An Introduction to
Neural Networks

Satchit Chatterji
BSc Artificial Intelligence
University of Groningen

satchit.chatterji@gmail.com

university of
groningen

Why you should consider
Neural Networks

Satchit Chatterji
BSc Artificial Intelligence
University of Groningen

satchit.chatterji@gmail.com

"ufy . .
Ey university of
g}}iﬂé groningen

The short answer

- They're useful!

The short answer

- They're useful!
- They're fast!

The short answer

- They're useful!
- They're fast!
- They'’re (now) easy to implement!

The short answer

- They're useful!
- They're fast!
_) 1 |

They re (nOW) easy tO Implement' https://twitter.com/gdb/status/15125219
- They’re cute! 12064229377

The short answer

- They're useful!
- They're fast!
_) 1 |

They re (nOW) easy tO Implement' https://twitter.com/gdb/status/15125219
- They’re cute! 12064229377

- They’re definitely not going to take over the world!

bostondynamics.com

The short answer

- They’re useful!

- They're fast!

- They'’re (now) easy to implement!

- They'’re cute!

- They’re definitely not going to take over the world!

https://twitter.com/gdb/status/15125219
12064229377

The long answer

It's a bit more complicated than that...

bostondynamics.com

Introduction to the introduction

Goals of this lecture:
The whats, hows, whys, whichs and wheres
- Teach you what a neural network is and how it works
- Why you should use them, and why not
- Which neural networks are used today
- Where neural networks are headed next
Along with:
- Allive demo in a simulated environment
- A few tips on building and training your own networks

Introduction to the introduction

Goals of this lecture:
The whats, hows, whys, whichs and wheres
- Teach you what a neural network is and how it works
- Why you should use them, and why not
- Which neural networks are used today
- Where neural networks are headed next
Along with:
- Allive demo in a simulated environment
- A few tips on building and training your own networks

CAUTION

CONTAINS
MATH

MATURE READERS ONLY

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:

S = (Xi:yi)izl,...,T X; € R‘N,yi e RY

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:

.....

Introduction to Supervised Machine Learning
Given: Input-output examples of the form:
S = (x, Yi)z'zl,...,T X; € RN, y: € RY

Assumption: Data is generated by a “true ” function, with some added noise:

y: = f(x:) + v

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:
N M
S = (x, Yi)z'zl,...,T x; ER7,y; €R

Assumption: Data is generated by a “true ” function, with some added noise:
yi = f(x;) + v
Goal: Learn an approximation f(X) of the generator function to use on new data:

f(x) = f(x)

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:
N M
S = (x, Yi)z'zl,...,T x; ER7,y; €R

Assumption: Data is generated by a “true ” function, with some added noise:
yi = f(x) + v,
Goal: Learn an approximation f(X) of the generator function to use on new data:
fx) ~ f(x)
Loss function: A distance between f(X) andf(X) such that we can sayf(X) is “good”
if L is low across many given instances of S.

L:-RM «RM s 20

Aim: Learn a function with low “risk”

Risk: What we want to minimize

R(f) = E[L(f(X),Y)]

Slide adapted from Jaeger, H. (2022) Neural Networks Lecture Notes,
https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Aim: Learn a function with low “risk”

Risk: What we want to minimize
R(f) = E[L(f(X),Y)

Empirical Risk: What we can actually calculate
(for a “candidate” model h, averaged over N training

N
R™(h) = 1/N Z L(h(xi),y:)

examples)

Slide adapted from Jaeger, H. (2022) Neural Networks Lecture Notes,
https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Common Approaches -

- Linear/Polynomial/Logistic Regression

- (Boosted) Decision trees
- Support Vector Machines
- Naive Bayes

- Neural Networks!

P(B)

Inputs < ®¥ Hidden Layer € " Hidden Layer € R Hidden Layer ¢ ¥ Outputs ¢ BY

Images of regressions, decision tree, and SVM from scikit-learn.org

you vs the guy she told you not
to worry about:

@
ANN:s initially inspired by the brain: O,
Alexander Bain (1873), William James (1890)
Electrical connections/flow of neurons result in thought

a n.d movement Source: linkedin.com/company/deeplearningai
McColloch & Pitts (1943)

Modern mathematical “artificial” NN models (not the only neural network

Artificial vs Biological NNs

Inputs Xz

X3
X5
Xs

model!)
Rosenblatt (1958)
Description of the perceptron
Rumelhart, Hinton & Williams (1986)
Multi-layer perceptrons and error backpropagation (learning principle)
Modern:

- ANNs used everywhere for everything!
- Simplified, abstracted version of “synaptically”’-connected “neurons”
- Biologically implausible

Building a Neural Network
From Scratch (mathematically)

®

® @
26

1

Ui

1

Classes are “linearly separable”

L2

>

y = wo + Wix| + woxo + ... + wpln

w; < Coefficients
x; <— Variables

et

y=r

(’wo—l—’w
1x1+w2x2+...+wnxn)

P

y = T(wy+wir] +woxro+... +wnn)

The “Perceptron”

/ Generalized “activation function”

o

_)Q

- The modern notion of a single “neuron”

- BUT: Only works on linearly separable classes

I1

Zo

L1

o

Multi-layer Perceptrons (MLPs)

1

S
) () (1) () () (4

et

(V= 0(w0+w1331+w23:2+... +wnxn)

WL

L]
L2

wnxn)

Activation “Bigs”

A l

a

y = o(wy

T

“Activation function”

o(w'x)

J—
w

wirl

e w9

T

“Weight vector”

WL

1]

L]

L2

Ln

T

“Feature vector”

wnxn)

Activation/

output
of neuron k _ _
l 1
k [k .k SEER!
0O = [wo ’lUl <o wn] _
T

K "hidden” neurons
inlayer L

1 1

f— wo w]_ .o

2 2

f— wo w]_ .o

1 1

f— wo w]_ ...

2 2

f— wo w]_ ...

1,1 |

I e
wo wl o o e wn

ko, k k
wo wl . . e wn

ol = W*z*

1 1 1] . - 1
w% w% R ng 331 w%
wl w2 tee wn CEQ + w(]

k k k k
wy wy e Wy | L | W

T
of = Wfﬂ—/g'/

Most common way of writing out the
activation of a layer of an MLP

A

y = o(wy+wir]+woro+...+wnn)

y =(ofwo+wix] +woxo+ ...+ wpky)

0o=o(Wzx" +b)

The output of each layer is the product of its weight matrix and the input
vector plus its bias vector, all wrapped in a non-linear activation function.

= =
Inputs

Outputs

\&t\‘.
-
R S5
ﬂ‘s&}% ‘*? % 71—
\\‘.-\!\"73‘:&{ T,
7 ' 7 R

QA e ho
LA D =7
SRS K4

AR S T
Wiy WM A F A
\‘@&;‘:‘;@@; &5

W N7 Sod ' 4
R W S/ A
WX K7

VL7
“,

L7
)
ER0RK

X
W g !
NN A LAY
g S

X
!

AL LS
X BN . N

oY,

W AN A N
S <=5
e :’u.\\\ /‘::‘ 7 4‘ 3 :- 3
A7 T \
FREN SR N
TR

Inputs € RY

€/ AL A r Vs
SRR AL SRSSNY
IR L ERTDRRY
) 2 e N\ FAEISRIRMNN
fy (AT A v, 3 el W2 3
A IR) A NN ANE
7057 S\ >

Hidden Layer € R”* Hidden Layer € R Hidden Layer € R"

Outputs € RY

DT KA

N, 1, ;i
NS 2NN
R el

T
I)A;?;;f;:?;a & 3 17 X FE PN
DT AN A VAN ST KIS
ZIAOE KR ST R
OSSN0
Ly Pk) / bl s £ 3 Bt 3
A PK SN Z

Z) e SN

T X7 SN NP K7 SN
L1775 NN SR

%

Inputs € RY

j\\\\\ lllh‘L
NN
NN,
%k&&‘v‘vﬁféf%
NN XN AL A
NS S

e\ 7 l
S 7
\ RS S5 ‘-"q’
R
NN WG %
NN
X L Id A
e W

3 vy
L) , &7 I/
K AL
RN XN LTS
WOSTA

- S

/ X

f X HH

RS AT I
L7 RS XN R

2 W o~ !\

N S "

e %,

. %
/ &‘ﬁ' :)s
o N
) 0% C; . A5
./.m; LI LA
AHFRDEX

/""Igr 'y :. .
U SR
LIRS
7 74

/)

