ISOLDE - EPIC Workshop 2020

Present status of HIE-ISOLDE Superconducting Recoil Separator

I. Martel

for the ISRS Collaboration

Recoil Separators

- Use to detect forward focussed reaction products (recoils): A, Z, E, ToF, θ ٠
- Separate them from the primary beam. ٠

Intensity

- Normally used in coincidence with other detectors systems.
- Main advantage is the very high efficiencies > 80%.
- Higher cost than particle detector systems.

- Stand alone simpler experiments. •
 - ✓ Heavy recoils
- Reactions with **y**, **n** in the exit channel ٠
- Reactiond with **particles**, **y**, **n** in the exit channel ۲
 - **Reaction channel selection** \checkmark
- **Beam impurities**

Nuclear astrophysics: Direct measurements of (p, y) capture cross sections

D. W. Bardayan, et al. European Physical Journal A, 2009.

- Strength of the 3+ resonance in ${}^{17}F(p,\gamma){}^{18}Ne$ explosive nucleosynthesis ٠
- HRIBF (Oak Ridge, USA) ٠
- Energy and width from ${}^{17}F(p,p){}^{17}F$ in inverse kinematics ٠
- Beam energy 1.1 MeV/A •
- $I \sim 10^{7} \text{ pps}$ ٠

¹⁸Ne

lon Counter

Dipole

Windowless hydrogen gas target ٠

Evolution of Nuclear Shells: N=16 replaces N=20

W.N. Catford *et al.*, Eur. Phys. J. **A25.1** 245 (2005).

- ${}^{24}Ne(d, p\gamma){}^{25}Ne$ in inverse kinematics
- GANIL SPIRAL1 (France)
- Beam energy 10.5 MeV/A
- Target CD₂

- Experiments with **particle**, γ in the exit channel
- Selection of reaction channel background removal

Adapted from Wilton Catford | Spectrometer at HIE-ISOLDE Workshop, Lund, March 10-11, 2011

Pairing interaction with multi-nucleon transfer reactions

D. Montanari et al., PRL 113, 052501 (2014)

- Dynamics of neutron transfer at Coulomb barrier
- Neutron pairing around ⁶²Ni
- ¹¹⁶Sn(⁶⁰Ni, ⁶²Ni) ¹¹⁴Sn, ¹¹⁶Sn (⁶⁰Ni, ⁶¹Ni) ¹¹³Sn
- INFN, Laboratori Nazionali di Legnaro (Italy)
- Beam energy 3- 4 MeV/A

• Multinucleon transfer experiments to study neutron pairing in n-rich exotic beams.

PRISMA spectrometer; rotated θ lab = 20°

Dynamics of Fission using multinucleon transfer reactions

M. Caamaño et al. AIP Conference Proceedings 1175, 15 (2009)

- GANIL (France)
- Fission dynamics of neutron-rich actinides → shell structure and pairing correlations at low excitation energy.
- ²³⁸U + ¹²C in inverse kinematics
- E = 6.1 MeV/A

$B\rho \rightarrow A/q \rightarrow Full identification (Z, N)$

- Reactions with **particles**, γ
- Fission multinucleon transfer with

neutron-rich exotic beams

THE HIE-ISOLDE FACILITY AT CERN

HIE-ISOLDE: very large range of radioactive beams from ⁶He – ²³⁴Ra

- > 1000 isotopes, > 70 elements
- Wide energy range 0.45 10 MeV/A (dep. A/Q)

- Studies of recoil separators for HIE-ISOLDE go back to 2011.
- The HIE-Isolde Fragment Identifier 2017, using warm magnets (HIFI).
- The ISOLDE Superconducting Recoil Separator (ISRS) new initiative since 2019.

A Recoil Separator can bring new and exciting possibilities to the HIE- ISOLDE physics program.

HIE-ISOLDE experiments that could profit from a Recoil Separator (2018)

IS591 P377 ¹⁸N: a challenge to the shell model and a part of the to rprocess element production in Type II supernovae (¹⁷N(d,p)¹⁸N). Matta, A / Catford, W.

