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Motivation

3

Scientific discoveries come from groundbreaking ideas and the capability 
to validate those ideas by testing nature at new scales—finer and more 
precise temporal and spatial resolution. This is leading to an explosion of 
data that must be interpreted, and ML is proving a powerful approach. The 
more efficiently we can test our hypotheses, the faster we can achieve 
discovery. To fully unleash the power of ML and accelerate discoveries, it 
is necessary to embed it into our scientific process, into our instruments 
and detectors.

“

”
Applications and Techniques for Fast Machine Learning in Science

https://arxiv.org/pdf/2110.13041.pdf
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Introduction to machine learning
• Build models which learn patterns from data to later make predictions on 

unseen data 

• e.g. predict whether a person will like computer games from characteristics 

• ML has been used to great effect in HEP, even since 1980s 

• Most commonly in offline analysis and reconstruction 

• But increasingly in realtime / trigger & DAQ 

• ML, and Fast ML are extremely popular - lots of good tools out there 

4

XGBoost

• Decision tree 
thresholds and 
prediction 
probabilities are 
learned from the 
training data

https://arxiv.org/abs/1603.02754
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Neural Networks
• Model loosely inspired by brain structure with 

neurons and synapses 

- Neurons are real valued representations of 
‘something’ 

- Synapses connect neurons (in one direction) with a 
weight 

• Input neurons are your data variables 

• Output neuron(s) are your prediction class 
probabilities, or continuous variables if performing a 
regression 

• Hidden layers bring the performance of deep 
neural networks 

- Intermediate layers of neurons learn a more abstract 
representation of the data 

- More capable than ‘shallow’ networks on raw data
5
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Neural Networks
• The values of neurons in a layer is given by the product of the neuron values 

of the previous layer and the matrix of weights, with an added ‘bias’, and a 
non-linear ‘activation function’ applied 

• Without the activation function, we’re just doing linear transformations of our 
variables 

• The actual values of these weights and biases are learned from data during 
training…

6

Non-linear
activation function

Matrix-Vector
product

Bias vector
Addition

xn = gn(Wn,n�1xn�1 + bn) ReLU



Machine Learning - ISOTDAQ Catania - Sioni Summers19/6/2022

Training with Gradient Descent
• When training with supervised learning we start with a neural network with randomised 

weights and a collection of labelled training data 

• We need to evaluate the performance of our network, using a loss function, e.g. mean 
squared error: 

• y is the true value of the labelled example, i. ŷ is the value predicted by the neural 
network 

• Would like to minimise the loss function to get the best performing network 

- Predictions as close to true labels as possible 

• Update the (initially not very good) network parameters by evaluating the derivative of the 
loss function w.r.t those parameters, and iterate! 

- ‘lr’ is learning rate

7
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Tools / Frameworks
• You don’t need to write all these algorithms yourself! 

• Many excellent software tools and frameworks are out there for building ML models, 
training and deploying them 

• There are particularly good sets of tools in Python 

8
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A made up example - Keras NN
from tensorflow.keras.models import Model 

from tensorflow.keras.layers import Input, Dense 

from sklearn.model_selection import train_test_split 

import uproot 

X, y, = uproot.open(‘data.root’).arrays([…]) 

X_train, X_test, y_train, y_test = train_test_split(X, y) 

inputs = Input(shape=(3,)) 

hidden = Dense(64, activation=‘relu’, input_shape=2, 
name=‘hidden’))(inputs) 

output = Dense(1, activation=‘sigmoid’, name=‘output’))(hidden) 

nn = Model(inputs=inputs, outputs=output) 

nn.compile(optimizer=“Adam”, loss=“binary_crossentropy”,                                     
metrics=[“accuracy”]) 

nn.fit(X_train, y_train, batch_size=100, epochs=10) 

9
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Convolutional Neural Networks
• The previous slides showed specifically Fully Connected or Dense Neural Networks 

• Many other topologies exist for different types of problems 

• Convolutional Neural Networks for images: apply ‘convolutional filters’ - small neural networks - 
scanning over the pixels 

- Reduces the number of parameters compared to feeding the pixels into a Fully Connected NN 

- Adds translational invariance: the object in the image could be anywhere, and is filtered down by 
the convolutions

