

Evolution of single-particle structure along N = 17: The $d(^{28}Mg,p)^{29}Mg$ reaction measured with the ISOLDE Solenoidal Spectrometer

Patrick MacGregor ISOLDE Workshop and Users meeting 2020 26 November 2020

Motivation - approaching N = 20 island of inversion

- There is an island of inversion around *N* = 20 for exotic nuclei.
- Defined by "intruder configurations" in ground state and low-lying excited states, where neutrons are promoted across shell gaps, leaving neutron holes.
- Evidenced by observation of many negative-parity states at low excitation energies.
- Sharp transition in isotopes of Mg:
 - * 30 Mg outside the island \rightarrow spherical g.s.
 - $\,{}^{32}\text{Mg}$ inside the island \rightarrow deformed g.s $^1.$
- Measurement of single-particle properties crucial for understanding shell evolution in and around the island.
- ²⁹Mg outside the island, but mapping the size of shell gaps crucial for understanding this region.

Motivation -N = 20 shell gap evolution

- Observed weakening in the N = 20 shell closure with decreasing Z.
- Weakening caused by relative strength of interaction between neutrons and protons in different orbits (νd_{3/2}, f_{7/2}, p and πd_{5/2}). Orbitals experience different monopole shifts.
- Transfer reactions can be used here to map evolution of *pf*-states and how separation evolves.

² Adapted from T. Otsuka et al. Eur. Phys. J. A. 15 (2002), pp. 151–155.

Motivation - new shell model interactions

- MANCHESTER 1824 The University of Manchester
- Standard shell model calculations fail to reproduce experimental data without ad hoc changes.
- A number of interactions developed for the *sdpf*-model space:
 - SDPF-MU³, a more established interaction, that uses 0p-0h and 1p-1h excitations for positive and negative parity states respectively, and is fitted to experimental data in this region.
 - FSU interaction⁴, similar to SDPF-MU, but fits more TBMEs and SPEs in this particular region.
 - EEdf1⁵uses chiral EFT + extended Kuo-Krenciglowa (EKK) method to calculate over multiple major oscillator shells. Also uses 3-body interactions to model nuclei. Shown below for ³¹Mg.
- RMS deviation approx. 300 keV better for FSU and EEdf1 than SDPF-MU.

³ Y. Utsuno. Priv. communication

- ⁴ R. Lubna. Priv. communication.
- N. Tsunoda et al. Phys. Rev. C 95 (2 Feb. 2017), p. 021304.

Solenoidal spectrometers

Patrick MacGregor

HIE-ISOLDE@CERN

⁶ URL: http://hie-isolde-project.web.cern.ch/about-hie-isolde.

ISS Setup

Analysis methodology

Results - excitation spectrum

- Identified 14 states in ²⁹Mg.
- Resolved 2270, 2501, 2900, and 3220 keV states and able to assign ℓ .
- Identified a number of unbound states, including a doublet ℓ = 1 state and some high-excitation weaker states.
- Extracted cross sections at different angles for 7 + 2 doublets.

Results – cross sections

- Fitted cross sections using DWBA angular distributions from DWUCK5.
- Able to assign ℓ from the angular distributions.
- State labelled 3,980 MeV is the unbound doublet.

1.432

2.900

50

4.360

50 60

-60

60

Results – spectroscopic factors

- Can tentatively assign j^{π} for experimental results from shell-model calculations.
- Reasonable agreement for the distribution of strength in strong states.
- Inform most likely ordering of j^{π} for doublet state.

Results - shell evolution

- Plotted centroids of single-particle strength in terms of binding energy for theoretical and experimental^{7,8,9} results (relative to ³¹Si). Error bars include ambiguities in *j*-assignment.
- As calculations reproduce trends reasonably well, plotted occupancies from the same model for protons and neutrons.
- Normalised SFs from experimental papers and calculated occupancies for comparison.
 Discrepancies in ²⁹Mg possibly due to g.s. doublet fit, or a change in neutron occupancies.
- Measurement of (*d*,³He) needed to confirm expected proton occupancies.

