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Overview 
● The need for tracking information at the Trigger of High 

Energy Physics experiments and how to do it fast 

● We’ll split the problem into “track finding” (define fast a 
“road” where a track can be) and “track fitting” (determine 
the track characteristics)

● The specific examples from ATLAS (FTK and HTT) use

– Track finding with Pattern matching in Associative 
Memories , and Track fitting in FPGAs

● Basically you'll see that: if you want to  avoid or cannot afford 
calculating something time consuming,  split the problem 
and use pre-calculated patterns and quantities.

● We’ll see also examples of other approaches, with both steps 
done in FPGAs. 

● We’ll also see examples beyond High Energy Physics
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A. Introduction
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 Experiments at the LHC  - pp collisions

p p
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The energy frontier - 
interested in relatively rare processes

~80 mb

nb

pb

μb

Probability of interaction ~ cross section:
                                 σ

Collision energy (TeV)

LHC

GHz

Hz

kHz

MHz

mHz

In order to have a 
reasonable number 
of interesting  events 
produced, we need  
high luminosity 
colliders:
Rate ~ L * σ

LHC Design :L=1034 cm−2 s−1

For proton bunch spacing of 25ns:
 pp interactions/bunch crossing: 
                      ~25 
(called “pile-up” events)
Luminosity has already reached ~2 
times more (~3 next Run)
To reach 6-8 times more in High Lumi 
LHC (year 2026+)   →  140-200 pile-up 

>10 orders 
of magnitude!
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Looking at many & complex events
every 25ns two proton bunches cross each other 

→ a superposition of >25 pp collisions

The Trigger and Data Acquisition system, 

*  watches 40M such “events” (bunch crossings) / sec 
→  O(1) billion pp interactions  per second

 
 * select online “the most interesting” O(1k) events/sec 

(1 : 1 Million pp interactions deemed interesting enough to keep) 

 *  and log them for offline use with a resolution of a 
~100 Mpixel camera (100M channels: total ~1.5 MB/event) 

pp p
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● Trigger & DAQ : Select events and get the data from the 
detector to the computing center for the first processing. 

L1: hardware
{2.5μs, 100 kHz}

High Level Triggers: PC farms
~0.2s, ~1 kHz

Permanent 
storage

C

Trigger at 2 stages: 
Level1 (L1: fast, no detailed info) & 

High Level Trigger (HLT: slower, using detailed info) 
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Example: Looking for Higgs

● How do we see the Higgs?

→ from its children! 

E.g.., 4 muons traversing

the detector (red lines here) 

E = mc2  m=E2
−p2

E2
=m2 c4

+ p2c2
E2

=m2
+ p2
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Selection of the right events is essential 
(and selection of many of them too!)

e.g., ATLAS: H → ZZ → 4l

https://twiki.cern.ch/twiki/pub/AtlasPublic/HiggsPublicResults//4l-FixedScale-NoMuProf2.gif

./4l-FixedScale-NoMuProf2_400x300.gif

./4l-FixedScale-NoMuProf2_238x231.gif

../Outreach/MC_EKFE_AmerikaviknGewrgiknSxoln_19feb2016/4l-FixedScale-NoMuProf2_400x300.gif
../Outreach/MC_EKFE_AmerikaviknGewrgiknSxoln_19feb2016/4l-FixedScale-NoMuProf2_238x231.gif
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The more you know about the events, the easiest 
you select the “signal” and reject the “background”

When there is limited time budget (L1 trigger): 
typically, decide based only on the muon and 

calorimeter systems

But may need information from the inner tracker as 
early as possible to make an “educated” decision 

and keep as much signal as possible
e.g., 2 “jets” of tracks, which are usually boring, 

they could actually be
      or 

 H→b b̄ H→τ +τ -

    You will hear on the last day from Francesca Pastore 
   the way various experiments trigger on the “interesting events”
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 Each charged particle leaves a trace (“a 
track”) in the detector as it moves outwards

2 “tracks” in the Event

p p

● Connecting the “hit” readout cells 
 from one detection layer to the other
 

● traces the charged particle's path as it 
 moves radially outward and its' position 
 is measured  in each detector layer

2 “real tracks”

pp p
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 You have also noise and irrelevant hits on the 
same “event”/“picture”

2 “real tracks” + extra hits

p p

pp p
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 Tracking is a combinatorics problem: 
which combinations of hits fit track hypothesis?

p p

But when you look 
at this event/picture, 
you just see hits!

You have to find the tracks...

pp p

2 hits
1 candidate track

4 hits
4 candidate tracks

And, number of possible tracks do not scale 
linearly with number of hits. e.g.: 
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 Tracking is a combinatorics problem: 
which combinations of hits fit track hypothesis?

p p

But when you look 
at this event/picture, 
you just see hits!

