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- They're fast!

- They'’re (now) easy to implement!

- They'’re cute!

- They’re definitely not going to take over the world!
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The long answer

It's a bit more complicated than that...
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Introduction to the introduction

Goals of this lecture:
The whats, hows, whys, whichs and wheres
- Teach you what a neural network is and how it works
- Why you should use them, and why not
- Which neural networks are used today
- Where neural networks are headed next
Along with:
- Allive demo in a simulated environment
- A few tips on building and training your own networks
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Introduction to Supervised Machine Learning

Given: Input-output examples of the form:
N M
S = (x, Yi)z'zl,...,T x; ER7,y; €R

Assumption: Data is generated by a “true ” function, with some added noise:
yi = f(x) + v,
Goal: Learn an approximation f(X) of the generator function to use on new data:
fx) ~ f(x)
Loss function: A distance between f(X) andf(X) such that we can sayf(X) is “good”
if L is low across many given instances of S.

L:-RM «RM s 20




Aim: Learn a function with low “risk”

Risk: What we want to minimize

R(f) = E[L(f(X),Y)]

Slide adapted from Jaeger, H. (2022) Neural Networks Lecture Notes,
https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf



Aim: Learn a function with low “risk”

Risk: What we want to minimize
R(f) = E[L(f(X),Y)

Empirical Risk: What we can actually calculate
(for a “candidate” model h, averaged over N training

N
R™(h) = 1/N Z L(h(xi),y:)

examples)

Slide adapted from Jaeger, H. (2022) Neural Networks Lecture Notes,
https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf



Common Approaches -

- Linear/Polynomial/Logistic Regression

- (Boosted) Decision trees
- Support Vector Machines
- Naive Bayes

- Neural Networks!

P(B)

Inputs < ®¥  Hidden Layer € " Hidden Layer € R Hidden Layer ¢ ¥ Outputs ¢ BY

Images of regressions, decision tree, and SVM from scikit-learn.org



you vs the guy she told you not
to worry about:

@
ANN:s initially inspired by the brain: O,
Alexander Bain (1873), William James (1890)
Electrical connections/flow of neurons result in thought

a n.d movement Source: linkedin.com/company/deeplearningai
McColloch & Pitts (1943)

Modern mathematical “artificial” NN models (not the only neural network

Artificial vs Biological NNs

Inputs Xz

X3
X5
Xs

model!)
Rosenblatt (1958)
Description of the perceptron
Rumelhart, Hinton & Williams (1986)
Multi-layer perceptrons and error backpropagation (learning principle)
Modern:

- ANNs used everywhere for everything!
- Simplified, abstracted version of “synaptically”’-connected “neurons”
- Biologically implausible



Building a Neural Network
From Scratch (mathematically)
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Classes are “linearly separable”
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y = wo + Wix| + woxo + ... + wpln

w; < Coefficients
x; <— Variables
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The “Perceptron”

/ Generalized “activation function”

o

_)Q

- The modern notion of a single “neuron”

- BUT: Only works on linearly separable classes
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Multi-layer Perceptrons (MLPs)
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Activation “Bigs”
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“Activation function”

o(w'x)
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“Weight vector”
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“Feature vector”
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Activation/

output
of neuron k _ _
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Most common way of writing out the
activation of a layer of an MLP
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y = o(wy+wir]+woro+...+wnn)



y =(ofwo+wix] +woxo+ ...+ wpky)



0o=o(Wzx" +b)

The output of each layer is the product of its weight matrix and the input
vector plus its bias vector, all wrapped in a non-linear activation function.
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A multi-layer perceptron is a series of
affine transformations of an input
vector, each of which is wrapped in a
non-linear activation function.

N RY 5 rRM
N,M eN

(Translation: an MLP is a fancy function)




A Note on Nonlinearity

Without a non-linear activation function, a series of linear transformations would
result in just a linear transformation of the input to the output.

We would still be stuck in the land of linear separability!



Common nonlinear functions

1

0.5F

—

1
Sigmoid: o(x) = ——
i (@) 1 +e®
. ex —_ e_x
Hyperbolic tangent: tanh(z) = ———
et +e "

Rectified Linear Unit:
ReLU(x) = maz(0, x)



Implementing learning: Backpropagation

Given:
Family of parameters © (e.g. possible weights of a NN)
Differentiable risk function R(6)

Goal 0oyt = argmin R(6)
0eo



Backprop: Gradient descent

A

R(6)




“Learning rate”

Y

00,

R(6)

R(6,)

01

“Guess” ‘—J 0



R0 R0,




R0,
R(6)

tﬁ):1 7 65



R(6)

96, 01

Converges to local minima




Optimizers

Stochastic/Mini-batch GD: Speed improvement!