- M. C. Mermaz et al. Phys. Rev. C 4 (5 Nov. 1971), pp. 1778–1800.
- R. Liljestrand et al. Phys. Rev. C 11 (5 May 1975), pp. 1570–1577.

⁷ Š. Piskoř et al. *Nucl. Phys. A* 662.1 (2000), pp. 112–124.

Conclusions and future

Conclusions:

- First experiment of ISS in early implementation stage.
- Comparable resolution to HELIOS.
- Highest energy per nucleon in a HIE-ISOLDE radioactive beam experiment.
- A successful experiment!

Future:

- ²⁹Al(d,p) experiment recently performed at HELIOS more information for this region.
- Hoping to get ³⁰Mg(*d*,*p*) data from ISS in future.
- Bright future for ISS Liverpool array, SpecMAT.

Acknowledgements

chester Group (. Sharp). Cropper	S. J. Freeman	MANCHESTER 1824 The University of Mancheste	ENSAR	ISOLDE Solenoidal Spectrometer
ional Collabora	itors	UNIVERSITY OF LIVERPOOL		Argonne
R. Hoffman 9 Gaffney 3orge N. Catford Conki	B. P. Kay E. F. Baader P. A. Butler G. de Angelis Th. Kröll		Science and Technology Facilities Council	
Labiche lartel D. Page Raabe . Tang	I. H. Lazarus D. G. McNeel O. Poleshchuk F. Recchia J. Yang	TECHNISCH UNIVERSITA DARMSTAD	E T I I I I I I I I I I I I I I I I I I	
-		Universit DEGLI STUI DI PADOVA		enversidad de Huelva

Patrick MacGregor

D. ł B. [

Addit C. F L. F M. I U. I J. K M. I I. M R. E R. F T. L

Transfer reactions in inverse kinematics

- Ejectile, *p*, provides information for the populated state in ²⁹Mg:
 - Yields \rightarrow cross section.
 - ► *θ*

- \rightarrow angular momentum.
- ► Ejectile energy → excitation of residual nucleus.
- Single-particle strength split by correlations between nucleons.
- Deduce spectroscopic factors, $S_{j\ell}$, which measure how close each state looks like a n in IPM state:

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{EXP}} = S_{j\ell} \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{DWE}}$$

where $|^{29}Mg; j, \ell \rangle \sim \sum_{j,\ell} S_{j\ell} \left(|^{28}Mg; 0, 0 \rangle \otimes |n; j, \ell \rangle \right).$

- $^{28}\mathrm{Mg}
 ightarrow ^{28}\mathrm{Al}$ via eta^- ; $au_{1/2}=$ 21 h. NK not possible, so use IK.
- IK allows transfer on radioactive nuclei, but introduces some non-trivial problems:
- 1. Kinematic shift (KS) broadens peaks because of large $\frac{dE}{d\theta}$ for a finite angular acceptance, $\Delta\theta$.
- 2. Kinematic compression (KC) reduces energy difference between states.

Extracting *E* and *z*

Positions:

- Calculate position on strip using gain-matched X₁, X₂, and E.
- Use laser alignment from CERN team to calculate distance from target:

$$z = \left(X - \frac{1}{2}\right)w - z_{\text{off}} - d_i.$$

 \boldsymbol{z} is the distance along the beam axis from the target.

 d_i is the distance along the array to the centre of strip $i\!.$

 $z_{\rm off}$ is the distance from the target to the array.

Energies:

- Gain match X_1 and X_2 to each other.
- Match X_1 and X_2 to E.
- Rough energy calibration with quadruple α -source.
- α -source not sufficient for full calibration, as α 's lose energy in the target.
- α -source calibration improved by calibrating to known states in $^{29}{\rm Mg}.$

Further analysis – recoil-proton coincidences

Further analysis - recoil-proton coincidences

Simulated number of recoiling nuclei hitting the recoil detector (at \approx 4.3 MeV).

 \Rightarrow some recoiling nuclei don't hit the recoil detector.

 \Rightarrow low-angle points impossible to obtain based on cuts.

Solution:

Use careful θ_{cm} cuts on the singles data to extract low-angle points.

Can see that the angle cuts here don't include α -line in first row, but do include low-angle points for the ground state.