10

Image: towardsdatascience

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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Recurrent Neural Networks
• A Neural Network with a built in ‘memory’ 

• Used where there is ordered data, e.g. time series, natural language processing 

• There are a few different flavours: Long Short Term Memory (LSTM), Gate Recurrent Unit 
(GRU) 

• The LSTM cell has an internal state, and fully connected neural networks update this at 
each iteration 

• Could be used, e.g. to predict the next word in a sentence

11

Image: colah’s blog

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Graph Neural Networks
• We’ve seen NNs suitable for applying on ‘high level features’ (Fully Connected), images 

(Convolutional), and time series (Recurrent) 
• Graph networks are well suited to problems described by graphs of vertices and edges 
• Cluster / classify data not only according to its coordinates, but its neighbourhood  
• Iteratively update (strengthen/weaken) connections with fully connected or convolutional 

networks 
• Used in, e.g., molecule synthesis for drug discovery 
• Promising in HEP for multi-clusters in ‘point cloud’ like detectors, e.g. tracking, calorimetry in 

high pileup; hierarchical type problems, e.g. tracking, jets

12
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Transformers
• Sequence-to-sequence type problems 

- The big Natural Language Processing (NLP) models like BERT 
and GPT3 

- These big networks have billions of parameters 

- Unlike RNNs the full sequence enters at once - more 
paralellizable  

• Attention mechanism - learning relationships / context 

• Also relevant in HEP - Particle Transformer (ParT) (jet tagging)

13

Source

https://arxiv.org/pdf/2202.03772.pdf
https://www.eidosmedia.com/blog/technology/machine-learning-size-isn-t-everything
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BDTs for Higgs
• Several BDTs involved in the analysis of Higgs 

boson decay to two photons using high-level 
variables 

- e.g. particle mass, η, isolation 

• To separate signal photons from background 
(photons from jets) 

• Choosing the most likely vertex for the photons 
(they are neutral, so no tracking) 

• A diphoton quality BDT (separating signal like 𝛾 𝛾 
events from background) 

• Used to increase the purity of the selected diphoton 
dataset 

• Increase in sensitivity due to ML equivalent to 
having 50% more data (and no ML)

14

arXiv:1804.02716v2 

arXiv:1804.02716v2
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Neutrino Detector Reconstruction
• From MicroBooNE, Liquid Argon time-projection chamber (LArTPC) neutrino experiment 

• Using a CNN to identify neutrino interactions using a CNN 

• e.g. simulated neutrino interaction yielding 1 μ, 3 p, 2 π. Background from cosmic data 

• Yellow box is ‘truth’ box containing all charge deposits from simulated interactions 

• Red is bounding box predicted by CNN

15

arxiv:1611.05531

https://arxiv.org/abs/1611.05531
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Jet Tagging
• Jet tagging is an area of HEP rich in ML: given the final state observables, what type of 

particle initiated the jet? 

• How to represent the jet? Lots of approaches have been tried, relating to the different NN 
architectures 

- High-level observables reconstructed with “classical” means -> fed into MLP 

- Make images from individual particles by applying a grid -> Convolutional NN 

- Make lists of particles (often pT ordered) -> Recurrent NN or Transformer 

- Represent particles as a graph (point cloud with connections) -> Graph NN

16

arXiv:2202.03772 

https://arxiv.org/pdf/2202.03772.pdf
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Examples of ML in TDAQ
• CMS Level 1 Trigger Endcap Muon system 

uses a BDT to fit the muon momentum from 
hits in the muon stations 

- Complicated geometry and magnetic field 
makes an ML solution useful 

• Deployed using a ‘large LUT’ implemented in 
DDR on a mezzanine card to the FPGA 

• BDT is evaluated for every possible input, with 
the output written at that position in the LUT

17

• In LHCb, Bonsai BDT has been used since the beginning of LHC data taking in their 
online software event selection 

• Bonsai BDT is a technique to compress BDTs into a binned parameter space for faster 
execution 

- Was used in the main selection path for most LHCb analyses
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ML in L1T FPGAs
• Tools like hls4ml (more later) and conifer bring ML into FPGAs with sub-microsecond 

latency 

• Example: identifying fake tracks from CMS Level 1 Track Finder (Phase 2 Upgrade) 

