

Contribution ID: 28

Type: Invited

New β -decaying state in 214 Bi

Thursday 26 November 2020 14:00 (20 minutes)

The structure of the odd-odd, neutron-rich bismuth isotopes provides an excellent testing ground for shell-model calculations. While the low-lying structure in ²¹⁰Bi (Z = 83, N = 127) is expected to be dominated by $(\pi h_{9/2})(\nu g_{9/2})$ configurations, the gradual filling of the $\nu g_{9/2}$ and higher-lying shells will alter this situation. For ^{210,212,214}Bi, $I^{\pi} = 1^{-}$ ground states were suggested [1], while in contrast to this, high-spin [$I^{\pi} = (6 - 8^{-})$] ground states were proposed for ^{216,218}Bi [2,3]. Low-lying high-spin [$I^{\pi} = (8, 9^{-})$] isomers were observed in ^{210,212}Bi [1,4,5] and low-spin [$I^{\pi} = (3^{-})$] isomer was suggested in ²¹⁶Bi [1]. Moreover, β decays of these isotopes allow for investigation of excited levels in polonium isotopes [1-4] and for testing seniority scheme in these nuclei.

In this contribution, an identification of a new β -decaying state in ²¹⁴Bi is discussed. The experiment was carried out at ISOLDE Decay Station (IDS) as a part of a campaign dedicated to decay- and laser-spectroscopy studies of bismuth isotopes performed by our collaboration at ISOLDE-CERN. We investigated β decays of ²¹⁴Bi and observed strong feeding to high-spin levels in ²¹⁴Po, more particularly, to the 8⁺₁ level [6] and states above, which unambiguously proves the existence of a high-spin β -decaying state in ²¹⁴Bi. Half-life of this new state was determined and by using γ - γ coincidences the level scheme of ²¹⁴Po was extended. Based on the β -decay feeding pattern a spin and parity assignment of $I^{\pi} = (8, 9^{-})$ is preferred for the new β -decaying state in ²¹⁴Bi.

The existence of two β -decaying states in ²¹⁴Bi completes the chain of low-lying isomers present in odd-odd bismuth isotopes from ²¹⁰Bi to ²¹⁶Bi. The results will be discussed in connection to systematics in neighboring nuclei and compared with shell-model calculations.

References

- [1] ENSDF, Evaluated Nuclear Structure Data File, https://www.nndc.bnl.gov/ensdf
- [2] J. Kurpeta et al., Eur. Phys. J. A 7, 49 (2000).
- [3] H. De Witte et al., Phys. Rev. C 69, 044305 (2004).
- [4] P. A. Baisden et al., Phys. Rev. Lett. 41, 738 (1978).
- [5] E. K. Warburton, Phys. Rev. C 44, 261 (1991).
- [6] A. Astier and M.-G. Porquet, Phys. Rev. C 83, 014311 (2011).

Author: ANDEL, Boris (KU Leuven (BE))

Co-author: IS650/IDS COLLABORATION

Presenter: ANDEL, Boris (KU Leuven (BE))

Session Classification: Beta-decay Session