
Design and
Implementation of

a Monitoring
System

Serguei Kolos,

University of California, Irvine

What you are expected to
learn from this presentation
❑ Monitoring is indispensable component of a complex system

❑ Use Monitoring System from the very beginning of a complex
project:
• This will be rewarded

❑ Implementing a good Monitoring System requires time and
effort:
• Just use the good API from the beginning
• Implementation will evolve in parallel with the main project

❑ What is a “good API” for Monitoring System?

❑ How to make a simple implementation

❑ How to scale it up towards the final one

22/6/2022 12th International School of Trigger & Data Acquisition 2

How Higgs boson discovery would have
looked like in ideal world

22/6/2022 12th International School of Trigger & Data Acquisition 3

What Happens in Reality

• A complex project has
a chance to success
only if it is ready to
deal with problems

• Monitoring System
provides the first line
of defense:
• Detects, Reports,

Helps to Investigate

22/6/2022 12th International School of Trigger & Data Acquisition 4

Can a ready-made solution be
used?
• Off-the-shelf solutions for monitoring of

complex custom-built systems don’t exist:
• Fully applies to a DAQ system for physics

experiment setup

• They can be constructed using:
• Commodity tools/frameworks

• System specific drivers/adapters

• Not worth building a Monitoring system from
scratch:
• Using existing tools is much more efficient

22/6/2022 12th International School of Trigger & Data Acquisition 5

Two Main Approaches for
Monitoring

22/6/2022 12th International School of Trigger & Data Acquisition 6

Black Box White Box

Polling Notification

Synchronous Asynchronous

Passive Active

The Black Box Monitoring Approach

• System to be monitored is
a Black Box

• Use well-known
procedures as probes for
the Black Box and
measure the result

22/6/2022 12th International School of Trigger & Data Acquisition 7

Rutherford gold foil experiment

The Black Box Monitoring Example

22/6/2022 12th International School of Trigger & Data Acquisition 8

• Nagios is a classical example of the Black Box monitoring

• A framework that:
• Provides checks for commodity HW and SW

• Allows to integrate custom checks

Black Box Approach for a DAQ
system?

• Many DAQ components operate at high rate:
• Polling for monitoring information is inefficient

• DAQ system has many custom HW and SW
components:
• An opportunity to do monitoring in a better way…

22/6/2022 12th International School of Trigger & Data Acquisition 9

What if the Universe was created by a
Computer Scientist?

• Objects expose information about their states:
• E.g. coordinates and velocities of the particles

• The Monitoring system merely takes care of visualizing it in
an appropriate way

22/6/2022 12th International School of Trigger & Data Acquisition 10

The White Box Approach

The Simplest White Box
Monitoring Example

22/6/2022 12th International School of Trigger & Data Acquisition 11

The Message explains
the incident

The monitoring API
function that is used for

incidents reporting

print(“Hello, World!”)

The program exposes its
state to external world

The Architecture of a White Box
Monitoring System

API Communication
Analysis&

Visualisation

• API
• The critical component

• DAQ system see only this API

• It must be independent of the Communication and Visualisation

• Communication and Visualisation are fully flexible:
• Can be changed multiple times throughout the project’s lifetime

22/6/2022 12th International School of Trigger & Data Acquisition 12

print() Python builtins
module

Choosing a Good Monitoring API

print(“Hello, World”)

• The print function has many flaws:
• It implements both the API and the Communication layers:

• No customization will be possible

• It adds no meta-information to the message:
• Severity, timestamp, function name, file and line number, etc…

• Do better solutions exist?

22/6/2022 12th International School of Trigger & Data Acquisition 13

Logging API to the rescue

import logging

logging.basicConfig(level=logging.INFO,

format="%(asctime)s %(levelname)s\

[%(filename)s:%(lineno)s%(funcName)s()] %(message)s")

logging.info("Hello, World!")

22/6/2022 12th International School of Trigger & Data Acquisition 14

Use the standard well-
designed API

The output format can
be easily customized

Standard properties
added automaticallySeverityTimestamp Origin

Message Properties

22/6/2022 12th International School of Trigger & Data Acquisition 15

Timestamp
Sender
Address

Importance
Level

• Destination Address is not
provided by the sender

• All messages are public –
anyone can read them

Message Severity

• CRITICAL
• A fatal failure has occurred. This indicates that the component can

not do its work any more without external intervention

• ERROR
• A recoverable error has happened

• WARNING
• Nothing is bad so far but the system is close to a certain limit
• Do not neglect warnings as they tend to become errors

• INFO
• Something that is expected has just happened

• DEBUG
• Detailed information used for testing and debugging
• Is usually compiled out in production SW for performance