You have to find the tracks...

→ Lots of hit combinations to try
→ a huge combinatorics problem
→ becoming worse and worse 

as luminosity increases 
→ a big burden on CPUs 

pp p
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B.  Associative Memories for track 
finding & FPGAs for track fitting

● The basic technique between the use in CDF II SVT, and 
the ATLAS FTK and HTT are the same for what I want to 

discuss here; so I give FTK as an example 
● FTK is a hardware pre-processor finding tracks and storing them for 

further usage by the trigger 

● HTT is a co-processor who is ordered by other components to the find 
tracks for them
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L1: hardware
{2.5μs, 100 kHz}

High Level Triggers: PC farms
~0.2s, ~1 kHz

Permanent 
storage

C

FTK

FTK (Fast TracKer): 
dedicated hardware helping the HLT, 
by doing the tracking before the HLT

Fast TracKer (FTK), a 
pre-processor for a CPU farm
For each event accepted by L1 
(100kHz), 
find all its tracks in <100 μsec
→ x1000 faster than the HLT farm
of PCs
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FTK: Tracking particles in the Silicon Detectors

+
1 IBL

Track crosses 12 detector layers

Total # of readout channels: 98M
PIXELS: 80 millions   + IBL: 12M
SCT: 6 millions

ATLAS' Fast TracKer (FTK) processes all Level-1 accepted events (100kHz)
Output: all tracks w/ pT>1 GeV available to HLT. Typical FTK latency ~100μs, 
compared to O(50ms) HLT
*** high-bandwidth connections with detector 
*** HW optimized for the specific tasks
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From hits to tracks in < 100 μs

CDF SVXII

1. Data 
formatting & 
clustering

1. Data 
formatting & 
clustering

2a. Track 
Finding

2a. Track 
Finding

2b. Track
Fitting

2b. Track
Fitting

Data transfer

2a.  
Associative Memories
(pattern matching)

HLT

Detector design 
for triggering

Detector design 
for triggering

Beam spot

2b. FPGAs

For L2: SVT trigger at CDF
For HLT: FTK in ATLAS
For HLT & L1 : HTT in ATLAS 

2. Processing Units (PUs)
made of these two steps

Each PU, takes care of
a given detector slice (“η-φ tower”)
In FTK: 64 towers 

1. Here FPGAs cluster hits and 
get their centroid as the hit 
position. 
They forward these data to 
proper Processing Units
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1. Input & Data “Formatting”:
cluster adjacent hits, 

find the position of each cluster, 
forward them to the Processing Unit 

responsible for this geometrical η-φ region
(64 η-φ towers)

FPGA replica of pixel matrix

η direction -->

φ
 d

ir
ec

ti
o

n
 -

->

Significant data reduction
by using hereafter only the
position of each  cluster

(in the example: from now on,
instead of working with information 
from 14 cells, we work with 
information from 4 clusters)
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Detail: Clustering algorithm how-to
FPGA replica of pixel matrix

η direction -->

1st phase:
➔ Pixel module: a 328x144 matrix.
➔ Replicate a part of it (8x164) in hw matrix.
➔ Matrix identifies hits in the same “cluster” (= 

adjacent pixels)
2nd phase:

➔ Hits in cluster analyzed (averaged) to get 
“the hit position”, used in all next steps

➔ Flexibility to choose algorithm!

Lo
o

p
 o

ve
r 

ev
en

ts
 a

n
d

 p
ix

el
 m

o
d

u
le

s

select 
left most 

top most hit

propagate 
selection 

through cluster

Average
calculator

outhigh level 
cluster 

analysis

high level 
cluster 

analysis

2nd pipeline stage

read out 
cluster

Load  all
module hits

NIM A617:254-257,2010
IEEE TNS, vol. 61, no.6, pp.3599-3606, 2014
doi: 10.1109/TNS.2014.2364183 

φ
 d

ir
ec

ti
o

n
 -

->
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2. Processing Unit: tracking  in 2 steps
(see analogy to the Trigger doing L1 & HLT)

Roads1. Find low resolution 
track candidates called 
“roads”. Solve most of 
the combinatorial 
problem.

2. Then track fitting 
inside the roads.
Thanks to 1st 
step, this is much 
easier.

Excellent results with linear approximation!