IS606 P440 Studies of unbound states in isotopes at the N = 8 shell closure [¹¹Be(t,p)¹³Be]. Tengblad O. / Mücher, D.

IS587 P398 Characterising excited states in and around the semi-magic nucleus ⁶⁸Ni using **Coulomb excitation** and one-neutron transfer. Gaffney, L./Flavigny, F./Zielinska, M./Kolos, K.

IS566 P370 Probing intruder configurations in ^{186,188}Pb using **Coulomb** excitation. Pakarinen, J.

IS562 P362 Transfer Reactions and Multiple Coulomb Excitation in the ¹⁰⁰Sn Region. Cederkäll, J.

IS561 P361 Transfer reactions at the neutron dripline with triton target. Riisager, K. / Mücher, D.

IS556 P352 Spectroscopy of low-lying single-particle states in ⁸¹Zn populated in the ⁸⁰Zn(d,p) reaction. Orlandi, R. / Raabe, R.

IS554 P350 Search for higher excited states of ⁸Be* to study the cosmological ⁷Li problem ⁷Be(d,p),(d,d). Gupta, D.

IS553 P348 Determination of the B(E3,0+->3-) strength in the in the octupole correlated nuclei ^{142,144}Ba using **Coulomb excitation**. Scheck, M. / Joss, D.

IS551 P345 Coulomb excitation of doubly magic 132Sn with MINIBALL at HIE-ISOLDE. Reiter, P.

IS549 P343 Coulomb Excitation of Neutron-rich ^{134;136}Sn isotopes. Kröll, T. / Simpson, G.

IS548 P342 Evolution of quadrupole and octupole collectivity north-east of ¹³²Sn: the even Te and Xe isotopes. Kröll, T. / Simpson, G.

IS547 P340 Coulomb excitation of the two proton-hole nucleus ²⁰⁶Hg. Podolyak, Z.

IS555 P351 Study of shell evolution in the Ni isotopes via one-neutron **transfer reaction** in ⁷⁰Ni Valiente Dobon, J. / Orlandi, R. / Mengoni, D.

Transfer (35%), Coulex (50%), Astrophysics (15%)

Traditional system based on warm magnets

Based on previous HIFI project

Layout for XT03 – SEC

Layout for XT01 – MINIBALL

- Simpler and experienced.
- Space limitations at HIE-ISOLDE ~ 5 m x 5 m \rightarrow limited resolution.
- Extension of the HIE-ISOLDE will be a great advantage.

Isolde Superconducting Recoil Separator: superconducting mini-storage ring

 \rightarrow Use multifunction SC magnets and RF kickers to produce a compact high-selectivity recoil separator.

"Design of a superconducting Gantry for protons" C. Bontoiu, et al., IPAC2015, doi:10.18429/JACoW-IPAC2015-WEPMN051 (2015)

Gantry

- Protons of <u>175 MeV</u>
- Large momentum acceptance ~ 20%
- Combined function SC magnets for bending and focussing
- Non Scaling-Fixed Field Alternating Gradient (NS-FFAG)
- R= 2.5 m
- Bmax = 2 T
- $B\rho = 5.47 \text{ Tm} (\text{HIE-ISOLDE} \sim 2 \text{ Tm})$
- Quads gradient = 90 T/m
- Small magnets ~ 20 cm x 15 cm

Recoil separator

- Ring concept
- RF cavities \rightarrow injection/ejection

Beam dynamics studies

Ejected

A.