• Fake tracks are identified in simulation as those not associated to a simulated particle 

- Often from combinatorics (200 pileup scenario), they harm trigger performance later 

• A BDT with 60 trees and depth of 3 finds fakes better than simple cuts 

• conifer library maps BDT onto FPGA logic 

- In this case 33 ns latency and < 1% resources (VU9P) 

• Many algorithms in development for Phase 2 

- Improving object reconstruction (as here) 

- Improving event selection of difficult signatures

18

https://fastmachinelearning.org/hls4ml/
https://github.com/thesps/conifer
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On-detector ML
• ECON-T ASIC for CMS High Granularity Calorimeter 

- Compress data to be sent to trigger FPGAs with an AutoEncoder, decode off detector

19

On detector Off detector (trigger)lpGBT

https://doi.org/10.1109/
TNS.2021.3087100

https://doi.org/10.1109/TNS.2021.3087100
https://doi.org/10.1109/TNS.2021.3087100
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On-detector ML
• Neural Net encoder IP block created for ECON-T 

ASIC with Catapult HLS (Mentor/Siemens) and 
hls4ml (more later) 

- NN architecture is fixed, weights can be 
reprogrammed (e.g. after NN retraining) 

- ECON-T also includes non-ML baseline 
compression algorithms 

• Decoder block would run in trigger FPGAs 

• Device manufactured and undergoing testing

20
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Data Quality Monitoring
• Using an Autoencoder for anomaly detection 

- Network has a ‘bottleneck’ that learns an abstract representation of the data 

- After bottleneck, decoder network tries to reproduce the input image 

- For anomalous input, the recreated image is not similar to the original input, and flagged 

• Applied to CMS muon drift tube system, able to identify failures not spotted by previous, 
rule based system

21

arXiv:1808.00911

https://arxiv.org/abs/1808.00911
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ML For Networking
• From ATLAS, predicting the transfer time of files between sites 

• One metric in determining the network-aware scheduling of GRID jobs and file storage 

• Uses a Long Short Term Memory (LSTM) 

• Inputs: source, destination, activity, bytes, start timestamp, and end timestamp 

22

doi :10.1088/1742-6596/898/6/062009
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ML for TDAQ: FastML
• Machine Learnings algorithms are highly parallelisable 

- Recall Neural Network forward pass is matrix-vector products and non-linear 
functions on vectors 

• Can be accelerated with appropriate hardware: 

- CPUs with vector/SIMD units (e.g. AVX - get packages from Intel, for example) 

- GPU, FPGA, TPU (T = Tensor), IPU (I = Intelligence) 

- Need also good software and compilers to utilise hardware effectively 

• ML is also big business, so lots of high performance solutions out there (incl open 
source) 

• Often for Trigger and DAQ we can ‘train offline’, ‘predict online’ 

• Different goals and hardware for each phase 

• May need to (re)optimize ML models for online performance
23
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GPUs for ML
• GPUs are very powerful for machine learning 

- Many more parallel arithmetic ops than a CPU 

- Very high memory bandwidth 

- Training / predicting ML models on large datasets 
doesn’t involve much branching/control 

- Plus the GPU can be useful for other things 

• Usually, using GPUs for ML, you don’t write CUDA 
code yourself but use a higher level framework like 
Tensorflow (or higher still with Keras, PyTorch) 

- Extremely easy to execute on a GPU with these 
environments 

- Exception might be when doing something extremely 
custom 

• See GPU lecture and Lab 14 from this school for more 
on programming GPUs

24

https://indico.cern.ch/event/828931/contributions/3469947/attachments/1863365/3275744/lamanna_isotdaq_2020.pdf
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GPUs for ML
• Biggest gains for GPUs are seen in training, but they also outcompute CPUs in inference 

- But remember you have to get the data to the device (ISOTDAQ: PCIexpress) 

• Here, running inference on K80 GPUs, measuring images / second (throughput) 

• mlperf.org has nice benchmarking of different hardware (not only GPUs) running on 
different models

25

From Microsoft Azure

https://indico.cern.ch/event/928767/timetable/#23-pclexpress
http://mlperf.org
https://azure.microsoft.com/en-us/blog/gpus-vs-cpus-for-deployment-of-deep-learning-models/
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GPUs for ML - batching
• “Batching” is a common technique for better 

hardware utilisation 

- Relevant both at training and inference time 

• Send several data samples to the GPU in one 
batch to maximise use of memory bandwidth 
and compute 

• Is the constraint latency or throughput?  

