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The World in 2035
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The problem in 2035

FCC (Future Circular Collider) is only an example

Fixed target, Flavour factories, … the physics reach will be defined 
by trigger!

What the triggers will look like in 2035?

3
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The trigger in 2035…

… will be similar to the current trigger…
High reduction factor

High efficiency for interesting events

Fast decision

High resolution

…but will be also different…
The higher background and Pile Up will limit the ability to trigger 
on interesting events

The primitives will be more complicated with respect today: 
tracks, clusters, rings

4
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The trigger in 2035…

Higher energy
Resolution for high pt leptons → high-precision primitives

High occupancy in forward region → better granularity

Higher luminosity 
track-calo correlation

Bunch crossing ID becomes challenging, pile up

All of these effects go in the same direction
More resolution & more granularity → more data & more 

processing

What previously had to be done in hardware may 
now be done in firmware; What was previously 
done in firmware may now be done in software!

5
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Classic trigger in the future?

Is a traditional “pipelined” trigger possible?
Yes and no

Cost and dimension

Getting all data in one place 

• New links -> data flow 

• No “slow” detectors can participate to trigger (limited 
latency)

Pre-processing on-detector could help

• FPGA: not suitable for complicated processing

• Software: commodity hw

Main limitation: high quality trigger primitives 
generation on detector (processing)
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Pipelined trigger in Run3
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Triggerless?

Is it possible to bring all data on PCs?
LHCb: yes in 2022

• 30 MHz readout, 40 Tb/s data network, 4000 cores, 8800 
links

• (Maybe) No in 2035: track+calo=2PB/s + 5 PB/s 
ev.building (for comparison largest Google data center = 
1 PB/s)  

CMS & ATLAS: probably no (in 2035)

• 4 PB/s readout data, 4M links, x10 in performance for 
switch, x2000 computing

Main limitation: data transport

8
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Triggerless: Data Links

The links bandwidth is steadily increasing

But the power consumption is not compatible with HEP purposes (rad 
hard serializers):

e.g. lpGBT is 500mW per 5Gb/s

4M links → 2 MW only for links on detector

Nowadays standard market is not interested in this application. 9
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Example: an alternative approach

Classic pipeline:

Focus on On-detector 
processing

10

High Latency 
Trigger:
➢ Heterogeneous 

computing nodes

➢ Toroidal network

➢ Time multiplexed 
trigger

➢ Trigger implemented 
in software

➢ Large buffers

Focus on On-
detector Buffers

Triggerless:

Focus on Data Links
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GPU: Graphics Processing Units
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Moore’s Law

Moore’s law: “The performance of microprocessors and the number of 
their transistors will double every 18 months”

The increasing of performance is related to the clock

Faster clock means higher voltage → power wall
12



G
.L

a
m

a
n

n
a

–
IS

O
T

D
A

Q
 –

1
7

/6
/2

0
2

2
 C

a
ta

n
ia

Parallel programming 

Parallel computing is no longer something for 
SuperComputers

All the processors nowadays are multicores

The use of parallel architectures is mainly due to the 
physical constraints to frequency scaling

13
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Parallel computing

Several problems can be 
split in smaller problems 
to be solved concurrently 

In any case the 
maximum speed-up is 
not linear , but it 
depends on the serial 
part of the code (→

Amdahls’s law)

The situation can 
improve if the amount of 
parallelizable part 
depends on the 
resources (→ Gustafson’s 

Law) 
14
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Parallel programming on GPU

The GPUs are processors dedicated to parallel 
programming for graphical application.

Rendering, Image transformation, ray tracing, etc. 
are typical application where parallelization can 
helps a lot.

15



G
.L

a
m

a
n

n
a

–
IS

O
T

D
A

Q
 –

1
7

/6
/2

0
2

2
 C

a
ta

n
ia

What are the GPUs?

The technical definition of a GPU is 
"a single-chip processor with 
integrated transform, lighting, 
triangle setup/clipping, and 
rendering engines that is capable 
of processing a minimum of 10 
million polygons per second.“ 

The possibility to use the GPU for 
generic computing (GPGPU) has 
been introduced by NVIDIA in 
2007 (CUDA)

In 2008 OpenCL: consortium of 
different firms to introduce a 
multi-platform language for 
manycores computing. 

