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Plan:

1. The problem

2. The solution and some results

A.S., work in progress

Also, arXiv:1908.02782, 2002.04043, 2003.12076

More details can be found at

https://www.ictp-saifr.org/workshop-on-fundamental-aspects-of-
string-theory/
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The problem
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String theory began with Veneziano amplitude

– tree level scattering amplitude of four tachyons in open string
theory

World-sheet expression for the amplitude (in α′ = 1 unit)∫ 1

0
dy y2p1.p2(1− y)2p2.p3

– diverges for 2p1.p2 ≤ −1 or 2p2.p3 ≤ −1.

Conventional viewpoint: Define the amplitude for 2p1.p2 > −1,
2p2.p3 > −1 and then analytically continue to the other kinematic
regions.
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However, analytic continuation does not always work

It may not be possible to move away from the singularity by
changing the external momenta

Examples: Mass renormalization, Vacuum shift

– discussed earlier

Today we shall discuss another situation where analytic
continuation fails

– D-instanton contribution to string amplitudes
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D-instanton: A D-brane with Dirichlet boundary condition on all
non-compact directions including (euclidean) time.

D-instantons give non-perturbative contribution to string
amplitudes that may be important in many situations

Problem: Open strings living on the D-instanton do not carry
any continuous momenta

⇒ we cannot move away from the singularities by varying the
external momenta Polchinski; Green, Gutperle; ...

Even if the divergent parts cancel after suitable choice of
regulators, the finite parts that remain after the cancellation
become ambiguous. Fischler, Susskind
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We shall study this in the context of a particular example –
bosonic string theory in two dimensions

World-sheet theory: A free scalar X describing time coordinate
and a Liouville field theory with central charge 25

Total central charge adds up to 26, cancelling anomalies on the
world-sheet

In this case the closed string ‘tachyon’ is actually a massless
state of the theory

In arXiv:1907.07688 Balthazar, Rodriguez and Yin (BRY)
computed the single D-instanton contribution to the two point
amplitude of closed string tachyons

This model is interesting because there is a dual matrix model
description that gives the exact results.

Das, Jevicki; Gross, Klebanov; Sengupta, Wadia; Moore, Plesser, Ramgoolam; · · · 7



The leading contribution comes from the product of two disk
one point functions.

× ×

BRY result:

8πN e−1/gs δ(ω1 + ω2)sinh(π|ω1|)sinh(π|ω2|)

N: An overall normalization constant

gs: string coupling constant

−ω1, ω2: energies of incoming / outgoing ‘tachyons’

Note: Individual disk amplitudes do not conserve energy
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At the next order, there are three contributions.

1. Two point function on the disk.

× × i, iy: Positions of the vertex operators
in the upper half plane (UHP)

BRY result:

8πN e−1/gs gs δ(ω1 + ω2)sinh(π|ω1|)sinh(π|ω2|)× f(ω1, ω2)

f(ω1, ω2) =
1
2

∫ 1

0
dy y−2(1 + 2ω1ω2y) + finite terms

Note the divergences from the y→ 0 limit that cannot be tamed
by deforming the ωi’s.

Write f(ω1, ω2) = Af + Bf ω1 ω2 + finite terms 9



2. Product of disk one point function and annulus one point
function.

× × Annulus: UHP with identification z ≡ z/v
Position of vertex operator: e2πix

BRY result:

8πN e−1/gs gs δ(ω1 + ω2)sinh(π|ω1|)sinh(π|ω2|) {g(ω1) + g(ω2)}

g(ω) =
∫ 1

0
dv
∫ 1/4

0
dx
{

v−2 − v−1

sin2(2πx)
+ 2ω2 v−1

}
+ finite terms

Note the divergences from x→ 0 and v→ 0 that cannot be
tamed by adjusting the ωi’s.

Write g(ω) = Ag + Bg ω
2 + finite terms
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3. Product of two disk one point functions and the zero point
function on a surface of Euler number −1

– disk with two holes or torus with one hole.

× ×

Result:

8πN e−1/gs gs δ(ω1 + ω2)sinh(π|ω1|)sinh(π|ω2|)C

C: a real constant that can in principle be computed but also has
divergences.
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After setting ω1 = −ω2, the total unknown factor is:

(Af + 2 Ag + C) + (2Bg − Bf)ω
2
2

with unknown constants Af, Bf, Ag, Bg, C.

BRY numerically compared the result with matrix model results
as function of ω2.

Leading order result⇒ N = −1/(8π2)

They found excellent fit at the subleading order if we choose:

Af + 2 Ag + C ' −0.496, 2Bg − Bf ' −1.399

Question: Can we get these results from string theory without
invoking the matrix model?
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Actually the same functions f, g, C can be used to compute
1→ n tachyon scattering for which the matrix model result is
known.

An+1 = N e−1/gs 2πδ(ω1 + ω2 + · · ·ωn + ωn+1)

[
n+1∏
i=1

{2 sinh(π|ωi|)}

]
1 + gs

n+1∑
i,j=1
i<j

f(ωi, ωj) + gs

n+1∑
i=1

g(ωi) + C gs + O(g2
s)

 .