22/6/2022 12th International School of Trigger & Data Acquisition 16

Timestamps

• Used to correlate information from different sources

• Used to correlate information with real life events

• The time stamp guidelines:

• Use NTP service on all computers

• Use the best possible precision (nanoseconds) when creating time
stamps

• Use UTC time

• Conversion to the human readable local time shall be done by the
message displaying applications

22/6/2022 12th International School of Trigger & Data Acquisition 17

Message Origin

• Usually is split into two independent properties:
• Component (process) that produced the message

• Code (file name + line number) where the message was generated

• Component ID must be unique

• Use a structured string as ID:
• Make it human-readable

• Easy grouping and filtering of messages

• Possible examples:
• /ATLAS/MuonDetector/ReadoutApplication/RA-01

• ATLAS-MUON-ReadOut-01

22/6/2022 12th International School of Trigger & Data Acquisition 18

Existing Logging APIs

Python
import logging

class Logger:

def critical(msg, *args, **kwargs):

def debug(msg, *args, **kwargs):

def error(msg, *args, **kwargs):

def info(msg, *args, **kwargs):

def warning(msg, *args, **kwargs):

Java
import java.util.logging.Logger

class Logger {

void severe(String msg);

void fine(String msg);

void error(String msg);

void info(String msg);

void warning(String msg);

}

22/6/2022 12th International School of Trigger & Data Acquisition 19

The Main Advantages of a Logging API

API Communication

• Logger API
• Well-designed and mature

• Communication:
• Different implementations exist on the market

• They are easily interchangeable

• Transparent for the applications that are using a particular API

22/6/2022 12th International School of Trigger & Data Acquisition 20

Example: Existing Appenders for Java
Logger
• CassandraAppender - writes its output to an Apache

Cassandra database

• FileAppender – writes events to an arbitrary file.

• FlumeAppender - Apache Flume is a distributed, reliable
and highly available system for efficiently collecting,
aggregating, and moving large amounts of log data

• JDBCAppender - writes log events to a relational
database table using standard JDBC

• NoSQLAppender - writes log events to a NoSQL database

• SMTPAppender - sends an e-mail when a specific logging
event occurs, typically on errors or fatal errors

• ZeroMQAppender - uses the JeroMQ library to send log
events to one or more ZeroMQ endpoints

22/6/2022 12th International School of Trigger & Data Acquisition 21

https://cassandra.apache.org/
http://flume.apache.org/index.html
https://github.com/zeromq/jeromq

What about C++?

• Rare case where using MACRO for the public API is a viable
option

DAQ_LOG_CRITICAL(“File ‘” << file_name << “’ not found”)

DAQ_LOG_ERROR(…)

DAQ_LOG_WARNING(…)

DAQ_LOG_INFO(…)

DAQ_LOG_DEBUG(…)

• Initial implementation may be trivial:

#define DAQ_LOG_CRITICAL(m) std::cerr << m << std::endl;

• A scalable implementation can be provided later:
• Will not affect users’ code

22/6/2022 12th International School of Trigger & Data Acquisition 22

Example: The ATLAS Error Reporting
System

22/6/2022 12th International School of Trigger & Data Acquisition 23

C++
MACRO

CORBA1 Splunk2

1 Common Object Request
Broker Architecture –
inter-process communication
technology

2 Splunk – A software platform to
stream and collect data

Set Priorities Properly
• Choose (or implement) a Monitoring API

before starting to implement the DAQ
system:
• The Monitoring must be used by all components

of the DAQ system
• Changing them later will be a pain

• Can take care about Communication and
Visualization implementations later:
• Using simple output to terminal would be

sufficient for the beginning

22/6/2022 12th International School of Trigger & Data Acquisition 24

• Advantages:
• Using the monitoring system will exercise its functionality and

performance
• Learn the best ways of presenting information
• Speed up the DAQ system development

How Monitoring System can speed up
DAQ System Development

Efficient debugging cycle using
Monitoring API

Activate
Debug
Output

Run

Deactivate
Debug
Output

“Traditional” debugging cycle

Add
printouts

Recompile

Run

Remove
printouts

Recompile

• Reduces time for debugging

• Optimizes the placement of DEBUG
output in the code

22/6/2022 12th International School of Trigger & Data Acquisition 25

Metrics – Another Kind of
Monitoring Information

• Values of properties of the
software and hardware system
components

• Expressed as integer or floating
point numbers

22/6/2022 12th International School of Trigger & Data Acquisition 26

Metric Types

Counter
• Monotonically increasing

integer number

• Simple to monitor:
• Last value for the last time

period

• Examples:
• Cumulative totals: number

of triggers, number of bytes
sent/received, etc.