16

(1997)

(2021)



G
.L

a
m

a
n

n
a

–
IS

O
T

D
A

Q
 –

1
7

/6
/2

0
2

2
 C

a
ta

n
ia

Why the GPUs?

GPU is a way to cheat the Moore’s law 
SIMD/SIMT parallel architecture 

The PC no longer get faster, just wider. 
Very high computing power for «vectorizable» 
problems 

Impressive derivative almost a factor of  
2 in each generation 

Continuous development 

Easy to have a desktop PC with teraflops
of computing power, with thousand of 
cores. 

Several applications in HPC, simulation, scientific 
computing…

17
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Computing power

18

• H100: 60 TFlops (30 TFlops), 3TB/s bandwidth

• Last Intel Processor i9-7980XE Extreme Edition Processor: 1 TFlops , 41.3 GB/s bandwidth
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Why?: CPU vs GPU

19
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CPU 

Multilevel and Large 
Caches

Convert long latency 
memory access 

Branch prediction
To reduce latency in 
branching

Powerful ALU

Memory management

Large control part

20

CPU: latency 

oriented design
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GPU

SIMT/SIMD (Single 
instruction Multiple 
Thread/Data) 
architecture

SMX (Streaming Multi 
Processors) to execute 
kernels

Thread level parallelism

Limited caching

Limited control

No branch prediction, but 
branch predication

21

GPU: throughput 

oriented design
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CPU vs GPU

+ Large main memory

+ Fast clock rate

+ Large caches

+ Branch prediction

+ Powerful ALU

Relatively low memory 
bandwidth

Cache misses costly

Low performance per 
watt

22

+ High bandwidth main 
memory

+ Latency tolerant 
(parallelism)

+ More compute resources

+ High performance per watt

Limited memory capacity

Low per-thread performance

Extension card
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CPU + GPU = Heterogeneous Computing

The winning application uses both CPU and 
GPU

CPUs for sequential parts (can be 10X faster than GPU 
for sequential code)

GPUs for parallel part where throughput wins (can be 
100X faster than CPU for parallel code)  

23
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Processing structure with CUDA

What is CUDA?
It is a set of C/C++ extensions 
to enable the GPGPU
computing on NVIDIA GPUs

Dedicated APIs allow to control 
almost all the functions of the 
graphics processor

Three steps:
1) copy data from Host to 
Device

2) copy Kernel and execute

3) copy back results

24
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Grids, blocks and threads 

The computing resources are logically 
(and physically) grouped in a flexible 
parallel model of computation:

1D,2D and 3D grid

With 1D, 2D and 3D blocks

With 1D, 2D and 3D threads

Only threads can communicate and synchronize in 
a block

Threads in different blocks do not interact, threads 
in same block execute same instruction at the 
same time

The “shape” of the system is decided at 
kernel launch time 25
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Mapping on the hardware

26

GP100
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Memory

27

The memory hierarchy is fundamental in 
GPU programming

Most of the memory managing and data 
locality is left to the user 

Unified Address Space 

Global Memory
On board, relatively slow, lifetime of the application, 
accessible from host and device

Shared memory/registers
On Chip, very fast, lifetime of blocks/threads, 
accessible from kernel only



G
.L

a
m

a
n

n
a

–
IS

O
T

D
A

Q
 –

1
7

/6
/2

0
2

2
 C

a
ta

n
ia

Other ways to program GPU

CUDA is the “best” way to program NVIDIA GPU at 
“low level”

If your code is almost CPU or if you need to 
accelerate dedicated functions, you could consider to 
use

Directives (OpenMP, OpenACC, …)

Libraries (Thrust, ArrayFire,…)

OpenCL is a framework equivalent to CUDA to 
program multiplatforms (GPU, CPU, DSP, FPGA,…).

NVIDIA GPUs supports OpenCL.

HIP, SYCL, Kokkos, …

28
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Triggers and GPUs
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Next generation trigger

Next generation experiments will look for tiny effects:

The trigger systems become more and more important

Higher readout band

New links to bring data faster on processing nodes

Accurate online selection

High quality selection closer and closer to the detector readout

Flexibility, Scalability, Upgradability 

More software less hardware

31
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Where to use GPU in the trigger?