‘Divergent part’ of the amplitude at order gs:

n(n + 1)
2

Af + (n + 1)Ag + C +
1
2
(2Bg − Bf)

∑
i

ω2
i

Comparing this with matrix model results for different n, we can
fix

Af, Ag, C, (2Bg − Bf)
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‘Divergent’ constants in two dimensional string theory:

Af, Ag, C, (2Bg − Bf)

Since these constants appear in the S-matrix, string theory
should be able to determine these constants unambiguously
without invoking duality with the matrix model

How?
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The solution
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We use the general framework of open-closed string field theory
to fix these constants Zwiebach,· · ·

Our results so far:

Af = −
1
2
, 2Bg − Bf = −ln[4] ' −1.386...

Ag: in progress

C: computable in principle but more difficult than others.

If we assume equality of quantum corrected actions of the
D-instanton and the matrix model instanton, then one can argue
that

C = 0

Numerical values of these constants from fitting the marix model
results (BRY, private communications)

Af = −.50, Ag = .00, C = .00, 2Bg − Bf = −1.40, error ∼ ±.01
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String field theory (SFT)

SFT is a regular quantum field theory (QFT) with infinite number
of fields

Perturbative amplitudes: sum of Feynman diagrams

Contribution from a given diagram gives us back the world-sheet
result, but the integral runs over only part of the full region of
integration.

Sum of the diagrams covers the full integration region.

String field theory is not unique but comes in a whole family
which are all related to each other by field redefibition. Hata, Zwiebach
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How do we get integral over world-sheet variables from a
Feynman diagram?

Express internal propagator as

(k2 + m2)−1 =

∫ ∞
0

ds e−s(k2+m2) =

∫ 1

0
dq qk2+m2−1, q ≡ e−s

The integration over q gives integration over world-sheet
variables after a change of variable.

Divergences come from the q→ 0 region for k2 + m2 ≤ 0.

All divergences in string theory are of this kind.

For D-instantons k=0, and we cannot analytically continue in
momenta to make k2 + m2 > 0.
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(m2)−1 =

∫ 1

0
dq qm2−1

This equation is:

1. An identity for m2 > 0.

2. For m2 < 0 the lhs is finite but the rhs is divergent

⇒ use lhs to define the integral.

– Change variables from the moduli of Riemann surfaces to the
variables q1,q2, · · · associated with the propagators

– Replace
∫ 1

0 dq qβ−1 by 1/β for β 6= 0

– can be used to deal with power law divergences like
∫ 1

0 dy y−2

in the earlier formulæ
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Comment: Making the correct change of variables is important
for getting the correct result.

Replacement rule:
∫ 1

0 dq q−2 = −1

Suppose we change variable to

q′ =
q

(1− c q)
⇔ 1

q′
=

1
q
− c, c = constant

Then dq q−2 = dq′ q′−2

⇒
∫ 1

0 dq q−2 =
∫ 1/(1−c)

0 dq′q′−2 =
∫ 1

0 dq′q′−2 +
∫ 1/(1−c)

1 dq′q′−2

If we now replace the first term on the rhs by −1 using the
replacement rule, we get

−1 + 1− (1− c) = −1 + c

– a different answer! 20



(m2)−1 =

∫ 1

0
dq qm2−1,

For m = 0 both sides are divergent.

– associated with zero modes on the D-instanton

– produces logarithmic divergence in the world-sheet
description

Strategy: Understand the physical origin of the zero modes and
then find suitable remedy by drawing insights from QFT.
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D-instantons have zero modes associated with translation of the
instanton position along transverse directions

– known as collective coordinates χ

⇒ massless open string states

Treatment of these zero modes in QFT:

1. Carry out path integral over all modes of the instanton other
than χ, in the background of χ

⇒ while evaluating Feynman diagrams we remove the χ
contribution from the internal propagators but keep the
D-instanton position χ arbitrary

After summing over Feynman diagrams we get a given
amplitude as a function F(χ).

2. Then we compute
∫

dχF(χ)
22



Strategy: Follow the same procedure for D-instantons

a. Drop terms of the from
∫ 1

0 dq q−1 coming from the open string
zero mode φ describing collective coordinates

– corresponds to removing φ propagators from internal lines.

b. Allow external states to be both closed strings and the open
string zero mode φ, leading to some function F(φ) for given
closed string amplitude.

c. Carry out the integration over φ
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φ is related to the collective coordinate χ via a field redefinition.

After field redefinition, χ dependence of F is expected to be of
the form eip.χ

p: total momenta carried by the external closed strings

χ integration will generate the δ(p) factor.

The field redefinition relating φ to χ may give rise to Jacobian in
the integration measure that needs to be taken into account in
the analysis.

Note: Integration measure over φ is fixed by Batalin-Vilkovisky
formalism and cannot be tampered with. 24



Open strings have other zero modes from the ghost sector.

