
LabVIEW

ISOTDAQ 2022
G a r y B o o r m a n

2 0 t h – J u n e – 2 0 2 2

2

● Introduction to LabVIEW

● Instrumentation and Data Acquisition

● Application Development

● LabVIEW for Accelerators and Detectors

● Other Research Applications

A g e n d a

3

National Instruments

B a c k g r o u n d

2014 64bit Linux

2016 Channel wires

2017 NXG

2018 Web VIs

2019

2021

Native Python Node

LabVIEW as Web app

4

S o f t w a r e U s e d f o r D a t a A c q u i s i t i o n a n d I n s t r u m e n t C o n t r o l

D A Q C o m p a r i s o n

OPTIONS C++/C#/JS/VB LabVIEW MATLAB DASYLab

Ease of programming (novice) Difficult Easy Medium Easy

Programming Community size Very large Large Large Medium

Complex Applications Yes Yes No No

Built-in DAQ Support No Yes Some Yes

Built-in Analysis No Yes Yes Yes

DAQ & In s t rumenta t ion

6

t e m p e r a t u r e

L i D A R

H e t e r o g e n e o u s

M e a s u r e m e n t c h a l l e n g e s

s y s t e m s

● Conflicting programming approaches

● Disparate drivers

● Timing, triggering, and synchronization

● Fixed soft/hardware

● Changing requirements

● …

R G A

s t o r a g e

7

M e a s u r e m e n t c h a l l e n g e s

Conditioning?

y e s

y e s

n o

n o

Software

-

InterfaceSensor

H e t e r o g e n e o u s

s y s t e m s

8

Industries and Applications

Hardware and I/O Devices

PXI and Modular
Instruments

Desktops and
PC-Based DAQ

NI CompactRIO

Test Monitor Embedded Control Cyber Physical

Open Connectivity With
Third-Party I/O

9

C o m p a c t D A Q
P X I

P X I / P X I e m o d u l e s

c h a s s i s

Modular Instruments

C o m p a c t

R I O

Appl icat ion
Creating Code

14

L a b V I E W F r o n t P a n e l
T h e u s e r i n t e r f a c e o f a V I

L a b V I E W B l o c k D i a g r a m
T h e s o u r c e c o d e o f a V I

Application development

F u n c t i o n s :

V i r t u a l

I n s t r u m e n t s

15

● Program as you think

Application development

16

Graphical interface

17

I n t r i n s i c P a r a l l e l i s m

Dataflow

● Data driven execution

18

I n t r i n s i c P a r a l l e l i s m

Dataflow

● Data driven execution

19

for (i = 0; i < 10; i++)

{

/* loop body */

}

for (i = 0; i < 10; i++)

{

if(check(i)) break;

}

Comparison with text

20

switch (n) {

case 5:

printf(“Small number.");

break;

case 100:

printf(“Large number.");

break;

default:

printf(“Outside range”);

break;

}

if condition1 then

-- statements;

elseif condition2 then

-- more statements

elseif condition3 then

-- more statements;

else

-- other statements;

end if

Comparison with text

21

The LabVIEW Compiler I
● The LabVIEW environment continually parses the block diagram

○ Valid code ->

○ Invalid/incomplete code ->

● If code is valid, clicking on the RUN button causes LabVIEW to compile

the code and then execute it

● Click on a broken RUN button to get detailed information on the error

Solid RUN button

Broken RUN button

22

The LabVIEW Compiler II

● When developing/debugging LabVIEW code it can be run and tested

within the LabVIEW environment

● Once the code is working as desired it can be compiled into an

executable (.exe etc), then launched like any other program

○ LabVIEW supports both 32 and 64-bit OS: Windows, Linux and IOS

● Code can also compile into a windows library (.DLL) or Linux library (.SO)