In High Level Trigger
It is the “natural” place. If your problem can be parallelized 
(either for events or for algorithm) you can gain factor on 
speed-up → smaller number of PC in Online Farm 

In Low Level Trigger
Bring power and flexibility of processors close to the data source 
→ more physics

32

Alice: Rohr@CHEP2021

Rohr@VCI2022

LHCb: Aaji et al. «Computing and Software for Big Science» (2022)

Aaji et al. «Computing and Software for Big Science» (2020)

CMS: Acosta@PITT-PAC2021

Bocci@HepSeminar(caltech) 30.11.2020

ATLAS: Wynne@ECHEP2020

Krasznahorkay@CHEP2019
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ALICE: HLT TPC online Tracking in RUN1

2 kHz input at HLT, 5x107 B/event, 25 GB/s, 20000
tracks/event

TPC

Cellular automaton + Kalman filter

GTX 580 (in 2011) and AMD S9000 (2015) → GPUs 
halves the number of computer nodes (1.5 MCHF 
cheaper than full CPU)

33
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ALICE: the O2 readout

Run3
Detector modified wrt Run1/2

x50 events rate and time 
frames (TF) instead of bunch 
crossing (1 TF = 10 ms is 
about 500 events)

Continuous readout

New O2 (online+offline) 
trigger-less readout 
concept

Synchronous: calibration and 
data compression during data 
taking

Asynchronous: final 
reconstruction , when no 
beam

34
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ALICE: the O2 readout

FLP (Firts level processor) 
receives data from detectors 
read-out

9000 read-out links

3.5 Tbyte/s (mainly from TPC)

FLP assembles SFT (sub-time frames)

EPN (Event Processing Node) 
applies calibration, runs 
reconstrution and builds the 
final events

Data are transfered on disk
Not trigger selection applied at any 
stage

Only data compression: ~40x in the 
full chain

35

FLP EPN Storage
3.5 TB/s 635 GB/s 90 GB/s

5.5x 7.1x
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ALICE: GPU in Run3

GPU can help both in sync 
and async phase

During synchronous phase 99% 
processing time dominated by 
TPC

• Time frame/event definition, 
calibration, compression, …

• Factor 20-25 speed-up

Other detectors reconstruction 
during asynchronous phase on 
EPN farm

• TPC async (72%), TRD 
tracking (13%), TOF-TPC 
matching (10%)

36
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ALICE: GPU in Run3

37

1500 GPU 

(AMD MI50)

Several GPUs tested
One AMD MI50 GPU is equivalent to about 55 standard CPU cores 

Computing farm consists of 250 servers with 8 AMD MI50 GPU each (and 2x32 
cores Rome AMD-CPU and 512 GB ram)

Tested on full 50 kHz Pb-Pb collisions with a 20% margin
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LHCb: DAQ for Run3

L0 Hardware 
Trigger  removed

30x higher rate and 
5x more pile-up

HLT1: 
Full charged track 
reconstruction (@30 
MHz!!!!)

Reduce the rate by a 
factor 30x

HLT2:
Detector calibration and 
offline track quality 
reconstruction

PID, vertices, exclusive 
triggers,… 38

HLT2

HLT1

HLT1 and HLT2 are ideal places where to use GPUs!
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LHCb: the Allen project

Move the HLT1 before the 
switch, in the Event Bulding 
farm

Full reconstruction at HLT1

Use GPU to increase the 
computing power

Natural Parallel processing on events

Parallelize algorithms

Reduction of data bandwidth
From 32 Tb/s to 1-2 Tb/s

Next step: use GPU in HLT2
39
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LHCb: the Allen project

All the HLT1 primitives produced 
on GPU

Velo: clustering, tracking, vertexing

UT: Tracks reconstruction

SciFi: Tracks reconstruction

Muon: particle identification

Selection:
1 Track, 2 Tracks, High-pt muons, muon 
identification, …

Event rate reduced from 30 MHz 
to 1 MHz with physics 
performace consistent with TDR 

40
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LHCb: Standard Online Farm

41
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LHCb: Online Farm with GPU@HLT1

42
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LHCb: Allen performaces

Several GPUs tested

Switch a 1 Tb/s commutate 
network is easier and 
cheaper with respect to a 
40 Tb/s

Runs on ~250 servers with 
~500 A5000 GPU

Allen software support CPU, CUDA 
and HIP capable GPUs

Reconstruction efficiency 
pratically equal between 
CPU and GPU version

43
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CMS: heterogenous computing in the high level trigger

