Gamma MRI

Towards high resolution single photon imaging using highly-aligned gamma-emitting nuclei

Karolina Kulesz on behalf of gamma-MRI collaboration

Faculté des sciences, Université de Genève ISOLDE, CERN

New medical imaging modality

Increased MRI sensitivity + Improved SPECT resolution

gammaMRI at a glance

Increased MRI sensitivity + Improved SPECT resolution

detecting **gamma** asymmetries from **aligned radioactive** nuclei in weak **magnetic fields**

several orders of magnitude larger signal

Rotate 1 voxel by 90° by application of RF pulse

gammaMRI at a glance

Increased MRI sensitivity + Improved SPECT resolution

several orders of magnitude <u>larger</u> signal

Zheng et al. A method for imaging and spectroscopy using $\sqrt[5]{-}$ rays and magnetic resonance. Nature 537, 2016

Zheng et al. A method for imaging and spectroscopy using $\sqrt[5]{-}$ rays and magnetic resonance. Nature 537, 2016

Zheng et al. A method for imaging and spectroscopy using $\sqrt[5]{-}$ rays and magnetic resonance. Nature 537, 2016

Zheng et al. A method for imaging and spectroscopy using $\hat{\psi}$ -rays and magnetic resonance. Nature 537, 2016

Zheng et al. A method for imaging and spectroscopy using $\hat{\psi}$ -rays and magnetic resonance. Nature 537, 2016

Proof-of-principle:

Zheng et al. A method for imaging and spectroscopy using $\vec{\gamma}$ -rays and magnetic resonance. Nature 537, 2016

Motivation Principles Experiment Results Conclusions Outlook

Experimental preparations and setups

Xenon production

- Years of clinical use of 133Xe* and stable 129Xe** in medical imaging
- Production:

Extraction rate: 21%

^{*} Xeneisol. Goodrich JK, Radiology, 1972 Jun;103(3):611-9. Arborelius M Jr, Pediatrics. 1971 Mar;47(3):529-36.

Pyrex glass cell.
 Rb + mXe + N₂ inside

Pyrex glass cell.
 Rb + mXe + N₂ inside

- Pyrex glass cell.
 Rb + mXe + N₂ inside
- Insulating oven
 Temp. inside: 100-200 °C
- Helmholtz coils (4.5 mT)

- Pyrex glass cell.
 Rb + mXe + N₂ inside
- Insulating oven
 Temp. inside: 100-200 °C
- Helmholtz coils (4.5 mT)
- Laser diode array providing circularly polarized infrared light σ + (794.7 nm, 50 W) Spectrometer

Temp. requirement: < 30 °C

Mobile rig with ventilation slots

- Pyrex glass cell.
 Rb + mXe + N₂ inside
- Insulating oven
 Temp. inside: 100-200 °C
- Helmholtz coils (4.5 mT)
- Laser diode array providing circularly polarized infrared light σ + (794.7 nm, 50 W)
 Spectrometer

Temp. requirement: < 30 °C

- Mobile rig with ventilation slots
- γ detectors coupled with Si PMT: 3xCeGAGG, 1xLaBr

2

Systematic investigation of the data

2

Systematic investigation of the data

Principles

Where we are now...

- First isotopes 129mXe, 131mXe, 133mXe produced successfully at different nuclear facilities and
 - extracted efficiently from the native containers
- Experimental setups built from start and optimized to conduct the data acquisition with stable experimental conditions
- Fully operational SEOP setup capable of polarizing Rb well and hinting Xe hyperpolarization
- First proofs of the experimental asymmetry!

Plans for 2021

- Preparation of mXe (with one or more methods) for next experimental runs (CERN)
 - In order to compare, optimize and standardize mXe production
- Use of gamma detectors with temperature stabilization (UCM)
- Dedicated laboratory space for SEOP & spectra acquisition setup (HESSO)

We received funding from Future and Emerging Technologies (FET) Open (Horizon 2020)!

Acknowledgements

<u>UNIGE-CERN:</u> M. Bissell ¹ , J. Croese ^{1, 2} , A. Dorsival ¹ L. Dupont ^{1, 2}, R.B. Jolivet ^{1, 2}, T. Kanellakopoulos ^{1, 5}, M. Kowalska ^{1, 2}, S. Warren ^{1, 2}, E.L. Wistrom ^{1,7}, Anna Zhuravlova ¹

HES-SO: J.N. Hyacinthe ³, T. P. K. Lê ³, S. Pallada ³, E. Vinckenbosch ³

UCM: J. Benito Garcia ⁴, L. Fraile ^{1, 4}, J. M. Udias Moinelo ⁴, V. Sánchez-Tembleque ⁴

ILL: Ulli Köster ⁶

MEDICIS-ISOLDE: E. Barbero ¹, B. Crepieux ¹, J. Cruikshank ¹, C. Duchemin ¹, J.P. Ramos ¹

¹ CERN, Meyrin, Switzerland,
 ² University of Geneva, Geneva, Switzerland
 ³ Haute école de santé de Genève, Switzerland,
 ⁴ Universidad Complutense de Madrid, Spain,
 ⁵ KU Leuven, Leuven, Belgium,
 ⁶ Institut Laue-Langevin, Grenoble, France,
 ⁷ University of Oslo, Norway

Funding: Swiss Excellence Government Scholarship and Knowledge Transfer Medical Applications (KT-MA, CERN), Swiss National Science Foundation 310030_170155

Thank you for your attention!

Literature

- R. Engel, Master thesis 2018, http://oops.uni-oldenburg.de/3617/, https://cds.cern.ch/record/2638538
- M. Kowalska et al., Letter of Intent, CERN-INTC-2017-092 / INTC-I-205 (2017)

Proof-of-principle:

Y. Zheng, Ph.D. thesis, Low Field MRI and the Development of Polarized Nuclear Imaging (PNI) — A New Imaging Modality, Univ. Virginia 2014

Xenon:

- Xenon-133 measurement of regional ventilation, Goodrich JK, Radiology, 1972 Jun; 103(3):611-9
- Xe133-radiospirometry for evaluation of congenital malformations of pulmonary arteries, Arborelius M Jr, Pediatrics. 1971
 Mar;47(3):529-36
- Hyperpolarized 3 He and 129Xe MR Imaging in Healthy Volunteers and Patients with Chronic Obstructive Pulmonary Disease, M. Kirby, Radiology 2012: Volume 265:600-610.
- Simultaneous magnetic resonance imaging of ventilation distribution and gas uptake in the human lung using hyperpolarized xenon-129. J. P. Mugler III. PNAS December 14, 2010 107 (50) 21707-21712

Polarization/alignment:

- N. J. Stone, H. Postma. Low-Temperature Nuclear Orientation.
- G. Neyens. Rep.Prog.Phys. 66-205, 2003.