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Clay Córdova

Kadanoff Center and Enrico Fermi Institute
University of Chicago

Strings 2020



Collaborators



References

Based on “Exploring 2-Group Global Symmetry”
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Motivating Ideas

Symmetry is one of the few universally applicable tools to
constrain QFTs and their renormalization group flows

We would therefore like to explore what symmetry principles exist
and how they can be used to constrain dynamics

Generalized global symmetry is a powerful new organizing principle
for thinking about QFT[Gaiotto-Kapustin-Seiberg-Willett]

• Ordinary (0-form) global symmetries act on local operators.

• Higher-form global symmetries act on extended defects

This Talk:
What possible mixings can occur when both types of symmetries
are present? (analog of non-abelian structure)

Higher-Group Global Symmetry is one general possibility for mixing
of form symmetries of different degrees.



Generalized Global Symmetry

A continuous q-form global symmetry is characterized by the
existence of a (q + 1)-form conserved current J(q+1)

J
(q+1)
A1···Aq+1

= J
(q+1)
[A1···Aq+1] , ∂A1J

(q+1)
A1···Aq+1

= 0 .

Charged objects are extended operators of dimension q.

• q = 0 −→ point operators

• q = 1 −→ line operators

• q = 2 −→ surface operators

A basic example is 4d abelian gauge theory. The Bianchi identity
and free equation of motion imply

∂AεABCDF
CD = 0 , ∂AFAB = 0 .

Thus free Maxwell theory has 1-form global symmetry U(1)×U(1)



Charged Line Operators
The charged operators under these symmetries are Wilson and ’t
Hooft lines. To say that an operator is charged means that if S2 is
a 2-sphere surrounding the line L then

exp

(
iα

∫
S2

∗J(2)

)
L = e iαqLL

In pictures the geometry is

In Maxwell theory this is true since∫
S2

∗F ∼ electric charge ,

∫
S2

F ∼ magnetic charge



Background Fields

A tool for studying global symmetry is to couple to background
gauge fields A, leading to a partition function Z [A]

A is a fixed classical source. For a continuous symmetry Z [A] is a
generating function of correlation functions for the current J

Higher-form symmetry currents couple to gauge fields with more
indices. E.G. a 1-form symmetry couples to a 2-form B(2)

δS ⊃
∫

ddx BCDJCD

Current conservation means that Z [B] is invariant under
background gauge transformations B(2) → B(2) + dΛ(1).

(This invariance can be violated by ’t Hooft anomalies)



Symmetry of 4d QED

Consider U(1) gauge theory with Nf fermions of charge Q. What
is the symmetry now?

• There is a SU(Nf )L × SU(Nf )R ordinary global symmetry
acting on left and right Weyl fermions

• The charged matter means that F is no longer conserved, but
∗F is still conserved by the Bianchi identity. Thus the 1-form
symmetry is U(1) (magnetic charge).

Naively one might expect that ordinary global symmetry and
1-form global symmetry don’t talk to each other. In fact they mix.

One way to diagnose the behavior is via a triangle diagram



Symmetry of 4d QED

Triangle diagrams have different interpretations depending on the
whether the vertices couple dynamical gauge fields or currents for
flavor symmetries

• (gauge)3: “Gauge anomaly” must vanish for the theory to be
mathematically consistent

• (gauge)2flavor: “ABJ anomaly” non-zero implies that flavor
symmetry is broken

• (flavor)3: “’t Hooft anomaly” flavor symmetry unbroken.
Matches on RG flows

• (flavor)2gauge: flavor symmetry unbroken. deforms current
algebra between the flavor symmetry and the 1-form symmetry

We refer to this current algebra as higher-group global symmetry.
In this case it is called a 2-group because the highest form current
has 2 indices, (and to match with mathematics literature)



Higher Group Global Symmetry: Current Algebra

Mixing between 0-form and 1-form symmetry encoded in
〈JAJBJCD〉. (Analog: structure constants for non-abelian ordinary
global symmetry are encoded in 3-point functions of JA)