Perform backprop on errors of batches of training samples instead of all at
once

- Reduces the number of expensive backward passes

Optimizers determine exactly how backpropagation is implemented
- Stochastic Gradient Descent (most common)
- Adam
- RMSProp



A “real” loss landscape:
- Many (many many) local
minima
Saddle points

a2
Vs

AN
N
AR

NN

I

\

http://www.telesens.co/2019/01/16/neural-network-loss-visualization/



Loss functions

1 .
MSE == (yi— i)
Depends on the task! i—1

Mean Squared Error
Used for e.g. regression tasks

Cross Entropy
Used for e.g. classification tasks

Define your own!
Note: Must be differentiable for gradient descent based methods



ML Training paradigms (a selection)

Supervised
- Train a model with explicit input-output pairs
- Unsupervised
- Learns “patterns” from unlabelled data
- Semi-supervised learning
- Learnafew things with input-output pairs, relate them to patterns learnt
unsupervised
- Reinforcement Learning
- Learn an optimal “policy” that gives you the best action to take at any given state
space by taking random actions and learning through positive or negative
reinforcement.
- Evolution
- Optimize parameters through (Darwinian) evolution; e.g. genetic algorithms.



Types of Neural Networks



Multi-layer Perceptrons

Useful for static input-output
relations

More hidden layers ~ better
approximation of more
complicated functions

Quick to design and implement

Inputs € RN

Hidden Layer € R*' Hidden Layer € R¥: Hidden Layer € R"

Outputs ¢ RY



Convolutional Neural Networks

Learn “kernels”, i.e. matrices that convolve over n-
dimensional data to extract abstract, lower-
dimensional features.

Used often in image and signal processing tasks
such as object detection and segmentation.

Accounts for translational variance: the object
can be anywhere in the image and still be found

10 output units B). o g
fully connected

~ 300 links

layer H3

30 hidden units fully connected

~ 6000 links

layer H2
12 x 16=192 |, |

hidden units ~ 40,000 links
from 12 kernels
5Xx5%8

layer H1

12 x 64 = 768

hidden units

H1.1
H ~20,000 links

from 12 kernels

5x5

256 input units

“um pisit 4
LT T U

LeNet’s architecture: One of the first CNNs
https://doi.org/10.1162/neco.1989.1.4.541



Recurrent Neural Networks

Outputs go back and forth between neurons (loops exist
in the graphs)

Approximates dynamical systems

- Any time-based function

- Any data that can be modelled as being
“ordered”

Used often in time-series tasks like signal processing,
natural language processing

Several types: Fully-connected, LSTMs, GRUs, reservoirs

LSTM cell A
Ca| A A |
() ()

f; i ) © (x)
: & :
hey '1‘

X
An LSTM cell schematic. Adapted from:
doi.org/10.4233/uuid:dc73e1ff-0496-459a-
986f-de37f7f250c9

wvoO

N

Wi Wl'..” n: WI{W ‘Iuw

ol

. culput (or
teacher)
i dynamical I signal
|‘1J|‘Wl\|\”||‘”“| reservoir | i
| \lII”lIJllJ '.‘Jll‘| B
Ul

Echo state network schematic. Adapted from
www.scholarpedia.org/article/Echo_state_network

input signal




Graph Neural Networks

Models any system that can be modelled as a graph

Transformed Graph Classification layer Prediction

Learns relations between nodes, input Graph NN blocks
edges, global properties '

v
v
L1113
es00
L
v
bt

Used in e.g. image segmentation,
chemistry and pharmacy models,
NLP , hiera rCh ical |y- re | ated d ata Image adapted from this excellent intro to GNNs: https://distill.pub/2021/gnn-intro/




What NNs can and can't do



Universal Approximation Theorem

Theorem (schematic). Let F be a certain class of functions f : RE — RM,
Then for any f € F and any € > 0 there exists an multilayer perceptron N with
one hidden layer such that ||f — N|| < €.

= We can approximate any function we want with a one-layer MLP!
More effective with more layers than just one (“deeper” networks)
Easier said than done in practice

Collection of proofs:
https://ai.stackexchange.com/questions/13317/where-can-i-find-the-
proof-of-the-universal-approximation-theorem

Schematic borrowed from Jaeger, H. (2022) Neural Networks Lecture
Notes, https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf



Where NNs thrive

> Statistical/correlation inference needed

> There exists a lot of good quality (labelled) training data
> Parallelizable training and deployment

> Tasks without expansion (input-output fixed)

> Specialized tasks

> Good in-range performance IRL

https://lasp.colorado.edu/home/minxss/2016/0
7/12/minimum-mission-success-criteria-met/



Limits of NNs

> No causal relations possible (yet)
> Very data hungry - “Garbage in, garbage out”
> Often expensive to train

> Nonextensible and specialized to a range and task
- Add one more neuron — retrain the entire network

- Undefined behaviour on out-of-domain test
examples

https://knowyourmeme.com/memes
/grumpy-cat



In practice



Frameworks

You don’t need any maths or programming skills (but hopefully you do!)

