Gamma MRI # Towards high resolution single photon imaging using highly-aligned gamma-emitting nuclei Karolina Kulesz on behalf of gamma-MRI collaboration Faculté des sciences, Université de Genève ISOLDE, CERN ## New medical imaging modality Increased MRI sensitivity + Improved SPECT resolution ### gammaMRI at a glance Increased MRI sensitivity + Improved SPECT resolution detecting **gamma** asymmetries from **aligned radioactive** nuclei in weak **magnetic fields** several orders of magnitude larger signal Rotate 1 voxel by 90° by application of RF pulse ## gammaMRI at a glance #### Increased MRI sensitivity + Improved SPECT resolution several orders of magnitude <u>larger</u> signal Zheng et al. A method for imaging and spectroscopy using $\sqrt[5]{-}$ rays and magnetic resonance. Nature 537, 2016 Zheng et al. A method for imaging and spectroscopy using $\sqrt[5]{-}$ rays and magnetic resonance. Nature 537, 2016 Zheng et al. A method for imaging and spectroscopy using $\sqrt[5]{-}$ rays and magnetic resonance. Nature 537, 2016 Zheng et al. A method for imaging and spectroscopy using $\hat{\psi}$ -rays and magnetic resonance. Nature 537, 2016 Zheng et al. A method for imaging and spectroscopy using $\hat{\psi}$ -rays and magnetic resonance. Nature 537, 2016 Proof-of-principle: Zheng et al. A method for imaging and spectroscopy using $\vec{\gamma}$ -rays and magnetic resonance. Nature 537, 2016 Motivation Principles Experiment Results Conclusions Outlook ## **Experimental preparations and setups** ### **Xenon production** - Years of clinical use of 133Xe* and stable 129Xe** in medical imaging - Production: Extraction rate: 21% ^{*} Xeneisol. Goodrich JK, Radiology, 1972 Jun;103(3):611-9. Arborelius M Jr, Pediatrics. 1971 Mar;47(3):529-36. Pyrex glass cell. Rb + mXe + N₂ inside Pyrex glass cell. Rb + mXe + N₂ inside - Pyrex glass cell. Rb + mXe + N₂ inside - Insulating oven Temp. inside: 100-200 °C - Helmholtz coils (4.5 mT) - Pyrex glass cell. Rb + mXe + N₂ inside - Insulating oven Temp. inside: 100-200 °C - Helmholtz coils (4.5 mT) - Laser diode array providing circularly polarized infrared light σ + (794.7 nm, 50 W) Spectrometer Temp. requirement: < 30 °C Mobile rig with ventilation slots - Pyrex glass cell. Rb + mXe + N₂ inside - Insulating oven Temp. inside: 100-200 °C - Helmholtz coils (4.5 mT) - Laser diode array providing circularly polarized infrared light σ + (794.7 nm, 50 W) Spectrometer Temp. requirement: < 30 °C - Mobile rig with ventilation slots - γ detectors coupled with Si PMT: 3xCeGAGG, 1xLaBr 2 # Systematic investigation of the data 2 # Systematic investigation of the data Principles #### Where we are now... - First isotopes 129mXe, 131mXe, 133mXe produced successfully at different nuclear facilities and - extracted efficiently from the native containers - Experimental setups built from start and optimized to conduct the data acquisition with stable experimental conditions - Fully operational SEOP setup capable of polarizing Rb well and hinting Xe hyperpolarization - First proofs of the experimental asymmetry! #### Plans for 2021 - Preparation of mXe (with one or more methods) for next experimental runs (CERN) - In order to compare, optimize and standardize mXe production - Use of gamma detectors with temperature stabilization (UCM) - Dedicated laboratory space for SEOP & spectra acquisition setup (HESSO) We received funding from Future and Emerging Technologies (FET) Open (Horizon 2020)! ## **Acknowledgements** <u>UNIGE-CERN:</u> M. Bissell ¹ , J. Croese ^{1, 2} , A. Dorsival ¹ L. Dupont ^{1, 2}, R.B. Jolivet ^{1, 2}, T. Kanellakopoulos ^{1, 5}, M. Kowalska ^{1, 2}, S. Warren ^{1, 2}, E.L. Wistrom ^{1,7}, Anna Zhuravlova ¹ HES-SO: J.N. Hyacinthe ³, T. P. K. Lê ³, S. Pallada ³, E. Vinckenbosch ³ UCM: J. Benito Garcia ⁴, L. Fraile ^{1, 4}, J. M. Udias Moinelo ⁴, V. Sánchez-Tembleque ⁴ ILL: Ulli Köster ⁶ MEDICIS-ISOLDE: E. Barbero ¹, B. Crepieux ¹, J. Cruikshank ¹, C. Duchemin ¹, J.P. Ramos ¹ ¹ CERN, Meyrin, Switzerland, ² University of Geneva, Geneva, Switzerland ³ Haute école de santé de Genève, Switzerland, ⁴ Universidad Complutense de Madrid, Spain, ⁵ KU Leuven, Leuven, Belgium, ⁶ Institut Laue-Langevin, Grenoble, France, ⁷ University of Oslo, Norway **Funding:** Swiss Excellence Government Scholarship and Knowledge Transfer Medical Applications (KT-MA, CERN), Swiss National Science Foundation 310030_170155 # Thank you for your attention! #### Literature - R. Engel, Master thesis 2018, http://oops.uni-oldenburg.de/3617/, https://cds.cern.ch/record/2638538 - M. Kowalska et al., Letter of Intent, CERN-INTC-2017-092 / INTC-I-205 (2017) #### Proof-of-principle: Y. Zheng, Ph.D. thesis, Low Field MRI and the Development of Polarized Nuclear Imaging (PNI) — A New Imaging Modality, Univ. Virginia 2014 #### Xenon: - Xenon-133 measurement of regional ventilation, Goodrich JK, Radiology, 1972 Jun; 103(3):611-9 - Xe133-radiospirometry for evaluation of congenital malformations of pulmonary arteries, Arborelius M Jr, Pediatrics. 1971 Mar;47(3):529-36 - Hyperpolarized 3 He and 129Xe MR Imaging in Healthy Volunteers and Patients with Chronic Obstructive Pulmonary Disease, M. Kirby, Radiology 2012: Volume 265:600-610. - Simultaneous magnetic resonance imaging of ventilation distribution and gas uptake in the human lung using hyperpolarized xenon-129. J. P. Mugler III. PNAS December 14, 2010 107 (50) 21707-21712 #### Polarization/alignment: - N. J. Stone, H. Postma. Low-Temperature Nuclear Orientation. - G. Neyens. Rep.Prog.Phys. 66-205, 2003.