More precisely, we have Ward identities relating 〈JAJBJCD〉 and
〈JABJCD〉. On the locus in momentum space p2 = q2 = (p + q)2,
with M be some scale:

〈JAB(p)JCD(−p)〉 =
1

p2
f

(
p2

M2

)
(tensorABCD)

〈J iA(q)J jB(p)JCD(−p − q)〉 ⊃
( κ

2π

) δij
p2

f

(
p2

M2

)(
tensor′ABCD

)
4d QED realizes these with κ = Q, JA either of the chiral SU(Nf )
symmetries, and JAB = (∗F )AB



Higher Group Global Symmetry: Current Algebra

We can think of these Ward identities as arising from a contact
term in the OPE of two ordinary currents

∂AJA(x) · JB(0) ∼ κ

2π
∂Cδ(d)(x)JBC (0)

The parameter κ is a structure constant (somewhat analagous to
f abc in a Lie algebra)

Note that contact terms in the OPE of a current are typically
associated with charged operators

∂AJA(x) · O(0) ∼ iqOδ
(d)(x)O(0)

In the 2-group OPE above, the derivative on the delta function
means that the global charge algebra is unmodified



2-Group Global Symmetry: Background Fields

Ward identities and OPEs can also be encoded in the properties of
background fields. Appropriate backgrounds are (locally)

1-form gauge field A(1) , 2-form gauge field B(2) .

Under gauge transformations these now mix as

A(1) −→ A(1)+dλ(0) , B(2) −→ B(2)+dΛ(1)+
κ

2π
λ(0)dA(1) .

This is a Green-Schwarz transformation for background fields.

With the modified transformations above the partition function
Z [A(1),B(2)] is invariant (up to c-number anomalies)



Quantization of the Structure Constant κ

In mathematics the pair (A(1),B(2)) together with the gluing rule
specified via the gauge transformations above form a so-called
2-connection on a 2-group bundle.

The gauge transformations

A −→ A(1) + dλ(0) , B(2) −→ B(2) + dΛ(1) +
κ

2π
λ(0)dA(1)

imply that κ must be quantized in integer units (λ(0) ambiguous
up to 2π shifts)

When we generalize to other 0-form groups (G ) and other 1-form
groups (A) we find that κ is a cohomology class in H3(G ,A).



Higher-Group Symmetry Generalities

Higher-group symmetry is similar to ordinary global symmetry

• Various groups are possible. The 0-form symmetry can be
abelian or non-abelian, the higher-form symmetry is always
abelian. Both can be discrete

• It can be emergent. Both the 0-form and higher-form part can
be accidental at long distances though there are interesting
constraints on energy scales

• It can be spontaneously broken with Goldstone bosons both
for the 0-form part and the higher-form part

• It can have ’t Hooft anomalies which match along RG flows
and hence constrain dynamics



General Symmetries

2-group symmetry common in models with discrete symmetry e.g.
TQFTs and CSM theories [Benini-C-Hsin]

To characterize the global symmetry in these examples we use
defects. For 0-form symmetry these are codimension 1 objects. For
1-form global symmetry they are codimension 2.

• motion of an operator across
the defect implements the
symmetry transformation

• the defects are topological

• their fusion determines the
group multiplication law



2-Group Global Symmetry via Defects

It is natural to look for the signature of 2-group global symmetry
in the fusion of codimension-1 and codimension-2 defects

Let G be the 0-form symmetry,
and A the 1-form symmetry

In 3d and above, triple fusion of
G defects is generic

At such configurations a 1-form
symmetry defect a ∈ A can
appear (shown in blue)

The fusion is characterized by a cohomology class in H3(G ,A)



Examples: 3d TQFTs

3d TQFTs can in general exhibit 2-group global symmetry
(discussed in [Barkeshli-Bonderson-Cheng-Wang]) Intrinsically
such a system is described by a modular tensor category C. The
most natural setup is

G = Aut(C) , A = Abelian Anyons

The action of the 0-form symmetry on the abelian anyons then
encodes a class in H3(G ,A)

In some literature, this phenomenon was referred to as “an
obstruction to symmetry fractionalization” however in our
description it is viewed as a new kind of global symmetry