Use other people’s code! libraries, frameworks, modules

Keras Te,,]’ O PyTorch

orFlow

X G B o ost Image of logos adapted from S. Summers, ISOTDAQ

Lecture on Machine Learning (2020) - Slide 8



A live demonstration in TensorFlow

MM Magnet MM2 ECAL

TOF Scintillators

o
| |




Training tips



Overfitting & Underfitting

The real troublemakers in ML in general!

Underfitting: When the model fits the training data not well enough
- Empirical risk is high, actual risk is high
- Training loss is high, testing loss is not optimal

Overfitting: When the model fits the training data too closely (incl. noise)
- Empirical risk is low, actual risk is high
- Training loss is low, testing loss is not optimal
- e.g2. An D-degree polynomial can fit D-1 training points with zero error



Overfitting & Underfitting

Underfitting " Balanced Overfitting

More complex models (e.g. more layers, neurons per layer) -> higher likelihood of overfitting

Image source: https.//docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.htmil



Validation

Split your training set into two!
- New train set
- Unseen-by-the-model “validation”set

Test Set (unseen)




Validation

Split your training set into two!
- New train set

- Unseen-by-the-model “validation”set
- e.g. 80-20 split (Note: split ratio depends on the model, task and data)

80%

20%

Test Set (unseen)




r-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models
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r-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

Result = average over all validation passes



Training curves

Important to plot!
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Training curves

Important to plot!(!!!!)
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ACCUFECY curves

Loss curves

\ —— train loss 0.725 4

\ — val loss
09

0.700 1

o8 0.675 1

Training curves

0.650 1
07

0.625 1

0.6
0.600

Important to plot!(!!!!

0.575 1

0.550 — val acc
04 —— train acc

T T T T T
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Shows if and how fast your model is learning on task-relevant metrics
- e.g. loss, accuracy, AUC, F1 score
- Plot scores over training epochs



Training curves

ACCUFECY curves
Loss curves
~—— train loss 0.725 4
\ — val loss
09 \
\ 0.700
\
0.8 \\\ 0.675
0.7
0.6
Important to plot!(!!!!

0.650

0.4

0.625 1

0.600
2

0.550
;

- e.g. loss, accuracy, AUC, F1 score
- Plot scores over training epochs

— val acc
T
4

—— train acc

Shows if and how fast your model is learning on task-relevant metrics

T
8

May indicate potential over and underfitting



-- Training Loss

--Validation loss

Reading training curves

If

0 5 10 15

validation loss > training loss

then often the model is good!
Low loss == Better




\ Training Loss

idation loss

Reading training curves

If 0 5 10 15

validation loss >> trainingloss

then often the model is overfitting
Low loss == Better




—10

-- Training Loss

-- Validation loss

Reading training curves

If

validation loss ~ training loss

then often the model is underfitting
Low loss == Better
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-- Training Loss

-- Validation loss

Reading training curves

If

validation loss < trainingloss

then something is very wrong, or totally expected!
Low loss == Better




Parallelization:
Speeding up NNs

Main math operation in NNs:
- Matrix-vector multiplications

Il CPU

1
MLPO = 2.5 B GPU

Wy
B TPU

1
MLPT 0.3
. 18.5

1
LSTMO mmm 0.4
3.5

I 1
LSTMT I 1.2
I 1.2

I 1
CNNO I, 1.6
. 40.3

I 1
CNNT I 2.7
71

0.5 1 5 10 50

- Element-wise nonlinear activation functions

Parallelization can be used to massively speed up learning and deployment!

- Multi-core CPUs

- Graphics processing units (GPUs)
- Tensor processing units (TPUs)

- FPGAs

Image from https://cloud.google.com/blog/products/ai-

machine-learning/an-in-depth-look-at-googles-first-tensor-

processing-unit-tpu



Frontiers

Deep learning
- Models with hundreds of layers, billions of weights
- Transformers, generative adversarial networks, autoencoders
- AutoMLs: a tool to automatically generate good ML models for a task

Explainable Al (XAl)
- Explainable+interpretable models
- Human-like and human-understandable reasoning

Reservoir computing
- Echo state networks
- Conceptors