G4Beamline

Simulations

•

BMAD

	Nuclear Inst. and Methods in Physics Research, A 969 (2020) 164048		ISRS connected to the
20100000	Contents lists available at ScienceDirect		Scattering Experimen
	Nuclear Inst. and Methods in Physics Research	n, A	Chamber (SEC) and to focal plane detector.
ELSEVIER	journal homepage: www.elsevier.com/locate/nima		
Conceptual for radioact Cristian Bontoi Carsten P. Wels ⁹ Department of Physics, ⁹ The Cockcroft Institute,	design of a novel and compact superconducting recoil s ive isotopes u ^{b,c} , Ismael Martel ^{a,b} , Javier Resta-López ^{b,c,*} , Volodymyr Rodin ^{b,c} , sch ^{b,c} Aplicada, Universidad de Huebra, 21971 Huebra, Spain The University of Liverpool, L69 72E Liverpool, United Kingdom Daresbury, Warrington WA4 4AD, United Kingdom	eparator	SEC RS
Conceptual	FFAG ring layout. <u>Diameter: 1.1 m</u>	Optical Paran	neters
	Stored A ₁ ,A _N 10 SC magnets	Ring circumference, [m] Injection energy up to, [MeV/u] Upper limit of magnetic rigidity, $B\rho$ [T m] Tunes, Q_x , Q_y Chromaticity, $\xi_{x,y}$ Maximum beta functions, $\beta_{x,y}$ [m] Maximum dispersion, D_x [m] Revolution period, T [ns]	

All isotopes

Challenging cases ²H(²³³Ra, ²³⁴Ra)H @ 10 MeV/A

Test of ToF separation between ²³³Ra - ²³⁴Ra

ToF separation between the ions ²³³Ra and ²³⁴Ra as a function of the number of turns. It follows a linear function.

After 10 turns (storage $\tau \approx 810$ ns)—ToF separation ~ 3.5 ns.

 \rightarrow For obtaining ToF separations of ~ 10 ns the reaction fragments must circulate typically for $\approx 2.3 \mu s$.

Review the ISRS configuration

- Adapt ISRS operation to time structure of HIE-ISOLDE
 ✓ LINAC 101.28 MHz → bunch separation ~ 10 ns
 - ✓ Multi-bunch ring injection/extraction
- HIE-ISOLDE buncher study 2 μs possible?
- Ring geometry and operation parameters
 ✓ Available space 5 m x 5 m
- Injection/extraction process \rightarrow RF kicker ~ 1.2 MHz
- Simulations: beam size, tails, emittance, etc

WORK IN PROGRESS!

Present activity of the collaboration

Based on two working groups

- <u>Physics working group.</u> Provides nuclear physics cases and technical specifications (PCR- Physics Cases Report).
 - <u>Collaborators</u>: Univ. Huelva (Spain), IPNO (France), Univ. Lund (Sweden), INFN-LNL (Italy), CENGB-Bordeaux (France),
 University of Liverpool (UK).
- <u>Technical working group</u>. Provides design studies to approach the technical specifications (CDR Concept Design Report).
 - <u>Collaborators</u>: CERN (Switzerland), Univ. Liverpool (UK), Univ. Valencia (Spain), Cockcroft Institute (UK), ESS-Bilbao (Spain).
 - ✓ <u>Discussions</u>: Wigner RCP-Budapest (Hungary), Berkeley (USA), and other research centres. Companies: ACS (France).
- <u>Funding</u>. No specific funding (foreseen HORIZON EU application, 2021).
 - ✓ Activity is carried out on resources made available by the collaborators.

Physics Program

Last Physics meeting - 04.11. 2020; PCR structure:

Reaction types

- Coulomb dissociation
- Transfer reactions in inverse kinematics
- Deep inelastic reactions
- Fusion evaporation reactions in inverse kinematics
- Multinucleon transfer reactions
- Transfer, breakup and fusion reactions

Some proposals received so far

- Transfer reactions at ISOLDE
- Nuclear structure and dynamics close to the drip lines.
- Multi-nucleon transfer reactions to populate r-process nuclei
- Single particle transfer of n and p to single particle dominated states close to double shell closures, specifically the Sn-100 region.
- Reaction of astrophysical interest with indirect methods.