Pattern recognition w/ Associative Memory

http://www.pi.infn.it/~orso/ftk/IEEECNF2007_2115.pdf

Originally: 
M. Dell’Orso, L. Ristori, NIM A 278, 436 (1989)
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2a. 
The coarse pattern matching first

In SVT, FTK and HTT: use 8 layers
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The detector's finite resolution makes it 
“binned”→ finite number of “hit patterns”

 

Because the detector 
has a finite resolution (“bin size”), 
many different tracks generate  the 
same hit pattern,
So we have a finite number of patterns
and a finite-size pattern-bank.
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Training: simulated tracks to find possible 
patterns

1.
Each possible track 
becomes a 
“pattern” 
= 
a series of numbers:
one coordinate for 
each detector layer

Pattern #0:

Pattern #1:

Pattern #2:

Pattern Bank:

2. 
All patterns are stored in a 
“pattern bank”
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3.
Compare the hits
in your event with
the stored 
patterns

The “event” is a list of hits 
in each detector layer

T
h

e
 “

e
v
e
n

t”
Coarse track finding = pattern matching: does 

your event contain any of these patterns?

Pattern Bank:



ISOTDAQ2022,  Catania, 22/6/2022 K. Kordas - Pattern Recognition w/ Associative Memories & FPGAs 27

In this example:

6     2    3     1
11     6    6     7
12    10   7   14

…

Pattern Bank:

T
h

e
 e

v
e
n

t

4.
After all comparisons 
are done, we have 
the list of matched 
patterns in the 
event = 
the list of “roads” 
to perform refined 
tracking after

 Compare ALL the hits in each event with 
ALL the stored patterns. 
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In this example:

Pattern Bank:

T
h

e
 e

v
e
n

t

How to do the 
Comparison?

Check each of the 
5x3x6x6 = 540 
hit combinations
to each pattern?

 How to match data to patterns? 

?
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Number of patterns in your bank gets big easily
N

p
 = number of straight lines crossing the detector layers

n=  #bins per layer

m = # of layers

N p≃(m−1)n2

Can convince yourselves about this, with m=4 in the above drawing

For a detector with 8 layers, with 1M channels/layer, N
p
 = 7 1012 !!!

( Re-bining with 2-channels per bin: n → n/2 means Np → ¼ Np )
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N
patterns

 and search time are critical
● Need a lot of memory for the patterns:

– OK, can use larger (“coarser”) bins for 1st pattern 
matching (will come back to this later).

● But still, you have to match hits with patterns fast:

– Linear search, of the pattern-table (“brute force”) is 
the slowest. 

– If list of patterns is ordered, can do “binary” search: 
● Pick the middle element in the list, 
● Compare the data to the pattern to find the good 

half of the list, 
● pick the middle of the new (halved) list, and so on.
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 Speed is extremely important  at 
triggering.

Find tracks at ultimate speed
→ use “Associative Memories”

Ultimate speed for pattern matching:
do it during the I/O, as the data go through 
the system 
→ no “processing time” 
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M. Dell’Orso, L. Ristori, NIM A 278, 436 (1989) 

Associative Memory in a VLSI
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Associative Memory (AM) = a kind of 
Content Addressable Memory (CAM)

● CAM = a memory that is accessed by its contents, not 
its location.

● E.g., while in a RAM we ask: 

– what do you have in location xyz? 

● In a Content Addressable Memory (CAM) we ask: 

– Are there any locations holding the value abc?
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Binary  CAMs
● Binary CAM (simplest): 

– uses search words consisting entirely of “1” and “0”

Example:

 stored word of           ------------------>     "10110" (“one pattern”)

It will be matched by the search word:   "10110"  (“the data”) 
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Associative Memory: CAM cells contain pattern 
bank. CAM cells of same Layer are on a common bus

Layer 0 Layer 1 Layer 2 Layer 3

{6, 6, 7, 7}

{6            6              7             7}

{11          12           14            15}

{15          17           18            20}

Layer0     Layer1       Layer2     Layer3

...0110 ...0111
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Associative Memory: CAM cells check 
the macthing of each hit independently

Layer 0 Layer 1 Layer 2 Layer 3

{6, 6, 7, 7}

{6            6              7             7}

{11          12           14            15}

{15          17           18            20}

6         2        3        1
Layer0     Layer1       Layer2     Layer3

As soon as data 
are present from 
each Layer, they 
are put on the bus, 
to be seen
by all stored words 
along this bus 

...0110 ...0111
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Associative Memory: CAM cells check 
the macthing of each hit independently

Layer 0 Layer 1 Layer 2 Layer 3

{6, 6, 7, 7}

{6            6              7             7}

{11          12           14            15}

{15          17           18            20}

6         2        3        1
Layer0     Layer1       Layer2     Layer3

As soon as data 
are present from 
each Layer, they 
are put on the bus, 
to be seen
by all stored words 
along this bus 

Flags raised
if matching 

...0110 ...0111
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Associative Memory: CAM cells check 
the macthing of each hit independently

