

Competition of allowed and first-forbidden β^+/EC decays of ²⁰⁸At

Matthew Brunet University of Surrey

Region of Interest

85	207At	208At	209At	210At	211At	212At
84	206Po	207Po	208Po	209Po	210Po	211Po
83	205Bi	206Bi	207Bi	208Bi	209Bi	210Bi
82	204Pb	205Pb	206Pb	207Pb	208Pb	209Pb
81	203Tl	204Tl	205Tl	206Tl	207Tl	208Tl
	122	123	124	125	126	127

Features of 208 Po

- 84 protons (2 valence protons)
- 124 neutrons (2 valence neutron holes)
- Close to doubly-magic ²⁰⁸Pb
- Lies in region of high octupole collectivity
- Prime candidate to explore shell and collective state interactions

Features of 208 At Decay

• Exhibits competition between first-forbidden and allowed β^+ /EC decays

Possible β^+ /EC decay paths

Allowed Decays J=0,1 =no

- Limited allowed decay paths
- Allowed decays supressed by occupied neutron shells and/or unoccupied proton shells

<u>First Forbidden Decays</u> J=0,1 =yes

- Limited FF decay paths
- FF decays also suppressed by orbital structure

Possible β^+ /EC decay paths

<u>Allowed Decays</u> J=0,1 =no

- Again limited allowed decay paths
- Possible allowed decays still supressed by occupied neutron shells and/or unoccupied proton shells

<u>First Forbidden Decays</u> J=0,1 =yes

- Abundance of FF decay paths
- Large number of FF decays are unsuppressed by orbital structure
- Require shell breaking, populated states will have high energy ~3MeV

First Forbidden Unique

r-process Nucleosynthesis

Images taken from: N. Nisihimura et. al., Phys. Lett. B. 276, 273-277, (2016)

5

ISOLDE Beam

- High energy proton beam on a molten lead target.
- Mass separator for A=208.

Decay Station Setup

- Five high energy resolution HPGe clover detectors.
- Plastic scintillator β detector for decay coincidences.

Full Spectrum: Statistics

7

Full Level Scheme

90 New/Reassigned Transitions 26 New States

Pandemonium Effect

Pandemonium Effect

- High number of previouslyunobserved, β-populated states.
- Increased proportion of firstforbidden decays.
- Unknown parity states could further increase FF proportion.

• 1968	• 1983	• 2020
• 73	• 57	• 42
• 22	• 42	• 48
• 5	• 1	• 10
	• 1968 • 73 • 22 • 5	 1968 1983 73 57 42 5 1

Proton Number

							$I_{\beta_{ff}}$	%
86	206 Rn 3.30	²⁰⁷ Rn 4.61	208 Rn 2.84	209 Rn 3.95	210 Rn 2.37	211 Rn 2.89		100.0 80.0
85	$^{205}{ m At}$ 4.55	$^{206}{ m At}$ 5.76	$^{207}{ m At}$ 3.90	$^{208}{ m At}$ 5.00	²⁰⁹ At 3.48	$^{210}{ m At}_{ m 3.98}$		60.0
84	²⁰⁴ Po 2.33	²⁰⁵ Po 3.54	²⁰⁶ Po 1.85	²⁰⁷ Po 2.91	²⁰⁸ Po 1.40	²⁰⁹ Po 1.89		40.0
83	²⁰³ Bi 3.25	²⁰⁴ Bi 4.44	²⁰⁵ Bi 2.71	²⁰⁶ Bi 3.76	²⁰⁷ Bi 2.40	²⁰⁸ Bi 2.88		20.0
	120	121	122	123	124	125		0.0
		Ν	Jeutron	Numbe	er			

80.0	•	High FF proportion in this region.

A=208 region

- Outliers are the result of low Q_{FC} values (206,208,209Po,210Rn) or lack of 50.0data/observed negative parity states (²⁰⁶At, ²⁰⁶⁻²¹⁰Rn).
- 10.0
- Low Q_{FC} and no positive parity states result in high FF proportion (^{206,207,208}Bi).
- 20.0
- High $I_{\beta ff}$ % comparable to the N=126 waiting point.

²⁰⁸Po Structure

- ²⁰⁸Po level scheme has been significantly expanded.
- Large number of previously observed transitions placed into the level scheme.

Pandemonium Effect

- Large number of previously-unobserved high energy states and transitions.
- High Q_{EC} value, and underlying structure suggests additional unobserved β-populated states.

r-process Nucleosynthesis

- First-forbidden decays prevalent for ²⁰⁸At, and the surrounding mass region.
- Results reaffirm N<126, Z>82 as lucrative testing ground for r-process simulations.
- Further decay studies of this region are required to improve understanding.

Thank you for listening

Competition between allowed and first-forbidden β decays of $^{208}{\rm At}$ and expansion of the $^{208}{\rm Po}$ level scheme

M. Brunet,¹ Zs. Podolyák,¹ T. A. Berry,¹ B. A. Brown,² R. J. Carroll,¹ R. Lica,^{3,4} Ch. Sotty,^{4,5} A. N. Andreyev,^{6,7} M. J. G. Borge,³ J. G. Cubiss,^{3,6} L. M. Fraile,⁸ H. O. U. Fynbo,⁹ E. Gamba,¹⁰
P. Greenless,¹¹ L. J. Harkness-Brennan,¹² M. Huyse,⁵ D. S. Judson,¹² J. Konki,¹¹ J. Kuroewicz,³ I. Lazarus,¹³ M. Madurga,³ N. Marginean,⁴ R. Marginean,⁴ I. Marroquin,¹⁴ C. Mihai,⁴ E. Nácher,¹⁵ A. Negret,⁴ S. Pascu,⁴ R. D. Page,¹² A. Perea,¹⁴ J. Phrompao,¹⁶ M. Piersa,¹⁷ V. Pucknell,¹³ P. Rahkila,¹¹ E. Rapisarda,³ P. H. Regan,^{1, 18} F. Rotaru,⁴ M. Rudigier,¹ C. M. Shand,¹ R. Shearman,^{1, 18} E. C. Simpson,¹⁹ T. Stora,³ O. Tengblad,¹⁴ P. Van Duppen,⁵ V. Vedia,⁸ S. Vinals,¹⁴ R. Wadsworth,⁶ N. Warr,¹⁹ and H. De Witte⁵

Thanks to ISOLDE IDS collaboration