In HL-LHC era CMS expects 20x 
computing load in HLT

~1.3x from detectors upgrade, ~3x from higher 
pile-up, ~7.5x from event rate

The foreseen CPUs increase in 
performance can account only for a 
4x

Similar for ATLAS

Heterogeneous computing (with GPU 
and other co-processors) can be a 
solution

The most important constraint is the computing time 
per event in HLT

44
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CMS: Patatrack Throughput performances

CPU
Dual socket Xeon Gold 
6130

2x16 cores

4 jobs with 16 threads

GPU
Single NVIDIA Tesla T4 
(2560 cuda cores)

10/16 concurrent events

45
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CMS: GPU in RUN3

Pixel tracking on GPU ready for HLT in Run3 (Patatrack)
Reconstruction of tracks and vertices in the pixels detector

Offload various steps of the reconstruction algorithm on GPU
Cellular automaton

Improve the fitting quality exploiting the GPU computing power

Use the CPU for interaction with the software framework

46
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CMS: GPU timing results

47

About 22% of GPU off-loading only for pixel tracking
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CMS: clustering on GPU

Clustering by Energy (CLUE) on GPU:
Both electromagnetic and hadronic

New algorithm designed for the 
HGCAL

Parallelizable 5 steps algorithm

CLUE on CPU is a factor ~30x faster 
than the present clustering algorithm

CLUE on GPU is an additional factor 
6x

Factor 30x if exclude data transfer time

The data transfer time can be reduced by using 
streams and multiple GPUs

Vertex reconstruction is another HLT 
component that can be offloaded to 
GPU

48
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ATLAS: GPU in HLT in Run1

49

Demonstrators in Run1

Accelerator Process 
Extension(APE) 
Framework

Tracking

Calorimeter

Muon

Inner Detector, tracking 
based on Cellular 
Automata(CA)

Calorimeter, jet finding and 
clusterization based on CA

Muon, tracking based of 
hough transforms

Best result: x28 in tracking 
seeding algorithm
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ATLAS: GPU for the future

50

The conclusion of this study was not to use the GPU in ATLAS

• The gain was marginal

The reason is related to the use of “Athena”, the ATLAS 
software that was not able to manage concurrency and 
multithreading

New studies are on going to study the interaction of 
aynchrounous run of heterogeneous accelerators in the 
“Athena MT” framework (based on TBB) 

Recent effort in ATLAS to include accelerators support in 
software by using AthenaMT/Gaudi vs OpenACC, SYCL, 
OpenCL, Cuda,…

Search for Hardware Trigger Tracking alternative is motivating 
a new round of GPU devolpment in ATLAS
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Low level trigger:Different Solutions

Brute force: PCs

Bring all data on a huge pc farm, 
using fast (and eventually smart) 
routers.

Pro: easy to program, flexibility; 
Cons: very expensive, most of 
resources just to process junk.

Rock Solid: Custom Hardware

Build your own board with dedicated 
processors and links

Pro: power, reliability; Cons: 
several years of R&D (sometimes to 
re-rebuild the wheel), limited 
flexibility

51

Elegant: FPGA

Use a programmable logic to have a flexible 
way to apply your trigger conditions.

Pro: flexibility and low deterministic latency; 
Cons: not so easy (up to now) to program, 
algorithm complexity limited by FPGA clock and 
logic.

Off-the-shelf: GPU

Try to exploit hardware built for other purposes 
continuously developed for other reasons

Pro: cheap, flexible, scalable, PC based. Cons: 
Latency
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GPU in low level trigger

Latency: Is the GPU latency per event small enough to cope 
with the tiny latency of a low level trigger system? Is the 
latency stable enough for usage in synchronous trigger 
systems?

Computing power: Is  the GPU fast enough to take trigger 
decision at tens of MHz events rate?