Layer 0 Layer 1 Layer 2 Layer 3

{6, 6, 7, 7}

{6            6              7             7}

{11          12           14            15}

{15          17           18            20}

6         2        3        1
11        6        6         7

Layer0     Layer1       Layer2     Layer3

As soon as data 
are present from 
each Layer, they 
are put on the bus, 
to be seen
by all stored words 
along this bus 

Flags raised
if matching 
in each hit 
independently

...0110 ...0111
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Associative Memory: CAM cells check 
the matching of each hit independently

Layer 0 Layer 1 Layer 2 Layer 3

{6, 6, 7, 7}

{6            6              7             7}

{11          12           14            15}

{15          17           18            20}

6         2        3        1
11        6        6         7

12       10       7       14

Layer0     Layer1       Layer2     Layer3

{6            6              7             7}

{11          12           14            15}

As soon as data 
are present from 
each Layer, they 
are put on the bus, 
to be seen
by all stored words 
along this bus 

AND all flags 
to get a 
complete 
pattern 
matching.

MATCHED !

...0110 ...0111
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Track trigger w/ pattern matching AM
Result:
Matched
Patterns
=
“Roads”
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AM evolution: ASICs (mainly)
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AM chip for FTK: AMchip06

AMchip06: the  FTK AM chip has 128k patterns/chip
AMchip08→09: the AM chip for HTT: ~400k pat./chip 

A
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https://indico.cern.ch/event/928767/contributions/3905000/attachments/2465005/4226921/ISOTDAQ%20School%20Catania%202022.pdf


ISOTDAQ2022,  Catania, 22/6/2022 K. Kordas - Pattern Recognition w/ Associative Memories & FPGAs 43

Pattern matching not restricted to trackers. 
Applies everywhere there is correlated 

behaviour. e.g:

K-

X3
7

Photomultipliers

Light

Energy: E

Position: z

X2
8

X1
5
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The values in X1 and X2 are 
correlated: their values define the possible 

{X1,X2} patterns

X1

X2

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

For example, task = Associate the measured X1 and X2: 
e.g., X1 = 5  with  X2 = 8

Squares represent all possible patterns
in the (X1,X2) phase-space
*** This is the “pattern bank”

PATTERN MATCHED: 
                  (X1,X2)= (5,8)
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2b. 
Now that we have a system that 

does pattern matching as the data 
are coming in,

storage problem: how do we deal 
with the number of patterns which 
can be big in the high-granularity 

detectors?
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N
patterns

 depends on the “bin size”, 

i.e, the granularity with which we want 
to look at the detector 

N p≃(m−1)n2
Recall: the number of patterns N

p
, with m layers, of n bins each, is

The choice is a compromise

!
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High efficiency with large bins (small number of 
patterns) → but, lots of fake tracks found → lots of 

work for detailed track fitting! 
We want “few patterns”-”few fakes” scenario

Reduce 
pattern
size
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Use the feature of “ternary CAMs”
● Ternary CAM: added flexibility to the search

– allows a third matching state of "X" or "Don't Care" for 
one or more bits in the stored pattern word: one 
pattern matches various data words

● Example: a ternary CAM might have a 

 stored word of           ------------------>     "10XX0" (“one pattern”)

This will match any of 4 search words:   "10000"  (“the data”) 

                                                                "10010"  (“the data”) 

                                                                "10100"  (“the data”)

                                                                "10110"  (“the data”)

The added flexibility comes at additional cost:

– the internal memory cell must now encode three possible 
states instead of the two of binary CAM. This additional 
state is typically implemented by adding a mask bit 
("care" or "don't care" bit) to every memory cell.
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Variable resolution (bin sizes) with 
“Don't Care” (DC) bits 

Alberto Annovi 
* ANIMMA - A new “Variable Resolution Associative Memory” for High Energy Physics 
   ATL-UPGRADE-PROC-2011-004, doi:10.1109/ANIMMA.2011.6172856
* “Variable resolution Associative Memory for the Fast Tracker ATLAS upgrade”, ICATTP 2013
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Refinements: majority & variable widths

      Technique can be exploited by any coincidence based trigger!

      With 2 DC bits: Apart from reduction in fakes (factor 7),
we save also a factor 5 in the size of the pattern bank!