Physics cases

- Weakly bound nuclear systems and clusters
- Shape coexistence and nuclear isomerism
- Evolution of Nuclear Shells
- Isospin symmetry
- Pairing
- Nuclear astrophysics

Key nuclei

- n-, p -rich along N=Z line
- Close to the drip lines.
 - ✓ ¹⁷Ne, ²⁰Mg, ³³K, ³²Ar, ²²Al, ⁴⁰Ti.
- Region around N=126 Isotopes.
 - ✓ $^{144}Xe + ^{208}Pb \rightarrow ^{151}Pm + ^{201}Re$
- Region around Sn-100

More proposals welcome!

Technical specifications

- Energy: 4 MeV/A \leqslant Elab \leqslant 10 MeV/A
- Large acceptance (~ 6.5 degrees)
- Energy resolution < 100 keV
- Time resolution ~ ns (for coincidences)
- Excellent angular resolution (kinematic reconstruction/Doppler correc.) ~ 0.1 degree lab.
- Event-by-event particle identification
 - Separation of reaction products from the beam

WORK IN PROGRESS!

- Isobaric beam contaminants
- VAMOS like spectrometer
 - ✓ ΔQ/Q ~1/70 (FWHM)
 - ✓ △M/M~1/200 (FWHM)
 - ✓ ΔZ/Z~1/60 (FWHM).

Ancillary detectors and special equipment

- Targets : solid (implanted) and cryogenic targets
 H,³He,L⁴He,¹²C.
- Heavy targets ²⁰⁸Pb, ¹⁹⁸Pt, ¹⁹³Ir.
- Detectors for particle, gamma, neutron.
- Couple with a MR-TOF.
 - Possible better at XT01 with existing MINIBALL and T-REX for gamma-particle coincidences.
 - Long time-scale project,
 - ✓ ~ 4 years R&D proof of concept
 - \checkmark ~ 4 years detailed design + construction

• HIE-ISOLDE hall extension during LS3.

ISRS Design study – Technical working group

Review of specifications (October - November 2020)

a) Beam dynamics

- Update of geometry for HIE-ISOLDE (J.A. Rodriguez)
- Ring dimensions 3.5 m x 3.5 m (XT03)
- Maximum space available: 5 m x 5 m (XT01)
- FFAG using Canted coils Cos Theta magnets (CCT)
- Isochronous/achromatic focal plane

b) Cryogenics

- Connection from beampipe (~4.5K) to outside (~300K)
- Common vacuum (SC magnet cryostats)
- Conduction cooled option by 4.5 K thermal LHe bath
- Cryogen free option

c) Magnets

- Q + D nested
- Beampipe diameter: 220 -300 mm
- Dipole strength: 1.5 Tm
- Quadrupole strength: 40 T/m
- Max peak field: 5 T
- Stored energy 1.5 MJ (!!)

d) Typical magnet geometry

- Total magnet length 500 800 mm, depending on final layout in the ring.
- 190 mm magnet inner diameter
- 3 straight magnets in series, bending angle 30°, R= 1 m.
- Curved option will be studied
- Max outer diameter (including shielding): 650 mm
- e) Buncher. In the range of ~ MHz.
- f) Magnetic shielding. To be defined.
- g) Injection/extraction
- RF Kicker + CCT magnet design a la "Sushi"
- → Superconducting septum magnet for the Future Circular Collider

ISRS Design study – Technical working group

Courtesy of Jose Alberto Rodriguez, CERN BE

- Ring diameter 3.4 m, bending sector 1 m radius
- Maximum beam rigidity 2 T.m (~10% of margin, 2.2 T.m)

CCT magnets

100 50

0 -50 -100

100

y-axis [mm]

z-axis [mm]

- Modulated Double Helical Coils technology with layout of Canted coil Cos-Theta. C. Goodzeit, et al. IPAC2007. 2007.
- Medium field range (2-5 T). ٠
- 90 deg sector of 3.3 T.m integrated field, composed of three straight coils ٠ segments each 0.5 m long.
- Curved version of the combined magnet.