‘0/ &
SN
ﬁffr,’/'«’o‘(‘\ ‘*‘.\‘\

Inputs € RY Hidden Layer € R

<

NN "
\"":‘\'}\.‘?"““’ 5
AR
NN
R

AN
25 BN

R T

A

Inputs ¢ RY

LELA X)
EEALEL TR
ol O NS A N X
0 HABI ORI
2 S N

Zi e AN

WL 1

/

A

AL

N

717

’ll‘m
v’"’llfi

o ‘(
‘:‘4\\“\\\‘;‘:“\" ’,l
3 W e
‘\\" ““‘-“"& ats }i :

KA R

Iy a7 R %
) AN

123 KPR NRR

T SRS

."/fflflﬂmz “
T

B ? "\ o
e\

Hidden Layer € R¥* Hidden Layer € R

4” S
N0y
3 ‘\\‘\‘o(:;oq‘f %

S \

N ; L7

B SRS LAY
A2

7,
5«!

NAN AV
; S EEZHA _ 447
K ey st RN K
AN LA NN AXANXKN AR A 777
). 7

S &
X
K

A

«»w SSKS
ot e
GIES

rogd)
V2% AN
i ZHh IR

7/ *‘? shd N
LT o.‘.v,"m&‘ NN
"2 >

BRI RS

LI 3
FAESRINN
%’f HL%

79)

N
T A RN

Inputs € RY Hidden Layer € R”* Hidden Layer € R*2 Hidden Layer ¢ R

£r
SE S S
N X
MR %\vl’%ﬁ 1
e D Sy L L
NS K7
) ;“.‘_ “‘*‘t_"ﬁ Nog .g:a,g»./

RS
AR

RN A Y- k7 A YIAT o
\“:::“‘&"%;?’0 XAt ’: WAL
ERRIESGAL A
o A bl P
RN e
v o,
N
A
KN
RN
XN

-‘-"’s‘:::\/

Inputs € RY

> oS di:) p
Ve -47'%"; -
73 M i S 7% L7 A
H ARSI NEAALH RN
1750040 KX TR y STEAL KIETH IR \.\’%
2 R 05 RN
I AN “\\h\\‘:; _IIJ%%A‘\)A‘\{‘%&;_
) o ~ ¢l L ey e
ot "5@é§g\?‘§.,

Hidden Layer € R' Hidden Layer € R”* Hidden Layer € R™®

Outputs € RM

A multi-layer perceptron is a series of
affine transformations of an input
vector, each of which is wrapped in a
non-linear activation function.

N RY 5 rRM
N,M eN

(Translation: an MLP is a fancy function)

A Note on Nonlinearity

Without a non-linear activation function, a series of linear transformations would
result in just a linear transformation of the input to the output.

We would still be stuck in the land of linear separability!

Common nonlinear functions

1

0.5F

—

1
Sigmoid: o(x) = ——
i (@) 1 +e®
. ex —_ e_x
Hyperbolic tangent: tanh(z) = ———
et +e "

Rectified Linear Unit:
ReLU(x) = maz(0, x)

Implementing learning: Backpropagation

Given:
Family of parameters © (e.g. possible weights of a NN)
Differentiable risk function R(6)

Goal 0oyt = argmin R(6)
0eo

Backprop: Gradient descent

A

R(6)

“Learning rate”

Y

00,

R(6)

R(6,)

01

“Guess” ‘—J 0

R0 R0,

R0,
R(6)

tﬁ):1 7 65

R(6)

96, 01

Converges to local minima

Optimizers

Stochastic/Mini-batch GD: Speed improvement!

Perform backprop on errors of batches of training samples instead of all at
once

- Reduces the number of expensive backward passes

Optimizers determine exactly how backpropagation is implemented
- Stochastic Gradient Descent (most common)
- Adam
- RMSProp

A “real” loss landscape:
- Many (many many) local
minima
Saddle points

a2
Vs

AN
N
AR

NN

I

\

http://www.telesens.co/2019/01/16/neural-network-loss-visualization/

Loss functions

1 .
MSE == (yi— i)
Depends on the task! i—1

Mean Squared Error
Used for e.g. regression tasks

Cross Entropy
Used for e.g. classification tasks

Define your own!
Note: Must be differentiable for gradient descent based methods

ML Training paradigms (a selection)

Supervised
- Train a model with explicit input-output pairs
- Unsupervised
- Learns “patterns” from unlabelled data
- Semi-supervised learning
- Learnafew things with input-output pairs, relate them to patterns learnt
unsupervised
- Reinforcement Learning
- Learn an optimal “policy” that gives you the best action to take at any given state
space by taking random actions and learning through positive or negative
reinforcement.
- Evolution
- Optimize parameters through (Darwinian) evolution; e.g. genetic algorithms.