Alberto Annovi 
* ANIMMA - A new “Variable Resolution Associative Memory” for High Energy Physics 
   ATL-UPGRADE-PROC-2011-004, doi:10.1109/ANIMMA.2011.6172856
* “Variable resolution Associative Memory for the Fast Tracker ATLAS upgrade”, ICATTP 2013
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3. 
So, we have found possible tracks (the 

matched patterns)

Each matching pattern defines a “road” 
for the refined tracking  

fetch all the (few now) hits in the road
 

fit them to a helical track to measure 
the track parameters precisely
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Track fitting in FPGAs: 1st stage, 8 layers

Track fitting in FPGAs w/ many Digital Signal Processors (DSPs)
BUT: Linear approximation: get a set of linear equations 
        “each parameter depends linearly on the hits” → fast 
   multiplications with pre-computed constants ~1 Gfits/s per FPGA
  # constants in memory & speed of retrieval limiting factor

Full resolution hits

5 parameters & χ2 
d0, z0, eta,  phi, PT, χ2

Hit coordinate
(local to each 
detector module)

* *

*

*

*

*

* *

*

*

*

**
*

*

*
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Track fitting in FPGAs: 2nd  stage (12 
layers in FTK, 13 layers in HTT)

Done on FPGAs, on a “2nd stage” board



ISOTDAQ2022,  Catania, 22/6/2022 K. Kordas - Pattern Recognition w/ Associative Memories & FPGAs 54

Approximations and Tables with 
constants are very common calculation 

tools. Don't be afraid of them!
● Constants can be coefficients in Taylor expansions, 

Fourier series, etc. e.g.,

– sin(x) = Taylor expansion gives a  polynomial to 
calculate 

● Or, use Look-Up Tables (LUTs = pre-calculated values 
stored in tables) → interpolate between stored values to 
get value of sin(x) you ask for

sin( x)≃x−x3 /6+x5/120
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FTK : working configuration

Alberto Annovi 
* ANIMMA - A new “Variable Resolution Associative Memory” for High Energy Physics 
   ATL-UPGRADE-PROC-2011-004, doi:10.1109/ANIMMA.2011.6172856
* “Variable resolution Associative Memory for the Fast Tracker ATLAS upgrade”, ICATTP 2013
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Some documentation for details

FTK Technical Design Report (TDR):  https://cds.cern.ch/record/1552953?ln=en
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2013-007/index.html

HTT described (some changes since then) in: 
ATLAS Trigger and Data Acquisition Phase-II Upgrade Technical Design Report.
Tech. rep. ATL-COM-DAQ-2017-185. https://cds.cern.ch/record/2296879 

FTK Public results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/FTKPublicResults

A word on strategic decisions. FTK is not used now: 
the luminosity expected for the Run3 of LHC (2022-2025) will not be a factor of 3 
higher than Run2, as thought at the time FTK was proposed and designed. 
So, this did not make FTK a necessity. Given the complexity of the system and the 
number of experts needed to run it, the tracking wil be done in a larger CPU farm.

The final FTK paper: 
The ATLAS collaboration (G. Aad et al.), 
“The ATLAS Fast TracKer system”, 2021 JINST 16 P07006 ( DOI:10.1088/1748-0221/16/07/P07006 ).

https://cds.cern.ch/record/1552953?ln=en
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2013-007/index.html
https://cds.cern.ch/record/2296879
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/FTKPublicResults
https://iopscience.iop.org/article/10.1088/1748-0221/16/07/P07006
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Some Refs: Content Addressable Memory, 
the Associative Memory & FPGAs

● K. Pagiamtzis and A. Sheikholeslami, “Content-addressable 
memory (CAM) circuits and architectures: A tutorial and survey,” 
in IEEE Journal of Solid-State Circuits, vol.41, no.3, pp. 712-727, 
March 2006

● M. Dell'Orso and L. Ristori, "VLSI Structures Track Finding", Nucl. 
Instr. and Meth. A, vol. 278, pp. 436-440, 1989.

● W. Ashmanskas et al., "The CDF online Silicon Vertex Tracker", 
Nucl. Instr. and Meth. A, vol. 485, pp. 178-182, 2002.

● A. Annovi, et al., “Associative memory design for the Fast TracK 
processor (FTK) at ATLAS,” in IEEE NSS/MIC, 2009, Orlando, pp. 
1866 – 1867.

● C.-L. Sotiropoulou, S. Gkaitatzis, A. Annovi, et al. “A Multi-Core 
FPGA-based 2D-Clustering Implementation for Real-Time Image 
Processing”, in IEEE Trans. on Nuclear Science, vol. 61, no. 6, pp. 
3599 - 3606, December 2014.
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Some improvements on this method of 
tracking

● Pattern matching: Towards AM09: the 400k patterns per chip: 

–  “The AM08 Associative Memory ASIC Design, Architecture and 
Evaluation methodology”, 
A. Vgenopoulos et al., to be published as procceedings in MOCAST2022

● Track Fitting: We saw that we can make the Track Fitting very fast with 
linearized equations (track parameters expressed as linear functions of hit 
positions). But, need small regions for the linear-equations-approximation to be 
true → many sets of equation parameters (one set per region). 