The defects also encode the anomaly of the 2-group symmetry
which we classify in detail



Constraints on Emergent Symmetry

Suppose we have an RG flow where the UV does not have
higher-group global symmetry, but the IR does

We can then define an energy scale Eq below which the q-form
symmetry is effectively respected

One way to think about this is that in the EFT below the scale Eq,
there are q-dimensional defects charged under the emergent
symmetry. At the scale Eq these become the worldvolumes of new
dynamical degrees of freedom

For instance if we are talking about a 2-form global symmetry,
there are charged surface operators. At the scale E2 we can resolve
the thickness of these objects and they become the worldvolume of
dynamical strings



Constraints on Emergent Symmetry

A non-trivial higher group (e.g. non-zero κ) then implies that the
scales Eq obey the hierarchy [C-Dumitrescu-Intriligator]:

E0 ≤ E1 ≤ E2 ≤ · · ·

One way to understand this by examining the transformation rules
for the background fields. For instance in a 2-group

A(1) −→ A(1)+dλ(0) , B(2) −→ B(2)+dΛ(1)+
κ

2π
λ(0)dA(1) .

We see that gauge transformations of the ordinary gauge field A(1)

activate the background field B(2) of the 1-form symmetry

Thus if the 0-form symmetry is present so is the 1-form symmetry.



Axion Examples

Axion models illustrate these constraints on emergent symmetry
[Brennan-C]

An axion is a periodic scalar field, a with periodicity 2πf . Such
theories have an interesting 2-form global symmetry with current

J
(3)
ABC = (∗da)ABC

The charged objects are surface defects with∮
da = 2πnf , n ∈ Z

At the scale E2 the 2-form symmetry is broken and we expect new
fields in the EFT. For instance, a may become the angular part of
a complex scalar ϕ with radial part liberated at E2

We expect E2 ∼ f , but these may differ by dimensionless couplings



Axion Examples

The key point is that in models where axions couple to gauge fields
there is a higher-group global symmetry.
[Seiberg-Tachikawa-Yonekura, C-Freed-Lam-Seiberg]

Consider the action coupling a to SU(N) gauge fields

S =

∫
d4x

1

2g2
Tr(|F |2) +

1

2
(∂a)2 +

1

8π2f
aTr(F ∧ F )

The SU(N) gauge fields have a Z(1)
N 1-form symmetry in a

higher-group with the 2-form symmetry of the axion

Therefore we deduce the general inequality which applies to any
UV completion

E1 ≤ E2

Here E1 is the scale associated to the 1-form symmetry, where
charged fundamental matter appears



Axion Examples
Let’s see how this is enforced in a concrete example. A typical
KSVZ axion model arises from an action

S =

∫
d4x

1

2g2
Tr(|F |2)+iψ̄± /Dψ±+|∂µϕ|2−V (ϕ)+λϕ̄ψ+ψ−+c .c .

Here ψ± are fundamentals of SU(N) while ϕ is neutral complex
scalar. We take the potential to be

V (ϕ) = m2(|ϕ|2 − f 2)2

At weak coupling this flows to an axion model with a the angular
part of ϕ and decay constant f

Comparing the mass of the fermions and the mass of |ϕ| we see
that in order to have the axion model be the EFT

λ ≤ m



Axion Examples

How is this inequality λ ≤ m enforced?

One way to try to violate the inequality is to go to strong coupling.
Of course then we lose control

Try to violate it at weak coupling with 1 >> λ >> m. We find an
important one-loop contribution to the potential for |ϕ|. This
moves the minimum of the potential to the cutoff ΛUV

|ϕ| ∼ ΛUV /λ

This means that at low-energies the angular mode a is effectively
non-compact and no longer interacts with the gluons. Thus while
there is no mathematical inconsistency with violating the inequality,
it is necessary if we want a low-energy model of axion Yang-Mills



Applications of Higher-Group Symmetry in 6d

Higher-group symmetry can also be applied to 6d SCFTs and little
string theories [C-Dumitrescu-Intriligator]

These theories typically look like gauge theories in the IR and have
an interesting fixed point in the UV [Seiberg]. By now many
(perhaps all!) constructed using F-theory [Vafa-...]