52
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Low Level trigger: NA62 Test bench

53

RICH: 
17 m long, 3 m in diameter, filled with Ne at 

1 atm

Reconstruct Cherenkov Rings to distinguish 

between pions and muons from 15 to 35 

GeV

2 spots of 1000 PMs each

Time resolution: 70 ps

MisID: 5x10-3

10 MHz events: about 20 hits per particle 

NA62:
Fixed target experiment on SPS (slow 

extraction)

Look for ultra-rare kaon decays (K→pnn)
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Latency: main problem of GPU computing

Total latency 
dominated by 
double copy in 
Host RAM

Decrease the data 
transfer time:

DMA (Direct 
Memory Access)

Custom manage of 
NIC buffers

“Hide” some 
component of the 
latency optimizing 
the multi-events 
computing 

54

NIC GPU

chip

set
CPU RAM

PCI 

express

VRAM

Host PC
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NaNet-10

55

ALTERA Stratix V dev board 
(TERASIC DE5-Net board)

PCIe x8 Gen3 (8 GB/s)

4 SFP+ ports (Link speed up to 
10Gb/s)

GPUDirect /RDMA 

UDP offload support

4x10 Gb/s Links

Stream processing on FPGA
(merging, decompression, …)

Working on 40 GbE (foreseen 
100 GbE)
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NaNet-10

56

VCI 2016 16/02/2016 56
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NA62 GPU trigger system

57

8x1Gb/s links for data readout 

4x1Gb/s Standard trigger 

primitives

4x1Gb/s GPU trigger 

Readout event: 1.5 kb (1.5 Gb/s)

GPU reduced event: 300 b (3 Gb/s)

Events rate: 10 MHz

L0 trigger rate: 1 MHz

Max Latency: 1 ms

Total buffering (per board): 8 GB

Max output bandwidth (per board): 4 Gb/s

GPU NVIDIA K20:

• 2688 cores

• 3.9 Teraflops

• 6GB VRAM

• PCI ex.gen3

• Bandwidth: 250 GB/s
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Ring fitting problem

Multi rings on the 
market:

With seeds: Likelihood, 
Constrained Hough, … 

Trackless: fiTQun, APFit, 
possibilistic clustering, 
Metropolis-Hastings, Hough 
transform, …

58

Trackless

no information from the tracker

Difficult to merge information from many detectors at L0

Fast

Not iterative procedure

Events rate at levels of tens of MHz

Low latency

Online (synchronous) trigger

Accurate

Offline resolution required
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Almagest

59

New algorithm (Almagest) based on Ptolemy’s theorem:  “A quadrilater is 

cyclic (the vertex lie on a circle) if and only if is valid the relation: 

AD*BC+AB*DC=AC*BD  “

Design a procedure for parallel implementation
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Almagest

60

A

B

C

D
D

D

i) Select a triplet (3 

starting points)

ii) Loop on the 

remaining points: if the 

next point does not 

satisfy the Ptolemy’s 

condition then reject it  

iii) If the point 

satisfy the 

Ptolemy’s 

condition then 

consider it for the 

fit

iv) …again…

v) Perform a 

single ring fit

vi) Repeat by 

excluding the 

already used 

points
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Histogram

The XY plane is divided in a Grid

The histograms of the distances is created for 
each point in the grid

61
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Processing flow

62

TEL62 – J1

TEL62 – J2

TEL62 – S1

TEL62 – S2

Data are received 

(~10us) 

Pre-processing 

(<10us):

- Protocol offload

- Decompression

- Merging

Copy through PCIe in 

VRAM

Event signal to GPU

KERNEL

GPU 

computing

Results 

available

Processing

DMA

NaNet-10

GPU

Clop

Send, Re-synchro (for 

realtime), …

gathering Computing
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Results in 2017 NA62 Run

63

Processing time per event: 1 us (K20c), <0.20 us
(P100)

Processing latency: below 200 us (compatible with 
the NA62 requirements) 

Testbed
Supermicro X9DRG-
QF Intel C602 
Patsburg

Intel Xeon E5-2602 
2.0 GHz

32 GB DDR3

nVIDIA K20c and 
P100

~ 25% target 
beam intensity
(9*1011 Pps)

Gathering
time: 350ms
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Where to use GPU in HEP?