Gauge
• Arbitrary changing value:

• Integer or floating point

• Monitoring can be tricky:
• Last value

• Mean value

• Min/Max values

• Frequency distribution (histogram)

• Examples:
• Resources usage: CPU, memory, buffe
• Rates: triggers/s, bytes/s, etc.
• HW Properties: voltage, current,

temperature, etc.

22/6/2022 12th International School of Trigger & Data Acquisition 27

Metrics Monitoring Requirements

• Produced by
the DAQ System
components

22/6/2022 12th International School of Trigger & Data Acquisition 28

✓Shall be displayed as time series

✓Shall be accessible in real-time

✓Shall be recorded to be checked later

The Architecture of a Metrics
Monitoring System

API Communication
Analysis&

Visualisation

• API
• The critical component

• DAQ system see only this API

• It must be independent of the Communication and Visualisation

• Communication and Visualisation are fully flexible:
• Can be changed multiple times throughout the project’s lifetime

22/6/2022 12th International School of Trigger & Data Acquisition 29

A Common API for Metrics?

• There is no commonly accepted API for Metrics:
• SW tools for metrics collection and analysis use their proprietary

APIs

• This may not be a problem for a small short-living project:
• Directly using a specific SW API is a viable option

• Be careful to choose a SW with the live-time going beyond your
project time-scale

• For example HEP experiments have a life-time of O(10)
years:
• It’s difficult to find a SW system that is likely to survive that long

22/6/2022 12th International School of Trigger & Data Acquisition 30

A Simple Private API for Metrics
Monitoring

package Atlas.Monitoring;

interface Gauge {

void setValue(double v);

}

interface Counter {

void increment();

void reset();

}

interface Metrics {

Counter createCounter(String name)

throw (AlreadyExistsException);

Gauge createGauge(String name)

throw (AlreadyExistsException);

}

22/6/2022 12th International School of Trigger & Data Acquisition 31

Makes it independent of
the Communication
implementation

Enforces
uniqueness of
Metrics IDs

Supports different
treatment for Counters
and Gauges

Metrics IDs

• All Metrics must have unique IDs

• Uniform naming schema greatly simplifies Metrics handling:
• Finding required Metrics is straightforward

• Easy selection and filtering using regular expressions

• A possible approach:
• Component Name + Metrics Name

• Example:
• /ATLAS/Dataflow/EventRecoder/EventsNumber

• /ATLAS/Dataflow/EventRecoder/RecordingRate

22/6/2022 12th International School of Trigger & Data Acquisition 32

Monitoring System Implementation
Options

• The underlying implementation can be updated as the main
project evolves:
• Does not affect the DAQ applications

• The same Analytics and Visualization tools can still be used

22/6/2022 12th International School of Trigger & Data Acquisition 33

D
A

Q
A

p
p

lic
at

io
n

Data Storage

Metrics
Analytics and
Visualization

REST Request

Option #1

Time series in Json format

Option #2

API

D
at

a
W

ri
te

r
H

TT
P

Se

rv
er

RESTful Protocol

• REST – Representational State Transfer

• Client-server HTTP-based stateless communication
protocol

• Supported by most of the modern information storage
as well as Web-based Visualisation systems:
• Supports seamless interoperations

• Makes it easy to switch from one Storage or
Visualisation platform to another

22/6/2022 12th International School of Trigger & Data Acquisition 34

REST Protocol Example

• Request:
https://atlasop.cern.ch/monitoring/

? id=ATLAS.Dataflow.RecordedEvents.Rate

& from=now-30d

& to=now

• Response:
Json Time Series, e.g.:
[

{t:1579104640,v:12345},

{t:1579104645,v:12346},

{t:1579104650,v:12347},

{t:1579104655,v:12348}

]

22/6/2022 12th International School of Trigger & Data Acquisition 35

Metrics Values Update Rate

• Metrics update rate is defined by the data handling
rate:
• E.g. rate of triggers for the ATLAS experiment is 100 kHz

• High update rate must be scaled down:
• Takes too much space in the data storage

• 100 kHz of event rate => (8 + 8)*3600*105 = ~6 GB data per hour
per single metrics

• Cannot be directly visualized:
• 4K displays have 3840 pixels along X axis
• Can display data for 40ms only

22/6/2022 12th International School of Trigger & Data Acquisition 36

Application Monitoring API

Metrics Rate Down-sampling

• Metrics values can be down-sampled by the API
implementation:
• Reduces recording rate
• Simplifies storage requirements

• Output update interval can be made configurable:
• A default value for all metrics
• Individual values per specific metrics

• Transparent for the Applications and Communication
components

22/6/2022 12th International School of Trigger & Data Acquisition 37

Application Update Rate API Recording Rate Communication

Down-sampling for Different Metrics
Types

• Counter:
• Publish the last value for

each output update interval

• Gauge:
• Publish three values for

each output update
interval:

