

HIGH-VOLTAGE STABILIZATION OF MIRACLS' PROOF-OF-PRINCIPLE EXPERIMENT

C. Kanitz ^{1,2}
P. Fischer ³
V. Lagaki ^{1,3}
S. Lechner ^{1,4}
F. Maier ^{1,3}
P. Plattner ^{1,5}
S. Sels ¹
M. Vilen ¹
F. Wienholtz ⁶
L. Schweikhard ³
S. MalbrunotEttenauer ¹

- CERN
 FAU Erlangen Nürnberg
- ³ U Greifswald
- ⁴ TU Wien⁵ U Innsbruck
- ⁶ TU Darmstadt

1 Proof-of-Principle Experiment

2 MOTIVATION

- CLS linewidth can be broadened by time-of-flight variations of the ion bunch
- Moreover, voltage instabilities lead to ToF fluctuations

Sensitivity of ToF to mirror potentials

3 VOLTAGE STABILIZATION SETUP

Based on low-cost (50 CHF) voltage divider (TC 5 ppm):

4 PASSIVE STABILIZATION

Lowpass filter with $\tau = R \cdot C = 40 \, \text{s}$. Voltage measured at mirror electrode 4:

5 ACTIVE STABILIZATION

Mirror 2 and 4 are stabilized by a lowpass filter and a PID Relation, mirror 1 and 3 are only stabilized via a PID loop.

Relative standard deviation of the ToF and voltage signal:

Active stab.	off	on	Improv.
ToF	1.05 ppm	0.67 ppm	36.2 %
Mirror 1	18.16 ppm	16.04 ppm	11.7%
Mirror 2	3.02 ppm	0.66 ppm	78.2%
Mirror 3	8.64 ppm	5.69 ppm	34.1 %
Mirror 4	3.70 ppm	0.56 ppm	84.9 %

The most sensitive mirror (Mirror 1) could not yet be passively stabilized due to its higher potential. A suitable capacitance has now been identified and will be tested soon.

Conclusion:

A significant improvement of the ToF signal stability can be achieved, which reduces the ToF width of an ion signal measured in a longer measurement run. The improvement shown here, can be excelled by stabilizing the most sensitive mirror passively and actively. The passive stabilization enables the active stabilization to work effectively.

REFERENCES

[1] F. Wienholtz et al. Improved stability of multi-reflection time-of-flight mass spectrometers through passive and active voltage stabilization. *Nucl. Instrum. Methods Phys. Res. B*, 463:348 – 356, 2020.

OUTLOOK

- Comparison to SimION simulations
- Improvement of CLS linewidth due to voltage stabilization
- Implementation into the compactMIRACLS experiment, currently under construction

CONTACT INFORMATION

Email carina.kanitz@cern.ch
Web https://miracls.web.cern.ch