Trigger
Latency order from 10-1000 us

Rate up to O(10 MHz) (per board)

Tracking, Calorimeters, Pattern recognition

Simulation & Analysis
Geant V

Random number generators

Fast linear algebra

DNN and ML
Training and (maybe) inference

Data quality

Jet reconstruction
64
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Conclusions

In 2035 the trigger will look different than 
today: more computing power is 
unavoidable

Heterogeneous computing with GPU could be 
a possible solution to help to design new 
architectures

The migration towards COTS is a trend in 
our job and triggering with processors built 
for other purposes can give several 
advantages

In addition program GPUs is quite funny… 
for several reasons…   

65

THANK YOU!!!
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SPARES

66
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TEL62

67

512 HPTDC
channels 

5 FPGAs

DDR2
memories for 
readout buffer

Readout data 
are used for 
trigger 
primitives

Data and 
primitives 
transmission 
through eth 
(UDP)
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The NA62 “standard” TDAQ system

68

L0 trigger

Trigger primitives

Data

CDR

O(KHz)

E
B

GigaEth SWITCH

L1/L2

PC

RICH MUV CEDAR LKRSTRAWS LAV

L0TP

L
0

1 MHz

1 MHz

10 MHz

10 MHz

L1/L2

PC

L1/L2

PC

L1/L2

PC

L1/L2

PC

L1/L2

PC

L1/L2

PC

100 kHz

L1 trigger

L
1

/2

L0: Hardware 

synchronous level. 

10 MHz to 1 MHz. 

Max latency 1 ms.

L1: Software level. 

“Single detector”. 

1 MHz to 100 kHz

L2: Software level. 

“Complete 

information level”. 

100 kHz to few

kHz.
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Example: RGB to gray scale conversion

69

Assume you want to convert an image in which 
you have the rgb code for each pixel in greyscale

Rgb is a standard to define the quantity of red, green and blue 
in each pixel

A greyscale image is an image in which the value of each pixel 
carries only intensity information.
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Example: RGB to grayscale conversion

Conversion formula: For each pixel (I, J) 
do: 

grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

70

#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

unsigned char * rgbImage,
int width, int height) {

int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;

if (x < width && y < height) {
// get 1D coordinate for the grayscale image
int grayOffset = y*width + x;
// one can think of the RGB image having
// CHANNEL times columns than the gray scale image
int rgbOffset = grayOffset*CHANNELS;
unsigned char r =  rgbImage[rgbOffset ]; // red value for pixel
unsigned char g = rgbImage[rgbOffset + 2]; // green value for pixel
unsigned char b = rgbImage[rgbOffset + 3]; // blue value for pixel
// perform the rescaling and store it
// We multiply by floating point constants
grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

}
}

More on GPU 

programming 

in Lab 14!
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Cellular Automaton for track seeding

Build local tracks segments from detector layers
Highly parallelizable

Connect the possible segments 

Apply some rule to find the real track among all the possible tracks

Design from scratch for parallel application

71
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CMS: Heterogenous Computing  

NVIDIA Jetson AGX Xavier
Single board computer with 8 ARMv8 cores 
with an integrated Volta GPU (512 cores)

Rediced power consumption: 30 W

72

Encouraging results
Comparison with T4: 
2560 cores

Preliminar results on 
Cavium
ThunderX2+Volta 
(5120 cores) give
about 1800 ev/s

150 W
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Classic Pipeline: Processing

The performances of FPGA as 
computing device depends on 
the problem

The increasing in computing 
capability in “standard” FPGA
is not as fast as CPU

This scenario would change in 
the future with the 
introduction of new 
FPGA+CPU hybrid devices 
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GPU vs CPU vs FPGA

74
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PANDA

107 events/s

Full reconstruction for online 
selection: assuming 1-10 ms →
10000 – 100000 CPU cores

Tracking, EMC, PID,…

First exercice: online tracking

Comparison between the same 
code on FPGA and on GPU: the 
GPUs are 30% faster for this 
application (a factor 200 with 
respect to CPU)

75

1 TB/s

1 GB/s
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CBM & STAR

107 Au+Au collisions /s

~1000 tracks/event

trigger-less

Since the continuos structure of 
the beam ~10000 tracks/frame

Cellular automaton+KF

76Grid=100000 cores
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Computing vs LUT

77

Complexity

LUT

processors

Where is this limit?
It depends …
In any case the GPUs 
aim to shrink this space

Sin, cos, log, …
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Accelerators

Accelerators: 
co-processors 
for intensive 
computing

Nowdays co-
processors are 
connected 
through 
standard bus

78
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CPU v GPU

79

T
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Streams

The main purpose of 
all the GPU computing 
is to hide the latency

In case of multiple 
data transfer from 
host to device the 
asynchronous data 
copy and kernel 
execution can be 
superimposed to avoid 
dead time
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