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- Question: can we use generative adversarial networks (GANSs) to accelerate detector
simulation when searching for WIMPs using LAr TPC experiments (DarkSide-20k)?

Context: MPhys project conducted by Krishan Jethwa and Enrico Zammit Lonardelli (2019/20)

-~ Background:

* GANs invented in 2016 (arXiv:1406.2661) as a new type of generative model, and have gained
much popularity, especially in context of image generation, since they can produce high fidelity
outputs (e.g. super-resolution)

e Have been used to model calorimeters @ LHC: arXiv:1712.10321, arXiv:1812.00879, arXiv:
2005.05334, ATL-SOFT-PUB-2018-001, ATLAS-SIM-2019-004

* Much faster than running G4 every time (but we still use G4 to train the GAN)

-~

> Aims:
 See how well we can get a GAN implementation to work in a LAr TPC setting

* |terate discussion on how/where ML tools can contribute to efficient simulation LAr experiments

N J
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@@’PMT?MT <~ Dual-phase LAr time-projection-chamber (TPC)

~ WIMP collision causes nuclear recoil, releasing
ionisation electrons

<~ Also create excited LAr dimers, which de-excite and
create a prompt scintillation signal (S1)

© Free charges are accelerated in electric field until they
cross the LAr liquid->gas boundary, creating a
secondary scintillation signal (S2)

¢

\ ~ Radiation background: e.g. electron recoil. Less ionising
PMTHIEMT ?M ?MT than DM, so can distinguish using S1/S2/f200 spectrum

e f200 = fraction of S1 in first 200ns (pulse shape
discrimination)

DarkSide-50 :
Image credit: http://darkside.Ings.infn.it/argon- tpc/

*DarkSide-20k uses SiPMs, not PMTs
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DarkSide-20k

Figures credit: Eur. Phys. J. Plus (2018) 133: 131, arXiv:1707.08145§
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Vanilla GANs

noise 7 ~ p, -

condition

@) = 7 @ —~ ) — e

Ly ~ Preal (6) — a —> “real”

- Train G to fool D, and D to not be fooled (2-player minimax game, “adversarial”)

~ Optimum training —> Pgen = Preal

-~ We use recoil energy as conditional parameter

Auto-regressive property

p(A4,B|C) = p(A|B,C) x p(B|C)

- Use an auto-regressive GAN = a chain of GANs
with 1D output(but increasing complex inputs)

.....
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Typical accuracy ~0O(50-400%)

Interesting systematic trend - can probably be improved?
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Wasserstein distance for
S, for varying recoil energies
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Conditional dependence learned with ~medium success

Wasserstein distance is metric comparing G4DS & GAN4DS
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G4DS GAN4DS
Trainin 222 hrs (-9 days)
g
Generation 78 hrs (~3 days) 1.5 mins

e (G4DS/GAN benchmarks each for 1000 events per NR energy, for energies [5,235] keV in steps of 1 keV

e GAN trained on a NVIDIA TESLA V100 16GB memory, Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
and 48 GB RAM

e (G4DS obtained on AMD Opteron(tm) Processor 6278 @ 2.4 GHz and 132 GB RAM

Factor ~3000 improved run-time performance compared with G4DS

But not necessarily fair comparison, as people would likely use fast-sim in real world
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N - Discussion

Shown a GAN can describe qualitative characteristic signatures of WIMPs in LAr TPC

Improvements: positional/directional dependence, dependence on latent variables (e.g.
Rayleigh scattering length)

> What is the best input? Currently nuclear recoil. To generalise to more LAr TPC uses, include
electron recoil. Maybe better to factor out nuclear interaction and condition on “truth level
photons” at certain positions and times.

What is the best output? High level observables like S1/52/f200, or something more low-level
like an image of SiPM hits? The latter might require a DCGAN

> GAN training is very unstable, in part because the objective functions of D and G constantly
change over time. Often results in e.g. mode collapse, catastrophic forgetting, biased model,
even though “fully trained” GAN would be unbiased. Could benefit from much prior work here.

> Alternative: neural likelihood models may be more stable and so less biased for a low-fidelity
output, but usually slower/harder to sample, and not good for image generation (SiPM hit)

For more info: https://indico.cern.ch/event/919221/
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