

Contribution ID: 3 Type: Invited

Multiferroic Bismuth Ferrite: First PAC and XRD studies on its ferroic alpha-beta phase transition

Thursday 26 November 2020 11:20 (20 minutes)

Work of numerous research groups has shown different outcomes of studies of the transition from the ferroelectric α -phase to the high temperature β -phase of the multiferroic, magnetoelectric perovskite Bismuth Ferrite (BiFeO₃ or BFO). Using the perturbed angular correlation (PAC) method with 111m Cd as the probe nucleus, the α to β phase transition was characterized. These are the first data on $^{111m}\mathrm{Cd}$ in BFO so far. The phase transition temperature, the change of the crystal structure and its parameters were supervised with measurements at different temperatures using a six detector PAC setup to observe the γ - γ decay of the $^{111m}\mathrm{Cd}$ probe nucleus. The temperature dependence of the hyperfine parameters shows a change in coordination of the probe ion, which is substituting the bismuth site, forecasting the phase transition. A visible drop of the quadrupole frequency ω_0 at a temperature of about $T_c \approx 820^{\circ} \text{C}$ is indicating the α - β phase transition. Matching results with Density Functional Theory (DFT) simulations suggest orthorhombic Pbnmcrystal symmetry for the high temperature β -phase. This structure is proven from a nuclear point of view. Combined with high temperature x-ray diffraction (XRD) measurements also showing the beta phase appearing in Pbnm setting, a general description of the β -phase could be made.

Authors: MARSCHICK, Georg (Institut Fur Materialwissenschaft Universität Duisburg-Essen (D); SCHELL, Juliana (Institut Fur Materialwissenschaft Universität Duisburg-Essen (D)

Presenter: MARSCHICK, Georg (Institut Fur Materialwissenschaft Universität Duisburg-Essen (D)

Session Classification: Technical & Applications Session