- If strictly latency: low batch size 

- If throughput: high batch size 

- Both: batch size where throughput saturates

26

arXiv:1803.09492

• Plot: throughput vs latency at different 
batch sizes for Inception V2 (large 
computer vision CNN) 

- On different GPUs and different 
precisions

Puget Systems

https://arxiv.org/pdf/1803.09492.pdf
https://www.pugetsystems.com/labs/hpc/GPU-Memory-Size-and-Deep-Learning-Performance-batch-size-12GB-vs-32GB----1080Ti-vs-Titan-V-vs-GV100-1146/
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GPUs for ML - batching
• Whether or not you can profit from batching depends also on: 

- Is the main constraint on throughput or latency? (Or both?) 

- The data source: do data arrive at fixed intervals (bottom right image), or stochastically 
(bottom left)? 

- Can you afford to wait to accumulate several samples before sending them to the GPU?

27

NVIDIA

https://developer.nvidia.com/blog/nvidia-mlperf-v05-ai-inference/
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Pruning / Sparsity
• A Neural Network often contains many redundant 

connections 
• Pruning methods generally remove some connections 

from the final model 
- Can improve generalisability also 

• Can reduce the model size (memory footprint) 

• Some processors can accelerate sparse networks 

- Basically - don’t do the x * 0 computations 

• Different methods: 
- Regularisation (penalise low value weights, then make 

them 0) 

- Target sparsity, e.g. sparsity ramp up with TFMOT 

- Structured pruning - remove continuous blocks of 
weights; Filter pruning - entire filters of CNN 

• Applies also to BDTs (λ, ⍺ in xgboost) 

• Can be coupled with QAT (= QAP)
28

Images from Tensorflow blog

NVIDIA Ampere

https://arxiv.org/pdf/2102.11289.pdf
https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html
https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/
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Quantization
• Many GPUs support Int8, float16, bfloat16 precision with many more OPS than float32 

- Can do Post Training Quantization (PTQ) - train with FP32 then scale & round to lower 
precision 

- or Quantization Aware Training (QAT) - train with low precision (more on that later) 

- e.g. TensorRT (NVIDIA GPU), TensorFlow Lite (Google), torch.quantization (PyTorch) 

• A method to make the most of the hardware: choices depend upon the target hardware

29

NVIDIA

Float 32 
Float 16

https://developer.nvidia.com/blog/achieving-fp32-accuracy-for-int8-inference-using-quantization-aware-training-with-tensorrt/
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ML Deployment
• What about when you need to orchestrate many GPUs and many “clients” using them? 

• Example: Triton inference server (NVIDIA, open source) 

• Handles dynamic batching depending on requests to optimize latency/throughput 
performance 

- In HEP could be for varying event rate, or varying number inferences per event

30
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ML Specific Processors
• There are some processors out there specifically 

designed for Machine Learning / AI 

• e.g. Tensor Processing Unit (TPU) from Google, 
Intelligence Processing Unit (IPU) from 
Graphcore 

• Devices aiming at low power embedded 

- Internet of Things, Smartphones 

• Xilinx Versal ACAP for FPGAs with embedded 
Vector units, Vector/NN units in CPUs 

• Many different things out there, each targeting a 
specific optimisation: 

- Best overall throughput 

- Lowest latency 

- Lowest power / smallest footprint 

• Choose appropriate device for your task

31

A3D3

https://a3d3.ai/about.html
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FPGAs for ML
• FPGAs are also highly suited to ML tasks - 

massive parallelism, high memory bandwidth 

• There are several big providers using FPGAs for 
ML in their datacentres 

- e.g. Microsoft with Bing and Azure, FPGA 
availability on Amazon Web Services 

• Main way to execute ML on FPGAs: 