In the IR EFT there are interesting 1-form global symmetries

J
(2)
AB = (∗Tr(F ∧ F ))AB

So we can ask: are these 1-form global symmetries also present at
the UV fixed point and do they form an interesting higher group?



Conformal Fixed Points

Suppose we look at models where the UV is an SCFT. There are
dynamical tensor multiplets with bosonic fields a real scalar ρ and
a two-form gauge field b(2). The action includes the couplings

S ⊃
∫

d6x ρTr(|F |2) + bABJAB

So the 1-form symmetry is gauged and we expect that it
disappears in the UV SCFT

In fact this can be demonstrated in a completely abstract way.
There are no unitary representations of the superconformal group

in 6d containing currents J
(2)
AB [C-Dumitrescu-Intriligator]

Therefore in any 6d SCFT there are no (continuous) 1-form global
symmetries and no higher-groups



Conformal Fixed Points

Absence of higher-group symmetries in 6d SCFTs sounds like a
negative result but has interesting implications

We can fix the higher-group structure constants from the mixed
anomaly terms involving flavor or R symmetries and gauge fields.
Splitting into Green-Schwarz and matter contributions we find

0 = I(8)
mixed ,total = I(8)

mixed ,GS + I(8)
mixed ,matter

Therefore we can use this to fix GS contributions purely from the
IR matter content

Thus all ’t Hooft anomalies of the UV SCFT are fixed by the IR
moduli space gauge theory description. This matches an earlier
proposal by [Ohmori-Shimizu-Tachikawa-Yonekura]



Conformal Fixed Points

We can use our new knowledge about the ’t Hooft anomalies of
these SCFTs to prove some general results

For instance using supersymmetry, we can determine all the the
conformal anomalies of 6d SCFTs purely from their IR moduli
space [C-Dumitrescu-Intriligator]. This means that e.g.
that the 2 and 3-pt functions of TAB at the fixed point are
determined purely from the moduli space

We can also learn something about the a-type conformal anomaly
that features in the a-theorem (still partly conjectural in 6d).
Specifically, we can show that for all 6d SCFTs

a ≥ 0

This dovetails nicely with the idea that a is a kind of measure of
the degrees of freedom of the SCFT



Little String Theories

The situation for little string theories is different. For example
consider the IIB (1,1) little strings that arise from the decoupling
limit of NS5 branes

In this case the low-energy EFT is SYM with gauge group SU(N).
The instanton current J(2) = ∗Tr(F ∧ F ) measures the
fundamental string charge so we expect it to be present along the
entire RG flow

In particular, the background field B(2) that couples to J(2) can be
interpreted as the decoupled NS-NS field

Since these theories have SU(2)× SU(2) R-symmetry it is natural
to ask whether these symmetries are assembled into a higher-group

The answer of course is yes!



Little String Theories

Since there are no tensors in this example, there are no GS
couplings. Therefore, we can read off the structure constants from
box diagrams involving the IR fields

In this case we find terms

I(8)
mixed ∼ N (c2(R1)− c2(R2)) c2(F )

implying a non-trivial higher group and its Ward identities

This appears to be ubiquitous in LST. E.G. SO(32) small
instantons have a rich higher-group symmetry involving both the
flavor, lorentz, and 1-form symmetry



Conclusions and Open Directions

Higher-group symmetry plays a prominent role in many QFTs,
including 3d Chern-Simons-Matter theories and TQFTs, 4d gauge
theories and models of axions, as well as SCFTs in d>4

Higher-group symmetry may also be a useful tool to organize little
string theories

Many open directions to explore:

• Gauging higher-group symmetries (especially discrete groups)
can lead to a rich class of TQFTs [Thorngren]

• In 4d there is a close connection between 2-group global
symmetry and some aspects of the Callan-Rubakov effect.
Work in progress [Brennan-C-Dumitrescu]

Thanks for Listening!


