ISOTDAQ

International School of Trigger and Data Acquisition

Storage systems for DAQ

Adam Abed Abud (CERN) Enrico Gamberini (CERN)

ISOTDAQ 202 2

13 - 23 June 2022 (Catania, Italy)

Storage Examples in Bytes

Google global storage (10-15 EB)

CERN (110 PB/year)

4K video stream (4 MB/s) 1 hour of video (1-10 GB)

kilo 10^3 mega 10^6

giga 10⁹

tera 10¹²

peta 10¹⁵

 $exa 10^{18}$

Storage Examples in Bytes

Google global storage (10-15 EB)

CERN (110 PB/year)

YouTube to storage (3 GB/s)

YouTube to storage (90 PB/year)

ATLAS to storage (1-5 GB/s)

ATLAS pre-trigger (60 TB/s)

ATLAS to storage (20 PB/year)

DUNE to storage (250 MB/s)

DUNE pre-trigger (1.5 TB/s)

DUNE to storage (7.5 PB/year)

4K video stream (4 MB/s) 1 hour of video (1-10 GB)

 $kilo 10^3$

mega 10^6

giga 10⁹

tera 10¹²

peta 10¹⁵

 $exa 10^{18}$

Outline

- Why are storage systems relevant for DAQ?
- Storage concepts
- Technology overview
 - HDD, SSD, NVM and DRAM
- Performance benchmarking
 - DD and FIO
- Storage challenges for the future
- R&D for DUNE: Supernova burst trigger
- Conclusion

- Not all the data can be stored:
 - Lack of storage resources
 - Not enough (offline) processing power

Why are storage systems relevant for DAQ? TDAQ pipeline and physics analysis

Why are storage systems relevant for DAQ?

TDAQ pipeline - Online data taking ("DAQ")

"Safely store data from point A to point B"

- Storage systems ensure that data is stored and physics results can be produced!
 - Data stored → physics results
- DAQ requirements are different from offline analysis:
 - Storage used to buffer data:
 Absorbs rate fluctuations from the rest of the system
 - Continuous stream of data flow in and out the storage system
 - Throughput and latency constraints
 - Technology choice affected by total expected data

- Storage systems ensure that data is stored and physics results can be produced!
 - Data stored → physics results
- DAQ requirements are different from offline analysis:
 - Storage used to buffer data:
 Absorbs rate fluctuations from the rest of the system
 - Continuous stream of data flow in and out the storage system
 - Throughput and latency constraints
 - Technology choice affected by total expected data

- Storage systems ensure that data is stored and physics results can be produced!
 - \circ Data stored \rightarrow physics results
- DAQ requirements are different from offline analysis:
 - Storage used to buffer data:
 Absorbs rate fluctuations from the rest of the system
 - Continuous stream of data flow in and out the storage system
 - Throughput and latency constraints
 - Technology choice affected by total expected data

- Storage systems ensure that data is stored and physics results can be produced!
 - \circ Data stored \rightarrow physics results
- DAQ requirements are different from offline analysis:
 - Storage used to buffer data:
 Absorbs rate fluctuations from the rest of the system
 - Continuous stream of data flow in and out the storage system
 - Throughput and latency constraints
 - Technology choice affected by total expected data

and cost!

Storage concepts and Technology overview

Storage concepts Some definitions

Start | Stop |

| Time |

- I/O: input/output operation
- Access pattern: sequential/random read or write
- Latency: time taken to respond to an I/O. Usually measured in ms or in µs
- Rate: number of I/O per second to a storage location (IOPS)
- Blocksize: size in bytes of an I/O request
- Bandwidth: product of I/O block size and IOPS

Bandwidth = [I/O block size] x [IOPS]

Hard drives (HDD) **Quick introduction**

- Electromechanical device
- Circular rotating platter divided into millions of magnetic components where data is stored
- Typical rotational speed of HDDs:
 - 5400 rpm, **7200 rpm**, 10k rpm and 15k rpm
- Seek time: time required to adjust the read-write head on the platter. Typical values: from 3 ms to 15 ms
- Rotational latency: time needed by the platter to rotate and position the data under the read-write head

$$IOPS = \frac{1}{\text{Avg. seek + Avg. latency}}$$

Platter

head

Solid state drives (SSD) Quick introduction

• Architecture:

- NAND flash chipset: store data
- Controller: caching, load balancing and error handling
- Capacity limited to number of NAND chipsets a manufacturer is able to insert into a device
- (Typically) better performance compared to HDDs
 - There is no mechanical component
 - Reduced latency and seek time
- Optimized controller and communication technology for higher bandwidth devices
 - NVM Express (NVMe) SSD

DRAM and Non-Volatile Memory

Quick introduction

DRAM

- Semiconductor memory technology
- Data is not persisted, only temporary storage cells (capacitors and transistors)
- \circ Low latency (0.1 μ s)

