

Contribution ID: 6

Type: Invited

Shape coexistence in neutron-deficient mercury isotopes studied through β decay

Thursday 26 November 2020 14:20 (20 minutes)

The neutron-deficient mercury isotopes (Z = 80) around N = 104 represent one of the most prominent examples of shape coexistence [1]. This region has been extensively studied using various experimental techniques, such as laser spectroscopy [2,3], decay spectroscopy studies [4-6] and Coulomb excitation [7,8]. These studies point to the coexistence of two classes of states with strong mixing between the low-lying members in ^{182,184}Hg [1,6-8]. In particular, the presence of E0 components in the $I^{\pi} \rightarrow I^{\pi}$ ($I \neq 0$) transitions has been interpreted as a fingerprint for mixing [1].

In order to study the properties of the low-lying states in mercury isotopes around N = 104, the β decay of 182,184,186 Tl to excited states in 182,184,186 Hg has been measured at the ISOLDE Decay Station (IDS) at ISOLDE. The conversion electrons have been measured for the first time at IDS by employing the newly developed SPEDE spectrometer [9], which provided an energy resolution of 7 keV for an electron energy around 250 keV.

Compared to the previous study [6], an order of magnitude higher statistics was collected, which resulted in an expansion of the decay schemes. In particular, six transitions with strong E0 components and the third 0^+ state have been identified in ¹⁸⁴Hg. Improved statistics gives more precise values for branching ratios and conversion coefficients, which are relevant for the Coulomb excitation experiments [10]. The experimental results will be discussed in the framework of shape coexistence in the mid-shell region.

[1] K. Heyde, J.L. Wood, Rev. Mod. Phys 83, 1467 (2011).

[2] B.A. Marsh et al., Nature Physics 14, 1163 (2018).

[3] S. Sels et al., Phys. Rev. C 99, 044306 (2019).

[4] J. Wauters et al., Phys. Rev. C 50, 2768 (1994).

[5] M. Stryjczyk et al., Phys. Rev. C 102, 024322 (2020).

[6] E. Rapisarda et al., J. Phys. G 44, 074001 (2017).

[7] N. Bree et al., Phys. Rev. Lett 112, 162701 (2014).

[8] K. Wrzosek-Lipska et al., Eur. Phys. J. A 55, 130 (2019).

[9] P. Papadakis et al., Eur. Phys. J. A 54, 42 (2018).

[10] K. Wrzosek-Lipska et al., Proposal IS563 "Coulomb excitation of 182-184Hg: Shape coexistence in the neutron-deficient lead region" at ISOLDE

Authors: STRYJCZYK, Marek (KU Leuven (BE)); IS641/IDS COLLABORATION

Presenter: STRYJCZYK, Marek (KU Leuven (BE))

Session Classification: Beta-decay Session