-100

-200

-300

Curved CCT magnet (Berkeley model) https://doi.org/10.1016/j.nima.2020.163414

Courtesy of Glyn Kirby, Arnaud Foussat CERN TE-MSC

Injection/extraction with Sushi CCT magnets

Conceptual design of a high-field septum magnet using a superconducting shield and a canted-cosine-theta magnet

Dániel Barna,¹⁴¹ ⁽²⁾ Martin Novák,¹ ⁽³⁾ Kristóf Brunner,²⁴⁰ Glyn Kirby,³⁴¹ Brennan Goddard,⁴⁴¹ Jan Borburgh,⁵⁴¹ Miroslav Georgiev Atanasov,⁵ Alejandro Sanz UII,⁵ Elisabeth Renner,⁴⁴¹ ⁽³⁾ Wolfgang Bartmann,⁶ and Marcell Szakály⁷ ⁽³⁾

Superconducting septum magnet for the Future Circular Collider

Two-dimensional conceptual design of a superconducting iron-free opposite field septum magnet D. Barna, M. Novák, Nucl. Inst. Methd. A 959 (2020) 163521

Courtesy of Daniel Barna, Wigner RCP-Budapest (Hungary)

MHB design

• First 2D, 3D FEM model for RF and termal calculations.

- Setup programs for 2D axisymmetric, 3D in COMSOL ELCANO (home code) for quick parametric optimization.
- Fields exported for beam dynamics calculations with GPT code.

• Test-bench

RF kicker design

- Preliminary ideas based on a fast chopper/kicker developed for European Spallation Source.
- Strip-line electromagnetic kicker

WORK IN PROGRESS! Justiduy, Juan Luis Muñoz ESS-Bilbao

Future HORIZON EUROPE application

Work Plan Structure \rightarrow proof of concept and prototyping

WP1	Project Coordination and Management	WP4	Construction of prototypes
W/D2	System energifications and selection of technologies	T4.1	Beam transport
TO 1	System specifications and selection of technologies	T4.2	Buncher
12.1	State of the art	T4.3	Debuncher
12.2	Physics case/ White Dook	T4.4	Injecction/extraction
12.5	Conceptual design and critical components	T4.5	Multifunction magnets
WP3	Design study	T4.6	Magnetic probes
T3.1	Beam dynamics FFAG	T4.7	Magnet test bench
T3.2	Beam transport (SEC, MINIBALL and ISS)	T4.8	Ring cryomodules, cryogenic system, control
T3.3	Buncher	T4.9	Beam diagnostics
T3.4	Re-buncher system	T4.10	Focal plane detector
T3.5	Superconducting multifunction magnets		
T3.6	Magnetic probes and magnet test bench	WP5	Prototype evaluation and test
T3.7	Injection/extraction system	T5.1	Prototype testing plan
T3.8	Ring cryomodule design, cryogenic system, control	T5.2	Off-line test and data analysis
T3.9	RF and LLRF systems	T5.3	System integration
T3.10	Beam diagnostic systems	T5.4	Commissioning at HIE-ISOLDE
T3.11	Focal plane detectors	T5.5	Off-line test and data analysis
T3.12	Ancillary detectors and special equipment	T5.6	In-beam test and data analysis
T3.13	Machine and personal safety		
		11000	

TEST AT HIE-ISOLDE To be decided

CSIC-MADRID, SPAIN UNIVERSITY OF HUELVA, SPAIN UKRI-STFC, UK CERN, SWITZERLAND UNIVERSITY OF LIVERPOOL, UK COCKCROFT INSTITUTE, UK UNIVERSITY OF VALENCIA

UNIVERSITY OF LUND, LUND, SWEDEN CENBG, BOURDEUX, FRANCE UNIVERSITY OF WEST SCOTLAND, UK **UNIVERSITY OF AARHUS, DENMARK** UNIVERSITY OF UPPSALA/FREIA, SWEDEN **ESS-BILBAO, SPAIN**

Companies

ACS, FRANCE TTI Norte, SPAIN

Summary and conclusions

Work is progressing:

- Physics Program
- Technical design
- Horizon Europe