c212 202083c2 9ec22025
c6c22026 a3022034 afb74000 20488602 2053c7c2 20548512 95829672 2063c2e2 e512ee02 20648fb2
2074a5e2 2075d5b2 207aa892 ad32207b ed72ee32 00000000 00000000 00000002 00000015 00000001
3de510d4 dd1234dd 00000031 00000009 04000000 00610002 00000002 00000000 92011d80 00000001
ee1234ee 00000009 03010000 00610002 00033dac 920117d5 00000aa8 00000081 00000000 20109ef2
2011ee42 efc22012 93222013 e2822014 97022017 e182201b e0222025 eaa22027 cab22028 80d3202a
84b22035 c5c2ccb2 2036ebc2 20389672 20508002 95a22051 d3172056 9ee22057 ef42205b cee2eca2
2060ad62 2061c4a2 2063ddb7 20649542 00000000 00000000 00000002 00000019 00000001 f631054a
dd1234dd 00000029 00000009 04000000 00610003 00000002 00000000 92011d80 00000001 ee1234ee
00000009 03010000 00610003 00033dac 920117d5 00000aa8 00000081 00000000 2027d422 203088a2
2031d692 20369542 2037ed92 20409c92 ace22044 9a822046 a9e22047 d3422048 8fb2204a 8a12204b
e172205b c4872060 8f822065 ea222067 c3f24000 00000000 00000000 00000002 00000011 00000001
aeaa0e15 dd1234dd 00000039 00000009 04000000 00610004 00000002 00000000 92011d80 00000001
ee1234ee 00000009 03010000 00610004 00033dac 920117d5 00000aa8 00000081 00000000 2006af12
2017eb47 201a8e76 2025e6d2 20268fa2 a292202b dff74000 2040a152 20469122 20529182 2060aea2
2061c4c2 d722d942 2063c5e2 2064a772 206aa152 206bc322 c7c22070 89d22072 8ad22073 c0b7800f
c187c1a7 c1f7c227 c287c2c7 c2e7c3a7 c3c7800f c3f7c417 c497c4d7 c547c5b7 c5e7c637 c657c677
c6b7c727 c767c7a7 00000000 00000000 00000002 00000021 00000001 a1feebf3 dd1234dd 0000002d
00000009 04000000 00610005 00000002 00000000 92011d80 00000001 ee1234ee 00000009 03010000

Fragment
Header

Trailer

0x61: MDT
Barrel side A
(module 2)

Run
number

data

 133

Offset Word hex Word dec Description

0x00000000 0xaa1234aa 2853319850 [full event marker]
0x00000001 0x00019b63 105315 fragment size (words)
0x00000002 0x00000069 105 header size (words)
0x00000003 0x05000000 83886080 version: 5.0-0.0
0x00000004 0x007c0000 8126464 source_id: TDAQ_HLT, module=0 (opt=0)
0x00000005 0x00000001 1 number of status words
0x00000006 0x00000000 0 status[0]
0x00000007 0x00000000 0 check sum type
0x00000008 0x5654a93f 1448388927 bunch cros. time in seconds
0x00000009 0x017c5569 24925545 bunch cros. time, additional nanoseconds
0x0000000a 0x00003a51 14929 global event identifier LS
0x0000000b 0x00000000 0 global event identifier MS
0x0000000c 0x00000000 0 run type
0x0000000d 0x00045fb4 286644 run number
0x0000000e 0x00000050 80 lumi block
0x0000000f 0x78000045 2013265989 lvl1 identifier
0x00000010 0x00000001 1 bunch cros. identifier
0x00000011 0x000000a0 160 lvl1 trigger type
0x00000012 0x00000001 1 compression type
0x00000013 0x000401b4 262580 uncompressed payload size
0x00000014 0x00000030 48 number of lvl1 trigger info words
0x00000015 0x00020000 131072 lvl1 trigger info[0]
0x00000016 0x80000000 2147483648 lvl1 trigger info[1]

Andrea.Negri@unipv.it Intro to DAQ 134

DAQ concepts

Andrea.Negri@unipv.it Intro to DAQ 135

● An heterogeneous agenda
– 29 lectures and 14 labs
– NB: opportunity to interact w/ experts

● DAQ and Trigger hardware
– ADC, TDC, electronics, FPGA,

controllers, network, buses

● Software
– General programming skills, run control and

monitoring, data flow, GPU, machine learning, ...

● DAQ system design
– From lab, to test beam, to LHC and upgrades

isotdaq2022

Andrea.Negri@unipv.it Intro to DAQ 136

Hands on school

Andrea.Negri@unipv.it Intro to DAQ 137

● Study the trigger properties
– Periodic or stochastic, continuous or bunched

● Consider the needed efficiency
– Good to keep operation margins, but avoid over-sizing

● Identify fluctuation sources and size adequate
buffering mechanisms
– NB: there are many source of fluctuations:

multi-threaded sw, network, ...

● Adequate buffer is not a huge buffer
– Makes your system less stable and

responsive, prone to oscillations
– Overall it decreases reliability

DAQ Mentoring

Andrea.Negri@unipv.it Intro to DAQ 138

● Keep it simple: keep under control the number of free
parameters without losing flexibility
– Have you ever heard about SUSY phase-space scans? Do

you really want something like that for your DAQ system?

● Problems require perseverance
– Be careful, a rare little glitch in your

DAQ might be the symptom of a
major issue with your data

● In any case, …

 and enjoy the school

DAQ Mentoring
noprint

Andrea.Negri@unipv.it Intro to DAQ 139

DAQ Mentoring
● Keep it simple: keep under control the number of free

parameters without losing flexibility
– Have you ever heard about SUSY phase-space scans? Do

you really want something like that for your DAQ system?

● Problems require perseverance
– Be careful, a rare little glitch in your

DAQ might be the symptom of a
major issue with your data

● In any case, …

 and enjoy the school

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139