Non-volatile memory (NVM)

- Hold data even if device is turned off
- Higher storage capacity than DRAM
- Latency (1 µs)
- 3D XPoint technology (Intel and Micron, 2015)

Market trend for storage technologies

Price per GB for HDD, SSD, Flash and RAM

Storage benchmarking

- Linux tool to copy data at the block level
- Usage:
 - o dd if=/path/to/input/file of=/path/to/output/file
 bs=block size count=amount blocks
- Avoid operating system cache by adding oflag=direct option

```
[student@storage_lecture]$ dd if=/dev/zero of=deleteme bs=1M count=1000
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB, 1000 MiB) copied, 3.67626 s, 285 MB/s
```

Storage benchmarking Flexible I/O (FIO)

- Advanced tool for characterizing I/O devices
- Usage:

```
o fio --rw=<opt1> --bs==<opt2> --size=<opt3> --filename=<opt4>
    --direct=<opt5> --ioengine=libaio --name=isotdaq
```

```
[student@storage_lecture]$ fio --rw=write --bs=1M --size=1G --filename=deleteme
--direct=0 --ioengine=libaio --name=isotdaq
fio-3.12
Starting 1 process
isotdaq: Laying out IO file (1 file / 1024MiB)
... ... ...
Run status group 0 (all jobs):
    WRITE: bw=276MiB/s (282MB/s), 276MiB/s-276MiB/s (282MB/s-282MB/s), io=1024MiB (1074MB), run=4424-4424msec
```

Redundant Array of Inexpensive Disks (RAID) Redundancy and fault tolerance

- Multiple physical disk drives are logically grouped into one or more units to increase data performance and/or data redundancy
- Invented in 1987 by researchers from the University of California
- Most common RAID types: RAID 0, RAID 1, RAID 5, RAID 10
- Fault tolerance guaranteed by using parity as an error protection scheme
 - Based on the XOR logic operation
 - For series of XOR operations, count the number of occurrences of 1:
 - If result is <u>even</u> then bit parity is 0
 - If result is <u>odd</u> then bit parity is 1

Redundant Array of Inexpensive Disks (RAID)

RAID 0 - Striping

- Data divided in blocks and <u>striped</u> across multiple disks
- Not fault tolerant because data is not duplicated
- Speed advantage
 - Two disk controllers allow to access data much faster

Redundant Array of Inexpensive Disks (RAID)

RAID 1 - Mirroring and Duplexing

- Data divided in blocks and <u>copied</u> across multiple disks
- Fault tolerant because of data mirroring
 - Each disk has the same data
- **Disadvantage**: usable capacity is half of the total

Redundant Array of Inexpensive Disks (RAID) Redundancy and fault tolerance

- Multiple physical disk drives are logically grouped into one or more units to increase data performance and/or data redundancy
- Invented in 1987 by researchers from the University of California
- Most common RAID types: RAID 0, RAID 1, RAID 5, RAID 10
- Fault tolerance guaranteed by using parity as an error protection scheme
 - Based on the XOR logic operation
 - For series of XOR operations, count the number of occurrences of 1:
 - If result is <u>even</u> then bit parity is 0
 - If result is <u>odd</u> then bit parity is 1

Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

A crash course on bit parity

Example for a "3-bit" hard drive

Disk 1	Disk 2	Disk 3	Count	Parity
0	1	1		
1	0	0		
1	1	0		

A crash course on bit parity

Example for a "3-bit" hard drive

Disk 1	Disk 2	Disk 3	Count	Parity
0	1	1	2	0
1	0	0	1	1
1	1	0	2	0

A crash course on bit parity Disk failure

Disk 1	Disk 2	Disk 3	Count	Parity
0	1	1	2	0
1	0	0	1	1
1	1	0	2	0

A crash course on bit parity

Example for a "3-bit" hard drive

Disk 1	Disk 2	Parity	Count	Disk 3
0	1	0		
1	0	1		
1	1	0		

A crash course on bit parity

Example for a "3-bit" hard drive

Disk 1	Disk 2	Parity	Count	Disk 3
0	1	0	1	1
1	0	1	2	0
1	1	0	2	0

A crash course on bit parity

Example for a "3-bit" hard drive

Disk 1	Disk 2	Parity	Count	Disk 3
0	1	0	1	1
1	0	1	2	0
1	1	0	2	0

RAID 5 - Striping with parity

- Requires 3 or more disks
- Data is not duplicated but striped across multiple disks
- Fault tolerant because parity is also striped with the data blocks
- Larger capacity provided compared to RAID 1
- Disadvantage: an entire disk is used to store parity

RAID 10 = RAID 1 + RAID 0

- Requires a minimum of 4 disks
- Data is **striped** (RAID 0)
- Data is duplicated across multiple disks (RAID 1)
- Advantage: fault tolerance and higher speed
- **Disadvantage**: only half of the available capacity is usable