– Can make a coordinate transformation to an “idealized geometry”  and 
there the detector regions where the linear approximation holds are 
much larger: much fewer regions → fewer equations → 
fewer sets of parameters → much smaller memory 
needs on the FPGAs:

 “A High-performance Track Fitter for Use in Ultra-fast Electronics”,  E. 
Clementa et al., arXiv:1809.01467 

https://ml.zmml.uni-bremen.de/video/6295d67fd42f1c79058b456b?track_id=6295dedfd42f1cc4098b4567
https://arxiv.org/abs/1809.01467
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The point to take home:
● Split the problem in a fast (coarse) one, and a refined one 

working with much reduced data. 

(you know now that we do this all the time in the trigger)

● Use pre-calculated patterns & values wherever you can: if 
you get the desired precision, you gain a lot in time

...And time is precious in the online world!

● We saw the example of the Fast TracKer upgrade in ATLAS, 
using

– AM-based pattern matching with “AM chip” (ASIC), 

– refined track-fitting and almost everything else 
needed (from formatting to smart databases, to I/O) 
in powerful modern FPGAs  (recall Hannes Sakulin’s & 
Manoel Barros Marin’ talks)



ISOTDAQ2022,  Catania, 22/6/2022 K. Kordas - Pattern Recognition w/ Associative Memories & FPGAs 60

C. Other examples
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● What was presented here is not the only way to solve the 
tracking problem fast. Other solutions exist, e.g:

– Hough transforms in FPGAs,

– Other algorithms in FPGAs (e.g., Retina algorithm:   Luciano 
Ristori, NIM A 453 (2000) pp. 425-429 )

– GPUs for the HLT farms etc.… (→ You heard from
 Gianluca Lamanna on Friday 17/6/2022)

– Machine Learning for TDAQ, particularly on FPGAs ( → You 
heard from Sioni Summers on Tuesday, 21/6/2022)

● But nothing can be as fast as doing the tracking while 
reading your data, as they pass through the system. 

– If you can not afford to be slower, then you'll probably use an 
Associative Memory.

– For commercial solutions (e.g., CPUs, FPGAs, GPUs, etc). can 
overcome  slower speed with high parallelism → it’s all a 
matter of cost at the end...

Other examples

https://indico.cern.ch/event/928767/contributions/3904968/attachments/2464479/4225892/lamanna_isotdaq_2022.pdf
https://indico.cern.ch/event/928767/contributions/3904981/attachments/2466046/4228966/ml_sps_isotdaq.pdf
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Tracking at HEP in the future: 
AM+FPGAs, FPGAs,  CPUs, and GPUs

● V. Halyo, et. al., “GPU Enhancement of the Trigger to Extend Physics 
Reach at the LHC,” Journal of Instrumentation 8 P10005, 2013. 

● C. Gentsos, F. Crescioli, P. Giannetti, D. Magalotti, S. Nikolaidis, “Future 
evolution of the Fast TracKer (FTK) processing unit”, PoS (TIPP2014) 
209

● A. Annovi, et al., “Associative Memory for L1 Track Triggering in LHC 
Environment,” in IEEE Trans. on Nuclear Science, Vol. 60, No. 5, pp. 
3627 – 3632, 2013.

● G. Hall, et al., “A time-multiplexed track-trigger for the CMS HL-LHC 
upgrade”, in NIM A, Vol.824, 11 July 2016, pp. 292–295

● A. Abba et al., “Simulation and performance of an artificial retina for 40 
MHz track reconstruction”, in JINST 10 C03008 (2015)

● …

HighLuminosity-LHC (HL-LHC): pile-up of ~140-200 events/crossing 
will be typical; up to 200 events per crossing are considered likely.   
          At L1: need tracking in <10 μs
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L1 Track Trigger at CMS : starts with a much 
cleaner picture than ATLAS (not just hits)

● At  B=4 Tesla, you have for each stub 
(straight line) of angle φ,  at some 
double layer at a radius r, originating 
from a track generated with φ0 and PT

φ=
±0.006
pT

r+φ0

● ~99% of tracks have PT < 2 GeV/c ; 
interesting things have higher PT 
tracks. 