Types of Neural Networks

Multi-layer Perceptrons

Useful for static input-output
relations

More hidden layers ~ better
approximation of more
complicated functions

Quick to design and implement

Inputs € RN

Hidden Layer € R*' Hidden Layer € R¥: Hidden Layer € R"

Outputs ¢ RY

Convolutional Neural Networks

Learn “kernels”, i.e. matrices that convolve over n-
dimensional data to extract abstract, lower-
dimensional features.

Used often in image and signal processing tasks
such as object detection and segmentation.

Accounts for translational variance: the object
can be anywhere in the image and still be found

10 output units B). o g
fully connected

~ 300 links

layer H3

30 hidden units fully connected

~ 6000 links

layer H2
12 x 16=192 |, |

hidden units ~ 40,000 links
from 12 kernels
5Xx5%8

layer H1

12 x 64 = 768

hidden units

H1.1
H ~20,000 links

from 12 kernels

5x5

256 input units

“um pisit 4
LT T U

LeNet’s architecture: One of the first CNNs
https://doi.org/10.1162/neco.1989.1.4.541

Recurrent Neural Networks

Outputs go back and forth between neurons (loops exist
in the graphs)

Approximates dynamical systems

- Any time-based function

- Any data that can be modelled as being
“ordered”

Used often in time-series tasks like signal processing,
natural language processing

Several types: Fully-connected, LSTMs, GRUs, reservoirs

LSTM cell A
Ca| A A |
() ()

f; i) © (x)
: & :
hey '1‘

X
An LSTM cell schematic. Adapted from:
doi.org/10.4233/uuid:dc73e1ff-0496-459a-
986f-de37f7f250c9

wvoO

N

Wi Wl'..” n: WI{W ‘Iuw

ol

. culput (or
teacher)
i dynamical I signal
|‘1J|‘Wl\|\”||‘”“| reservoir | i
| \lII”lIJllJ '.‘Jll‘| B
Ul

Echo state network schematic. Adapted from
www.scholarpedia.org/article/Echo_state_network

input signal

Graph Neural Networks

Models any system that can be modelled as a graph

Transformed Graph Classification layer Prediction

Learns relations between nodes, input Graph NN blocks
edges, global properties '

v
v
L1113
es00
L
v
bt

Used in e.g. image segmentation,
chemistry and pharmacy models,
NLP , hiera rCh ical |y- re | ated d ata Image adapted from this excellent intro to GNNs: https://distill.pub/2021/gnn-intro/

What NNs can and can't do

Universal Approximation Theorem

Theorem (schematic). Let F be a certain class of functions f : RE — RM,
Then for any f € F and any € > 0 there exists an multilayer perceptron N with
one hidden layer such that ||f — N|| < €.

= We can approximate any function we want with a one-layer MLP!
More effective with more layers than just one (“deeper” networks)
Easier said than done in practice

Collection of proofs:
https://ai.stackexchange.com/questions/13317/where-can-i-find-the-
proof-of-the-universal-approximation-theorem

Schematic borrowed from Jaeger, H. (2022) Neural Networks Lecture
Notes, https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Where NNs thrive

> Statistical/correlation inference needed

> There exists a lot of good quality (labelled) training data
> Parallelizable training and deployment

> Tasks without expansion (input-output fixed)

> Specialized tasks

> Good in-range performance IRL

https://lasp.colorado.edu/home/minxss/2016/0
7/12/minimum-mission-success-criteria-met/

Limits of NNs

> No causal relations possible (yet)
> Very data hungry - “Garbage in, garbage out”
> Often expensive to train

> Nonextensible and specialized to a range and task
- Add one more neuron — retrain the entire network

- Undefined behaviour on out-of-domain test
examples

https://knowyourmeme.com/memes
/grumpy-cat

In practice

Frameworks

You don’t need any maths or programming skills (but hopefully you do!)

Use other people’s code! libraries, frameworks, modules

Keras Te,,]’ O PyTorch

orFlow

X G B o ost Image of logos adapted from S. Summers, ISOTDAQ

Lecture on Machine Learning (2020) - Slide 8

A live demonstration in TensorFlow

MM Magnet MM2 ECAL

TOF Scintillators

o
| |

Training tips

Overfitting & Underfitting

The real troublemakers in ML in general!