HW, SW

- Hardware implementation:
 - Use of RAID controllers
 - Manage system independently of OS
 - Offload I/O operation and parity computation
 - Cost usually high
- **Software** implementation:
 - OS used to manage RAID configuration
 - Impact on CPU usage can be high
- Disadvantage: scaling to multiple servers is not possible

HW, SW

- Hardware implementation:
 - Use of RAID controllers
 - Manage system independently of OS
 - Offload I/O operation and parity computation
 - Cost usually high
- **Software** implementation:
 - OS used to manage RAID configuration
 - Impact on CPU usage can be high
- Disadvantage: scaling to multiple servers is not possible

- Distributed storage system: files are shared and distributed between multiple nodes
 - Active communities (Red Hat, IBM, Apache)
 - Example: Ceph, Gluster, Hadoop, Lustre
 - Used by some experiments (CMS)
 - Interesting features:
 - load balancing
 - data replication
 - smart placement policies
 - scaling up to O(1000) nodes

Scale-out performance, capacity and availability

- Application in DAQ: implementation of the event builder:
 - Physical event building (traditional approach): data fragments are fetched explicitly over a network from temporary buffers at the readout nodes to a single physical location

- Application in DAQ: implementation of the event builder:
 - Physical event building (traditional approach): data fragments are fetched explicitly over a network from temporary buffers at the readout nodes to a single physical location

- Application in DAQ: implementation of the event builder:
 - Logical event building: fragments are stored in a large distributed system and events are built by computing the location of the fragments (metadata operation)
- R&D for future DAQ systems: ATLAS (Phase-II), DUNE, etc.

- Application in DAQ: implementation of the event builder:
 - Logical event building: fragments are stored in a large distributed system and events are built by computing the location of the fragments (metadata operation)
- R&D for future DAQ systems: ATLAS (Phase-II), DUNE, etc.

DAQ takeaway Storage technologies

- Different storage media available on the market for different use cases
 - \circ Long term storage, mostly sequential access \rightarrow HDD
 - Low latency and large capacity → SSD
 - High rate and persistent → Non-Volatile memory
 - Fast and temporary → DRAM
- Keep in mind that price/GB changes a lot for different storage media
- When designing a DAQ system always keep an eye on the target throughput and required rate for your application
- Data safety and reliability is an important factor!
 - RAID

DAQ takeaway

Storage challenges for the next generation DAQ systems

- Physics signals are rare!
 - Higher intensity beams are needed
 - More granular detectors
 - Consequence: store more data
- ullet HL-LHC: Data rates and data bandwidths will increase by ~ 1 order of magnitude
 - Consequence: scale DAQ system
 - Use commercial off-the-shelf technology as much as possible
- Current storage landscape
 - HDD: large and cheap streaming storage
 - SSD: low latency and high throughput

Storage systems in HEP

DUNE experiment

Quick overview

- Neutrino experiment located at Sanford Underground Research Facility in South Dakota
- Far detector located 1300 km away from source and approximately 1.48 km underground
- 4 modules of 17 kton LAr time projection chamber

DUNE experiment DAQ system

- TPC sampling rate: 2 MHz
- Each readout board :
 - o 10 links
 - o O(1) GB/s per link

10 GB/s

- 150 detector units
 - Total readout rate O(1.5) TB/s

Supernova Neutrino Burst

- Supernova Neutrino Burst (SNB) detection
 - One of the physics goals of DUNE
 - Detection of rare, low energy and distributed signatures
- Data taking of SNB events is **complex**:
 - Long trigger latency
 - Physics event distributed over time
 - Critical data: avoid any potential loss

Requirements:

- Transient buffer O(10) seconds (i.e. 15 TB per detector module)
- On trigger: persist O(100) seconds (i.e. 150 TB per detector module)

Supernova Neutrino buffer

Persistent memory

- Critical data and high bandwidth:
 - Use of Non-Volatile Memory technology (3D XPoint)
- Successful prototype capable of buffering data from the readout system
 - Transient buffer of 10 seconds
 - Store for over 100 seconds
 - Sustained a maximum throughput of 10 GB/s
- From benchmark results: the bandwidth of NVM is approximately 10 GB/s
- Successfully integrated in DUNE DAQ software

Conclusions

- DAQ mentoring:
 - Storage system is crucial for physics results
 - Online data taking has different requirements from offline analysis
- Design of a storage system:
 - Focus on <u>both</u> bandwidth and rate
 - Latency / access pattern
 - Several storage media for different use-cases (HDD, SSD, NVM, DRAM)
- Very important to benchmark performance of devices. Tools: DD and FIO
- Use redundancy where necessary based on system availability requirements

International School of Trigger and Data Acquisition

Thank you! Questions?

adam.abed.abud@cern.ch enrico.gamberini@cern.ch