Consider the L0 = 0 sector of the expansion of a general open
string state:

|χ〉 = ψ1 c0|0〉+ ψ2|0〉+ ξ1 c1c−1|0〉+ ξ2 c1c0c−1|0〉+ · · ·

ψ1, ψ2, ξ1, ξ2 are open string ‘fields’

Gauge fixing requires setting two of the four fields to zero.

(ψ1 or ξ1) and (ψ2 or ξ2).

The world-sheet description emerges in the Siegel gauge:

ψ1 = 0, ξ2 = 0 ⇒ |χ〉 = ψ2|0〉+ ξ1 c1c−1|0〉+ · · ·

Problem: In this gauge, the quadratic term of SFT, 1
2 〈χ|QB|χ〉,

becomes independent of the remaining fields ξ1 and ψ2.
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1
2 〈χ|QB|χ〉 is independent of ξ1 and ψ2

⇒ ξ1 and ψ2 are additional zero modes of the open string

– give additional logarithmic divergence in the world-sheet
integrals that is not removed by removing the collective modes
from the propagators.
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Remedy: Choose a different gauge ξ1 = 0, ξ2 = 0

|χ〉 = ψ1 c0|0〉+ ψ2|0〉+ · · ·

S =
1
2
〈χ|QB|χ〉 = (ψ1)2 + · · ·

ψ1 has a non-vanishing kinetic term and therefore a finite
propagator.

ψ2 has no kinetic term⇒ a zero mode

However it decouples from the action completely by ghost
number conservation

Physically, integration over ψ2 corresponds to division by the
volume of the rigid U(1) gauge group.

Therefore integration over ψ2 factorizes and can be dropped
(possibly after a field redefinition).
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Algorithm on the world-sheet:

1. Remove all logarithmically divergent integrals of the form∫ 1
0 dq/q, including those that come from the Siegel gauge ghost

zero mode pairs ξ1, ψ
2.

2. Explicitly add the contribution from ψ1 propagators

3. Take into account the Jacobians that arise form change of
variable from string fields to collective modes and ghost
associated with rigid U(1) symmetry.

This leads to the results in two dimensional string theory
described earlier.
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Example: Contributions to Af in a two parameter family of SFT

Three types of contributions:

• •ψ1
• • •

(a) (b) (c)

: closed string C : open string O •: interaction vertex

Contributions:

(a) : −1
2
λ2, (b) :

1
2
λ2 + γ2 − 1

2
, (c) : −γ2

λ, γ: parameters labelling choice of SFT

Sum gives −1/2

– independent of SFT parameters 29



Computation of Af (for γ = 0)

• •ψ1
• • •

(a) (b) (c)

We define the C-O interaction vertex by two point function on
UHP with C at i and O at 0

Insert the off-shell open string in coordinate w = λ z

Diagram (a) now describes the Riemann surface obtained by
sewing two copies of UHP via

λ zλ z′ = −q, 0 ≤ q ≤ 1

The C’s are placed at z=i and at z′=i→ z = iq/λ2 ≡ iy

Therefore diagram (a) covers 0 ≤ q ≤ 1⇒ 0 ≤ y ≤ 1/λ2

Diagram (b) covers 1/λ2 ≤ y ≤ 1 30



Net contribution to Af:

1
2

∫ 1

0
dy y−2 =

1
2

∫ 1/λ2

0
dy y−2 +

1
2

∫ 1

1/λ2
dy y−2

=
λ2

2

∫ 1

0
dq q−2 +

1
2

∫ 1

1/λ2
dy y−2

→ −λ
2

2
+

1
2
(λ2 − 1) = −1

2

In this case the ψ1 exchange contribution vanishes due to
vanishing of the C-O veretx
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Open questions:

1. The same matrix model with a different vacuum is expected to
be dual to type 0B string theory.

Takayanagi, Toumbas; Douglas, Klebanov, Kutasov, Maldacena, Martinec, Seiberg

– same perturbative S-matrix but different instanton
contribution.

Can we verify this explicitly by string theory computation?

2. The method described here is applicable to any string theory,
including type IIB string theory in D=10

Can we extract instanton contributions to the effective action
and compare the results with those expected from S-duality?

Green, Gutperle;...
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3. The overall normalization constant N has not been fixed in
string theory

– represents the ratio of the path integral measure in the
D-instanton and the vacuum sector.

Can we fix this by starting with an unstable D-brane system and
by regarding the D-instanton and the vacuum as different
classical solutions in the same theory?

4. Can we combine the D-instanton contribution and
perturbative contribution to string amplitudes with the idea of
resurgence to give a full non-perturbative definition of string
amplitudes?
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Some references:

1. Computation of 2Bg − Bf can be found in arXiv:1908.02782

2. Computation of Af and the argument for vanishing of C can be
found at the lectures at ICTP-SAIFR school

https://www.ictp-saifr.org/workshop-on-fundamental-aspects-of-
string-theory/