Underfitting: When the model fits the training data not well enough
- Empirical risk is high, actual risk is high
- Training loss is high, testing loss is not optimal

Overfitting: When the model fits the training data too closely (incl. noise)
- Empirical risk is low, actual risk is high
- Training loss is low, testing loss is not optimal
- e.g2. An D-degree polynomial can fit D-1 training points with zero error

Overfitting & Underfitting

Underfitting " Balanced Overfitting

More complex models (e.g. more layers, neurons per layer) -> higher likelihood of overfitting

Image source: https.//docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.htmil

Validation

Split your training set into two!
- New train set
- Unseen-by-the-model “validation”set

Test Set (unseen)

Validation

Split your training set into two!
- New train set

- Unseen-by-the-model “validation”set
- e.g. 80-20 split (Note: split ratio depends on the model, task and data)

80%

20%

Test Set (unseen)

r-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

r-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

r-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

r-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

r-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

r-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

r-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

Result = average over all validation passes

Training curves

Important to plot!

09

0.8

07

0.6

0.5

0.4

Loss curves

~—— train loss
—— val loss

Accuracy curves

0.725

0.700 1

0.675 1

0.650

0.625 1

0.600

0.575 1

0.550 1

— val acc
—— train acc

o 4

8

Training curves

Important to plot!(!!!!)

09

0.8

07

0.6

0.5

0.4

Loss curves

~—— train loss
—— val loss

Accuracy curves

0.725

0.700 1

0.675 1

0.650

0.625 1

0.600

0.575 1

0.550 1

— val acc
—— train acc

o 4

8

ACCUFECY curves

Loss curves

\ —— train loss 0.725 4

\ — val loss
09

0.700 1

o8 0.675 1

Training curves

0.650 1
07

0.625 1

0.6
0.600

Important to plot!(!!!!

0.575 1

0.550 — val acc
04 —— train acc

T T T T T
0 2 4 6 8

Shows if and how fast your model is learning on task-relevant metrics
- e.g. loss, accuracy, AUC, F1 score
- Plot scores over training epochs

Training curves

ACCUFECY curves
Loss curves
~—— train loss 0.725 4
\ — val loss
09 \
\ 0.700
\
0.8 \\\ 0.675
0.7
0.6
Important to plot!(!!!!

0.650

0.4

0.625 1

0.600
2

0.550
;

- e.g. loss, accuracy, AUC, F1 score
- Plot scores over training epochs

— val acc
T
4

—— train acc

Shows if and how fast your model is learning on task-relevant metrics

T
8

May indicate potential over and underfitting

-- Training Loss

--Validation loss

Reading training curves

If

0 5 10 15

validation loss > training loss

then often the model is good!
Low loss == Better

\ Training Loss

idation loss

Reading training curves

If 0 5 10 15

validation loss >> trainingloss

then often the model is overfitting
Low loss == Better

—10

-- Training Loss

-- Validation loss

Reading training curves

If

validation loss ~ training loss

then often the model is underfitting
Low loss == Better

—10

-- Training Loss

-- Validation loss

Reading training curves

If

validation loss < trainingloss

then something is very wrong, or totally expected!
Low loss == Better

Parallelization:
Speeding up NNs

Main math operation in NNs:
- Matrix-vector multiplications

Il CPU

1
MLPO = 2.5 B GPU

Wy
B TPU

1
MLPT 0.3
. 18.5

1
LSTMO mmm 0.4
3.5

I 1
LSTMT I 1.2
I 1.2

I 1
CNNO I, 1.6
. 40.3

I 1
CNNT I 2.7
71

0.5 1 5 10 50

- Element-wise nonlinear activation functions

Parallelization can be used to massively speed up learning and deployment!

- Multi-core CPUs

- Graphics processing units (GPUs)
- Tensor processing units (TPUs)

- FPGAs

Image from https://cloud.google.com/blog/products/ai-

machine-learning/an-in-depth-look-at-googles-first-tensor-

processing-unit-tpu

Frontiers

Deep learning
- Models with hundreds of layers, billions of weights
- Transformers, generative adversarial networks, autoencoders
- AutoMLs: a tool to automatically generate good ML models for a task

Explainable Al (XAl)
- Explainable+interpretable models
- Human-like and human-understandable reasoning

Reservoir computing
- Echo state networks
- Conceptors