- Vendor libraries with fixed silicon designs and an 
instruction set - Deep Learning Processor Unit 
(DPU) for Xilinx Vitis AI, Deep Learning 
Acceleration (DLA) Suite for Intel 

• Can outperform GPUs mostly at maintaining 
high-throughput with low latency (< 2ms) 

• Able to achieve best ‘performance per Watt’ 

• Can benefit from in-network processing with 
FPGA’s high speed connectivity

32

Xilinx: xDNN

https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
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Machine Learning at L1 Trigger

33

Javier Duarte I hls4ml 6

CMS Trigger
High-Level 
TriggerL1 Trigger

1 kHz 
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)


• 99.75% rejected


• decision in ~4 μs 

• High-Level Trigger (software)


• 99% rejected


• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline
L1 Trigger High-Level


Trigger

computing farm

ASIC, FPGA

100 ms 1 s1 ns 1 μs

• Typical ‘latency landscape’ of LHC experiment triggering 
• To deploy Machine Learning at the L1 Trigger need to: 

• Be able to execute ML algorithms in O(1μs) 
• Execute these algorithms on FPGAs and ASICs

CPU, GPU
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What are FPGAs?
Field Programmable Gate Arrays are reprogrammable integrated circuits 
See talks “Introduction to FPGAs”, “Advanced FPGA Programming”, and Labs “FPGA 
Programming”, “SoC FPGA” at this school 
Contain many different building blocks (‘resources’) which are connected together as 
desired 
Extremely parallel processors 
‘Computing in space as well as time’ 
Processing workhorse of low level HEP triggers 
 

34

FPGA diagram

Machine learning algorithms are ubiquitous in HEP  

FPGA usage broad across HEP experiments 
Centered on DAQ and trigger development 

Some early adaptions of ML techniques in trigger [1] 

FPGA development becoming more accessible 

High Level Synthesis, OpenCL 

FPGA interest in industry is growing 
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

LUTs - generic logic 

DSPs - for multiplication 

BRAM - for local, high-throughput 
storage 

 

https://indico.cern.ch/event/928767/timetable/#10-introduction-to-fpgas
https://indico.cern.ch/event/928767/timetable/#24-advanced-fpga-programming
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High Level Synthesis
• FPGA programming is hard 

- Requires a lot of expert engineering 
knowledge, long development cycles 

• New design tools from the FPGA 
companies - ‘High Level Synthesis’ - make 
it a lot easier 

- Enabling more physicists to contribute 

- Enabling experienced FPGA designers to 
complete designs faster 

• In HEP this is enabling us to bring more of 
the offline algorithms into the Level 1 Trigger 

- Kalman Filter for charged particle track 
reconstruction 

- Machine Learning…

35

entity add is
port(
  clk : in  std_logic;
  a   : in  signed(31 downto 0);
  b   : in  signed(31 downto 0);
  c   : out signed(31 downto 0)
)
end add;

architecture rtl of add is
  if rising_edge(clk) then
    c <= a + b;
  end if;
end rtl;

int add (int a, int b){
  return a + b;
}

vs
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High Level Synthesis
• With a Hardware Description Language (HDL), you write a description of a circuit 

• With HLS, you write a description of your algorithm 

- The compiler decides the circuit 

• Controlling how the compiler maps your algorithm to a circuit requires careful code 
design 

• And use of #pragma directives to guide the compiler 

• These also provide a powerful handle for optimisation not accessible to HDL developers

36

#define N 16
typedef ap_fixed<16,8> T;

void myAlgo(T a[N], T b[N], T c[N]){
    #pragma HLS array_partition variable=a,b,c complete
    for(int i=0; i<N; i++){
        #pragma HLS unroll 
        c[i] = a[i] * b[i];
…

Use registers

Execute loop 
iterations 
in parallel
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high level synthesis for machine learning

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.
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Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

https://fastmachinelearning.org/hls4ml/

Implemented a user-friendly, open-source tool to develop and optimize FPGA 
firmware design for Machine Learning inference: 

• Input models trained with standard ML libraries ((Q)Keras, PyTorch, (Q)ONNX) 
• NN implementations using HLS C++ 
• comes with implementation of common ingredients - layer types, activation functions 
• and novel ingredients for fast, efficient inference - binary/ternary NNs, network optimisations 

https://arxiv.org/abs/1804.06913
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this section by discussing how to create an e�cient and optimal firmware implementation of a neural
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below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