• Min, Average, Max

22/6/2022 12th International School of Trigger & Data Acquisition 38

Using Average only may hide
important information

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300
O

cc
u

p
an

cy
 (

%
)

Time (ms)

Buffer Occupancy (%)

Min

Average

Max

Observation Effect

• An observation produces an overhead:
• It consumes resources (CPU, memory, network bandwidth)

• It may affect performance of the DAQ applications

• Information must be passed to the Communication
component asynchronously:
• Monitoring information is updated by the DAQ thread

• Down-sampling and publishing must be done by another thread

• Thread-safety must be taken into account:
• But excessive thread-safety measures may hit the DAQ system

performance

22/6/2022 12th International School of Trigger & Data Acquisition 39

Thread-safety for Monitoring

22/6/2022 12th International School of Trigger & Data Acquisition 40

RAM

Counter
ValueUpdate Read

• Memory read/write
operations are atomic

• For a single DAQ thread:
• No need for mutexes or even

atomics

• Using multiple update threads
requires a mutex per Gauge:
• Monitoring Thread must not

keep it locked when passes
values to the Communication
component

DAQ
Thread

Monitoring
Thread

RAM

Gauge
Value

Update

Read

DAQ
Thread

Monitoring
Thread

Min
Value

Max
Value

Average
Value

U
p

d
ate

Update
DAQ

Thread

Thread-Safety Overhead

• Locking an unlocked mutex takes ~50 CPU cycles =>
less than 50ns:
• If the mutex is locked this may lead to arbitrary delay

• Example: monitoring a buffer occupancy:
• 10 kHz input rate:

• Mutex locking takes 0.5ms => 0.05% overhead

• 1 MHz input rate:
• Mutex locking takes 50ms => 5% overhead

22/6/2022 12th International School of Trigger & Data Acquisition 41

Scaling up the
Monitoring
System

22/6/2022 12th International School of Trigger & Data Acquisition 42

The HEP Experimental Realm

• A DAQ system of a modern HEP
experiment consists of:
• O(1K) computers and network devices
• O(10K) SW applications
• O(100K) Metrics

22/6/2022 12th International School of Trigger & Data Acquisition 43

• A single gauge metric for 24h run requires:
• (8 + 8*3)*360*24=280kB of RAM

• 100K Metrics => 28GB per day => 200GB per week =>
10TB per year

Large Storage Implementations

• Traditional relational databases will not work well
for large-scale projects

• NoSQL distributed alternatives:
• Whisper – a lightweight, flat-file database format for

storing time-series data

• InfluxDB – a time-series database written in Go

• Cassandra – scalable, high availability storage platform

• MongoDB - a general purpose, document-based,
distributed database

22/6/2022 12th International School of Trigger & Data Acquisition 44

Example: The ATLAS Web-based
Metrics Monitoring

22/6/2022 12th International School of Trigger & Data Acquisition 45

P-Beast
In-house file-based
Large Data Storage

P
u

sh

DAQ
Application

CORBA

Monitoring API

Grafana customizable dashboard

DAQ Specialty:
Data Quality Monitoring

How to Monitor the Detector?

• Detectors of LHC experiments are
incredibly complex devices:

• Up to 108 output data channels

• Mostly custom electronics

• 40 MHz operational frequency

• Traditional monitoring would yield in
O(1) PHz (petahertz) of metrics
update rate:

• These metrics are not even attempted
to be produced explicitly

• However DAQ system has a handle
on these metrics…

22/6/2022 12th International School of Trigger & Data Acquisition 47

Detector Metrics

• Each Physics Event taken
from the detector by the
DAQ system contains metrics
for a sub-set of detector
channels:

• An expert can spot problems
by looking into a graphical
event representation

• This is of course very difficult
and unreliable

22/6/2022 12th International School of Trigger & Data Acquisition 48

Automated Data Quality
Analysis
• Dedicated DAQ applications apply

standard physics analysis algorithms to a
statistical sub-set of the Physics Events:
• Extract Detector Metrics and build their

statistical distributions(histograms)

• Analyze histograms and produce a new set
of Metrics – Data Quality statuses

22/6/2022 12th International School of Trigger & Data Acquisition 49

Physics Event
Analysis

Algorithms

Samples
of Physics
Events

Statistical
Distribution

Statistical
Analysis

Algorithms

Summary: The Key Points

Have your Monitoring System API ready from the beginning of
the main project

Use standard Monitoring APIs whenever it is possible:
• e.g. Logging API

Think carefully when designing a custom API:
• It should not depend on a particular technology

Monitoring System implementation will evolve in the
course of DAQ system development for the mutual benefit

Use existing solutions for Communication and Visualization
components:
• In-house development must be well justified

22/6/2022 12th International School of Trigger & Data Acquisition 50

