NON-STATISTICAL EFFECTS IN BETA & GAMMA DECAYS AND BETA-DELAYED FISSION ANALYSIS

IGOR IZOSIMOV

Fig. 8. Scheme of the nuclear β -delayed fission (βdf). Heights of the internal (A) and external (B) fission barriers for the daughter nucleus are given.

The probability $P_{\beta d}$ of β -delayed process is : $\frac{Q_{\beta}}{Q_{\beta}} = \frac{\frac{Q_{\beta}}{0} \int_{0}^{\infty} S_{\beta}(E) f(Q_{\beta} - E) \Gamma_{d}(E) / \Gamma_{tot}(E) dE}{\frac{Q_{\beta}}{0} \int_{0}^{\infty} S_{\beta}(E) f(Q_{\beta} - E) dE}$ where $\Gamma_{d}(E)$ – delayed process width, $\Gamma_{tot}(E)$ – total width.

$$\Gamma_{\text{tot}} = \Gamma_{\text{d}} + \Gamma_{\gamma}$$

Below Q_{β} there are local maxima in $S_{\beta}(E)$ both for GT and FF β -transitions. The fine structures of these maxima both in β - and in β +/EC $S_{\beta}(E)$ are important for delayed process analysis.

The previously dominant statistical model assumed that there were no resonances in $S_{\beta}(E)$ in Q_{β} -window and the relations $S_{\beta}(E) = \text{Const}$ or $S_{\beta}(E) \sim \rho(E)$, where $\rho(E)$ is the level density of the daughter nucleus, were considered to be a good approximations for medium and heavy nuclei for excitation energies E > 2-3 MeV.

In delayed fission analysis the γ -decay widths Γ_{γ} calculated using the statistical model, which, in general, can only be an approximation.

In β -decay the simple (non-statistical) configurations are populated and as a consequence the **non-statistical effects were experimentally observed** both for $S_{\beta}(E)$ (resonance structure) and γ -decay: (M1-E2 correlations in (p,γ) nuclear reactions)

For correct calculations of the beta-delayed fission probabilities $P_{\beta df}$ it is necessary to have **experimental** information and systematic on $S_{\beta}(E)$ peaks width and fine structure for delyed fission nuclei.

Because the information about γ -decay is very important for delayed fission analysis, it is necessary to consider the influence of **non-statistical effects on delayed fission** probability not only for β -decay, but also **for** γ -**decay**.

NON-STATISTICAL EFFECTS IN BETA & GAMMA DECAYS AND BETA-DELAYED FISSION ANALYSIS

I. N. Izosimov, Joint Institute for Nuclear Research, 141980 Dubna, Russia

https://www.researchgate.net/publication/322539669

The probability $P_{\beta d}$ of β -delayed process is :

$$P_{\beta d} = \frac{Q_{\beta}}{{}_{0} \int S_{\beta}(E) f(Q_{\beta} - E) \Gamma_{d}(E) / \Gamma_{tot}(E) dE}{{}_{0} \int S_{\beta}(E) f(Q_{\beta} - E) dE}$$

where $\Gamma_d(E)$ – delayed process width, $\Gamma_{tot}(E)$ – total width.

The β -transition probability is proportional to the product of the lepton part described by the Fermi function $f(Q_{\beta} - E)$ and the nucleon part described by the β -decay strength function $S_{\beta}(E)$, $\Gamma_{\text{tot}} = \Gamma_{\text{d}} + \Gamma_{\gamma}$ and $\Gamma_{\text{d}} = \Gamma_{\text{f}}$ for delayed fission. The delayed fission probability P_{df} substantially depends on the resonance structure of the $S_{\beta}(E)$ both for β - and β +/EC decays. The analysis of the experimental data on delayed fission demonstrated that the P_{df} can be correctly described only by using the **non-statistical** $S_{\beta}(E)$, reflecting nuclear-structure effects (I.N. Izosimov, Yu.V. Naumov, *Bulletin of the Academy of Science USSR*, *Physical Series*, **42**, 25 (1978).

In β-decay the simple (non-statistical) configurations are populated and as a consequence the non-statistical effects may be observed in γ -decay of such configurations. In delayed fission analysis the γ -decay widths Γ_{γ} calculated using the statistical model, which, in general, can only be an approximation (I.N. Izosimov, *Physics of Particles and Nuclei*, 30, 131 (1999). DOI: 10.1134/1.953101)

Dependence of the multipole mixture δ on the incident-proton energy for nonanalog resonances with $I^{\pi} = \frac{3}{2}^{-}$ in 63 Cu. The excitation energies of resonances in 63 Cu ranged from 8040 to 9250 keV. The average value of δ is $\langle \delta \rangle = (0.6 \pm 0.1)$, while the statistical model gives $\langle \delta \rangle = 0$.

Non-statistical effects in (p,γ) nuclear reactions in the excitation and decay of the non-analog resonances, for which simple configurations play an important role, were analyzed. The strong non-statistical effects were observed both for M1 and E2 γ -transitions.

CONCLUSION

- 1. For correct calculations of the beta-delayed processes probabilities $P_{\beta d}$ it is necessary to have experimental information and systematic both on $S_{\beta}(E)$ structure and Γ_{γ} values. Only after proper consideration of non-statistical effects both for β -decay and γ -decay it is possible to make a **quantitative** conclusion about fission barriers.
- 2. For non-statistical effects study in delayed fission both for β -decay and γ -decay it is necessary to measure first of all the $S_{\beta}(E)$ structure for delayed fission nuclei. We are interesting in collaboration for such experiments.