● CMS makes the detector itself 
selective on such tracks by finding 
track “stubs” on closely spaced 
layers
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Can do “Hough Transform” for track finding, on FPGA
● This φ(r) behaviour is a straight line:  φ = m r + c 

→ So, could do a “Hough transform”: map individual {r, φ} 
measurement points to a whole-line characteristic in 2D 
space:  the slope (m) & the intercept  (c)

→ Given an {r,φ} pair, try values for m, get c:  c = -m r + φ

and put {m,c} in a 2-dimensional histogram
● {r,φ} measurements from same 

track will populate same {m,c} 
bin

● Most populated bin = 
characterises whole track

● Note: Small |m| values:                        
 |m| = 0.006/PT → |m| < 0.003

c

c
m

m
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Can do “Hough Transform” for track finding, on FPGA
● This φ(r) behaviour is a straight line:  φ = m r + c 

→ So, could do a “Hough transform”: map individual {r, φ} 
measurement points to a whole-line characteristic in 2D 
space:  the slope (m) & the intercept  (c)

→ Given an {r,φ} pair, try values for m, get c:  c = -m r + φ

and put {m,c} in a 2-dimensional histogram
● {r,φ} measurements from same 

track will populate same {m,c} 
bin

● Most populated bin = 
characterises whole track
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c

c
m

m

Pileup events: {m,c} array heavily populated and such peaks are not initially 
prominent. 

But, by requiring e.g., all stubs in the (m,c) histogram bin to be from different 
radial layers, significantly reduces the background
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Hough transform
● P. V. C. Hough, “Method and means for recognizing complex 

patterns,” U.S. Patent 3,069,654, 1962.

● R. O. Duda and P. E. Hart, “Use of the Hough transformation to 
detect lines and curves in pictures” Communications of the ACM, 
vol. 15, no. 1, pp. 11–15, 1972.

● J. Illingworth and J. Kittler, “The Adaptive Hough Transform”, IEEE 
Trans. On Pattern Analysis and Machine Inteligence, Vol PAMI-9, 
No. 5, Sept. 1987, pp. 690-698.

● Xin Zhou, Yasuaki Ito, and Koji Nakano. “An FPGA Implementation 
of Hough Transform using DSP blocks and block RAMs.” Bulletin of 
Networking, Computing, Systems, and Software,  Vol 2, No 1 
(2013), pages 18–24.

….etc....

● On FPGAs: important to adapt the algorithms to the 
constraints of FPGA operation. Algorithms can overflow the 
capacity of even a very large FPGA because of timing constraints 
or routing congestion → see from Manoel Barros Marin, on Monday

https://indico.cern.ch/event/928767/contributions/3904976/attachments/2465242/4227405/ISOTDAQ2022_Advanced_FPGA_Design.pdf
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CMS L1 track approach is “local tracking” in both stages
● What we’ve seen so far is “global tracking”: all hits available 

simultaneously (pattern matching and linear approximation wanted all 
hits present to work with the  patterns and constants needed). 

● “Local tracking” (~progressive tracking): add hits on the way

● Track finding at CMS: 

– stubs in adjacent layers form “tracklet seeds” →  growth of tracks 
by projection to next layers and χ2 test for adding the stubs 

● Track fitting at CMS: 

– “Kalmam filter” → project the helix parameters of the tracklet to 
each next layer, recalculate hit positions based on extrapolation 
and observed hits, recalculate and extrapolate helix parameters 
and so on.

E.g, see (and references therein):  T. James, “Level-1 Track Finding with an all-
FPGA system at CMS for the HL-LHC”, arXiv:1910.12668 
https://arxiv.org/abs/1910.12668 

A. Hart, “Level 1 Track Finder at CMS” arXiv:1910.06614
https://arxiv.org/abs/1910.06614

https://arxiv.org/abs/1910.12668
https://arxiv.org/abs/1910.06614
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Beyond High Energy Physics applications: 
E.g., image processing with pattern matching

● Hough transform is one of the classic techniques used in generic 
image processing to do first an “edge-detection”

● Let's see another interesting example on image perception:

M. Del Viva, G. Punzi, and D. Benedetti. “Information and 
perception of meaningful patterns.” PloS one 8.7 (2013): e69154.

“… models describe the initial processing of visual information as the 
extraction of a simplified “sketch” based on a limited number of “salient 
features” [11], [12], that therefore contains a much reduced amount of 
information.”

“We adopt the principle of maximum entropy as a measure of 
optimization: we ask what is choice of the pattern set producing the 
largest amount of entropy allowed by the given limitations of the 
system. We will see that this simple requirement, together with the 
imposed strict limitations to the computing resources of the system, 
allows to completely determine the choice of the pattern set from the 
knowledge of the statistical properties of the input data.”
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Image processing, an interesting example with patterns: 
M. Del Viva, G. Punzi, and D. Benedetti. Fig. 1

Constrain #1:  storage
N = number of patterns

Constraint #2: output bandwidth
W = reduction factor
(e.g., W=0.001 → 1/1000
can be selected with this
pattern set)

p = probability that the given 
pattern matches the 
(sub)image we check

W =0.001

N = ∞

W =0.001

N = 100

unit cost for each 
pattern

W =  ∞

N = 100
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● In a 3x3 grid: 

– 512 possible patterns
● Green: 

– the “best” 50 of them

(use them in the 
images below)

● Blue: 

– the “best” 15 of them

Image processing, an interesting example with patterns: 
M. Del Viva, G. Punzi, and D. Benedetti, Fig. 3 and 4
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Image processing, an interesting example with patterns: 
M. Del Viva, G. Punzi, and D. Benedetti. Fig. 2

Of course, we know that all these zig-zag lines are meaningless
Training on simulated events, to get the patterns with max. entropy, 
picks up the patterns we also select when we do simulations 
to define the pattern bank. 