Catapult HLS

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/1804.06913
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hls4ml - NN implementation
• Dataflow architecture: each layer is an independent compute unit 

- With tunable parallelism and quantization 

• Fully on-chip: NN must fit within available FPGA resources (pynq-z2 floorplan shown) 

- Example: small CNN trained on MNIST
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hls4ml one slide primer
• Step 1: pip install hls4ml 

• hls4ml is Python based, has Python API 
to: 

- convert NNs 

- write HLS projects 

- run emulation (execute the ap_fixed C++) 

- run synthesis (Vivado HLS) 

- Make accelerator bitfiles for some cards 

- There is also a command line tool 

• Lots of user configuration is possible 
- Change data types (bitwidths) 

heterogeneously 

- Turn performance handles - ReuseFactor, 
Strategy, parallel/streaming IO 

• Much more information in the docs
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from hls4ml import … 
import tensorflow as tf 

# train or load a model 
model = … # e.g. tf.keras.models.load_model(…) 

# make a config template 
cfg = config_from_keras_model(model, 
granularity=‘name’) 

# tune the config 
cfg[‘LayerName’][‘layer2’][‘ReuseFactor’] = 4 

# do the conversion 
hmodel = convert_from_keras_model(model, cfg) 

# write and compile the HLS 
hmodel.compile() 

# run bit accurate emulation 
y_tf = model.predict(x) 
y_hls = hmodel.predict(x) 

# do some validation 
np.testing.assert_allclose(y_tf, y_hls) 

# run HLS synthesis 
hmodel.build()

https://fastmachinelearning.org/hls4ml/
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hls4ml deployment
• For custom FPGA board (like trigger): add NN IP core to project, connect signals in HDL 

• For some popular boards hls4ml has a ‘VivadoAccelerator’ backend 

- Support for pynq-z2 (same as Lab 13: SoC at ISOTDAQ), ZCU102, Alveo coming soon 

• NN IP has AXI Stream inputs & outputs, use Xilinx DMA IP to move data from PS 

- It could come straight from an IP reading a sensor 

- With driver for Xilinx PYNQ Python 
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NN
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MLPerf™ Tiny Results
• MLCommons recently added ‘Tiny’ category to MLPerf benchmark (link) 

• hls4ml submission targeted pynq-z2  

• Fully on-chip hls4ml implementation is efficient for low power inference
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Benchmark CIFAR-10 ToyADMOS

Team Device Accuracy Latency (ms) Power (W)* AUC Latency (ms) Power (W)*

hls4ml Pynq-z2 77% 7.9 ~ 1.5 0.82 0.096 ~ 1.5

Latent AI Raspberry 
Pi 4 85% 1.07 ~ 4 - 5 0.85 0.17 ~ 4 - 5

Harvard Nucleo-
L4R5ZI 85% 704 0.85 10.4

Peng Cheng 
Lab

PCL 
Scepu02 85% 1239.16 0.85 13.65

https://mlcommons.org/en/inference-tiny-07/
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Quantization Aware Training
• Possibly the main technique for making NNs cheaper in FPGAs! 

• Using regular TensorFlow Keras or PyTorch, you train with floating point 

- We like to avoid floating point in FPGAs - much more resources & latency than fixed point 

- You can do post-training quantisation (PTQ) - represent the float values with some fixed point 

• With QAT, you constrain weights/biases/activations to fewer values (like fixed point) 

- Superior to PTQ for lower bitwidths - can go all the way down to 1 bit (representing ±1) 

- Often using ‘Straight Through Estimator’ for back propagation
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arXiv:2103.13630

https://arxiv.org/pdf/2103.13630.pdf
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Quantization Aware Training
• QAT impact is significant - here w/QKeras & hls4ml 

- QAT maintains same accuracy until 6 bits, then 
drops slightly (not that much) 

- PTQ accuracy falls very fast reducing bitwidth 

• Quantization can be heterogeneous 

- Different choices for weights vs activations, and for 
different layers 

- Wider “more expressive” activations can help 

- For autoencoders: higher precision at the bottleneck 
layers; for regression: higher precision at the end (more 
continuous, less discrete output) 