○ Calls to DLL or SO require knowledge of the function prototypes –

LabVIEW will generates the appropriate documentation

● LabVIEW can call functions within other DLL and SO libraries

23

LabVIEW OOP

● LabVIEW has object-oriented capabilities – encapsulation & inheritance

● But BEWARE

○ LabVIEW is a by-value language, including its objects

■ Most other OO environments use by-reference objects

○ All data is private

■ Explicit accessor methods must be used to access the data

● Methods are public by default but can be made private (called by class’s

methods only) or protected (called by child classes too)

● LabVIEW objects are supported on Desktop, RT and FPGA

● Objects can be by-reference if needed Private method

Embedded Systems
Extending the LabVIEW environment

25

Real-time Systems

● Deterministic code operation

● Create distributed control/test/acquisition systems

● LabVIEW real-time (LabVIEW RT)

○ Linux with the real-time patch LabVIEW RT

cRIO PXI
sbRIO Vision System

Desktop PC

26

Compiling LabVIEW for RT Systems
● LabVIEW can run RT code within the development environment

○ Code is executed on the RT system

○ User interface is on the desktop/development system

● Code can usually be run on different RT targets with only minimal

changes (file paths, hardware interfaces etc)

● Once the code is running as expected, compile the code into an RT

executable

○ Executable can be deployed on RT system

○ Executable starts running once the RT has powered up and loaded its

operating system

○ Code is usually designed for running 24/7

27

LabVIEW to the pin

● LabVIEW FPGA

28

LabVIEW to the pin

● Xilinx FPGA

○ IP integration

○ Vivado Export

● NVIDIA CUDA GPU

29

Compiling LabVIEW for FPGA
● Many LabVIEW functions are available for FPGA

○ Some exceptions:

■ Unbound arrays, queues, strings

■ Double precision numbers (Single is permitted)

■ Non-homogeneous arrays of objects

● LabVIEW FPGA code needs to be compiled – automatically launches and

uses the Xilinx Vivado environment. Can add existing VHDL IP

● The RT system accesses the FPGA using:

○ Front panel controls and indicators (fairly slow)

○ Direct memory access, DMA (very fast, up to GB/s depending on

backplane)

○ Interrupts (latency in order of µs)

L a b V I E W f o r A c c e l e r a t o r s a n d

D e t e c t o r s

31

550 LabVIEW Users

30+ Project clients

C E R N L a b V I E W

S u p p o r t

LabVIEW at CERN

32

GPN

TN

t i m i n g F r o n t e n d sL o g g i n g C M W R B A C F E S A

The access challenge

33

CTRP-PMC

(CERN)

PMC carrier

(Kontron)

Fine delay-FMC

(CERN)
FMC carrier

(INCAA) Fibre-based triggering

(ANGARA Technology)

White rabbit timing (CERN)

Custom hardware

P X I c R I O

34

L i n a c 4

P o s t - M o r t e m a n a l y s i s

Example applications

● LHC collimators

● LINAC4 emittance meters

● Kicker Magnets

● AWAKE

● CLIC

● …

35

LabVIEW and Middleware
● EPICS support built-in

○ Create EPICS IOCs to run (usually) on Embedded systems

○ Create EPICS Clients on both Embedded and Desktop systems

○ Several third-party solutions that improve performance or the scope

of data-types (LNLS, ANL etc)

● CMW (Controls Middleware) at CERN

○ The MTA group has created RADE

■ Embedded systems running LabVIEW can read/

write to the standard CERN tools/databases

● TANGO

○ Third-party support from some European and US labs

Other Appl icat ions

● Compile LabVIEW and run within web-page (Javascript)

● View compiled code on any device

● Try www.webvi.io

38

LabVIEW Web Module

● Extensive HW and SW support of RF

○ Vector Signal Transceiver (VST) with accessible FPGA

○ 5G research and metrology

● Autonomous vehicles

● Industrial Internet of Things (IIoT)

39

Support for emerging technology

40

Thank you

C o n t a c t m e :
g a r y . b o o r m a n @ a n g a r a t e c h . c h

Credits

● National Instruments

● CERN EN-SMM group

41