For N = 50 and W = 0.15

These are the best patterns to use

Our tracking detectors also produce “images” (= the set of hits), 
and we select events based on them
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Summary
● Show that need fast  tracking information at the Trigger 

of High Energy Physics experiments

● We split the problem into “track finding” (define fast a 
“road” where a track can be) and “track fitting” (determine 
the track characteristics)

● Show in some detail  the ATLAS (FTK and HTT) case, using

– Track finding with Pattern matching in Associative 
Memories , and Track fitting in FPGAs

● Basically we saw that: if we want to  avoid or cannot afford 
calculating something time consuming,  we can split the 
problem and use pre-calculated patterns and quantities.

● We saw also examples of other approaches, with both steps 
done in FPGAs (e.g., CMS L1 track finder)

● We saw an example of patterns used in image processing



ISOTDAQ2022,  Catania, 22/6/2022 K. Kordas - Pattern Recognition w/ Associative Memories & FPGAs 75

Acknowedgments:
Alberto Annovi, Francesco Crescioli, Mauro Dell' Orso, Paola Giannetti, 
Andrea Negri and FTK members

Thank you!
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Extras...
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http://ftk-iapp.physics.auth.gr/
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Extras

● D. Emeliyanov, et al., “GPU-based tracking algorithms for the 
ATLAS high-level trigger” in Journal of Phys. Conf., Ser. 396, 
012018, 2012.

● J. Mattmann, et al., “Track finding in ATLAS using GPUs,” in 
Journal of Phys. Conf., Ser. 396, 022035, 2012.

● Y. Ago, Y. Ito, and K. Nakano, “An FPGA implementation for 
neural networks with the FDFM processor core approach,” 
International Journal of Parallel, Emergent and Distributed 
Systems, vol. 28, no. 4, pp. 308–320, 2012.
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Dual HOLA card

Input Mezzanine card(IM) 
+ Data Formatter(DF) Processor Units: Auxiliary card(AUX) +

Associative Memory Board(AM)

FTK to Level2 Interface Crate(FLIC)

Copy the hit from ID 
and send to FTK

IM: Receive the hits and perform 
clustering

DF: hit sharing and provide pipeline 
(the “custom switch” to fan-out hits 
to the relevant  Processor for this η-
φ tower

AM: pattern recognition in SuperBin 
(“SuperStrip”) resolution

AUX: a) mapping between hits and 
SuperStrips”, 
b) track fitting:  pt, η, φ, d0, z0

Send track info to HLT

Reduce the fake track using 
remaining silicon layers.

Second Stage Board(SSB)

* Red: involvement of the group
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FTK Schedule

Installation and 
commissioning Start data 

taking with 
limited 
coverage.

Full detector 
coverage.

All boards for the full detector coverage  are available at 2018

All boards in 
place to deal 
with design 
lumi
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FTK Latency

L=3x1034    MC sample (Z->mm) @ 100 kHz LVL1 rate.

FTK has enough processing power  at L=3x1034cm-2s-1 (operating rate ~60%）

Averagely latency is ~50 μsec and maximum on tail is ~ few handed μsec. It is enough 
speed for HLT requirement.

Latency was rise-up by heavy event, but after such an event the latency quickly return to the typical 
range. 
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8
3 FTK Track performance

Tracks are offline like performance
Difference is ：
- Algorism of hit clustering
- Lack of Low Pt patterns
- Broken of linear approximation.
- No TRT,  not δray correction, etc

More than 90 % efficiency with respect to offline.

All results are base line of FTK performance!
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Beyond FTK  
● FTK was using the AMchip06, an Associative Memory  with

– 128k  patterns of 8 words × 18 bits each word

– high speed serial links

– variable resolution (up to 6 ternary bits)

– low power

– 8 × 16 bit comparisons at 100 MHz

● The ATLAS Hardware Track Trigger (HTT) for the HL-LHC 
era, was to use an AM chip (AMchip09) with many more 
patterns (~400k patterns/chip).

– Applications outside HEP (medical imaging, smart 
cameras, genomics, ...)
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