- Because of hls4ml’s dataflow architecture - we can 
take full advantage of that in device 

• AutoQ tool for training NNs with hardware-cost 
constraints 

• https://www.nature.com/articles/s42256-021-00356-5 
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https://www.nature.com/articles/s42256-021-00356-5
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Representing Quantized NNs
• Lots of tools like Tensorflow, PyTorch, TensorRT have support for 

low precision (including QAT) 

• But they are typically restricted to common CPU/GPU types 
(float16, int8, int4, int1) 

- For dataflow (layer unrolled) FPGA inference, we would like more 
flexibility 

• With Xilinx Research Labs we (hls4ml team) develop QONNX 

• Extend QONNX with Quant node 

- Flexible number of bits, zero-point, and per-channel scale factors 

- onnxruntime execution thanks to FINN (Xilinx RL NNs) 

- QONNX is exported by Brevitas, others are working on it, and we 
develop a QKeras to QONNX conversion 

• github.com/fastmachinelearning/qonnx 
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https://github.com/fastmachinelearning/qonnx
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• DSPs (multipliers) often the limiting resource for our NN inference 

• Can go down to event 1- or 2-bit weights with limited performance loss 

• Can have very efficient computation in the FPGA (and CPU/GPU/smartphone) 

• Binarize weights but not 
gradients during 
backpropagation 

• Use Binary Tanh, Ternary 
Tanh or ReLU activation 

• Batch Normalization 

• BNN: arxiv.1602.02830 

• TNN: arxiv.1605.04711

Binary / Ternary neural networks
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https://software.intel.com/en-us/articles/accelerating-neural-networks-with-binary-arithmetic

https://software.intel.com/en-us/articles/accelerating-neural-networks-with-binary-arithmetic
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BNN - Dense Layer
• DSPs often limiting FPGA resource for NNs 

• Encode ‘-1’ as ‘0’ 

• Multiplication become XNOR, sum becomes bitcount
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activation function multiplication addition
precomputed and 
stored in BRAMs DSPs logic cells

xn = gn(Wn,n�1xn�1 + bn)

activation function xnor no bias
simple binary tanh 

/ sign function logic cells

xn = gn(Wn,n�1xn�1 + bn)xn = gn(Wn,n�1xn�1 + bn)

A B A*B
-1 -1 1
-1 1 -1
1 -1 -1
1 1 1

A B A==B
0 0 1
0 1 0
1 0 0
1 1 1

A A’
-1 0
1 1

Original: 16-bit weights

Binarized: 1-bit weights



Machine Learning - ISOTDAQ Catania - Sioni Summers19/6/2022

Impact of QAT & Pruning
• From the hls4ml tutorial 

- Tagging jets (5 classes q/g/t/W/Z, 16 input 
variables) 

• 3 hidden layer MLP (Dense layers): 

- 1) Keras floating point training, 16b inference 

- 2) QKeras with 6 bits for weights, biases, 
activations & 75% sparsity target with TFMOT 

- Minimal code changes required to go from 1) 
to 2)
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%VU9P Latency DSP LUT

Keras 16b 50 ns 1890 (15%) 5%

QKeras 6b 40 ns 22 (~0%) 1%

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one
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Z W gluon

Better

https://github.com/fastmachinelearning/hls4ml-tutorial
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Summary
• This was a whirlwind introduction to Machine Learning, its applications in 

HEP, and emerging use in Trigger and DAQ 

• It is a rich and exciting field of research, constantly inventing new, more 
powerful techniques 

• At the same time, device developers are supporting the growth of ML with 
faster, more parallel processors, and devices designed specifically for ML 

• Deploying ML into the realtime processing for Trigger and DAQ is becoming 
increasingly possible and relevant 

• GPUs are great ML accelerators, and starting to appear in DAQ systems 

• We went through some methods for deployment and optimization 

• I’ve shown the hls4ml package for running ML inference in sub-microsecond 
latency on FPGAs (for L1T) and even ASICs 

• For more: fastmachinelearning.org/hls4ml
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https://fastmachinelearning.org/hls4ml

