Strings 2020 public talk

Shamit Kachru




|. Introduction

Modern physics has revealed to us a bewildering
array of fundamental particles and forces:




Most recently — and excitingly — the
Higgs boson was discovered at CERN.

Plans are in the works for
a bigger machine. What
will we discover there!??




Happily, we don't need to know for this talk. | am going
to discuss the force we understood (in some guantitative
detail) first — gravity.

Newton’s understanding (built on his discovery of calculus):




The next big advance came with Einstein.

His general theory of relativity is, at heart, a
geometric theory.

— Matter/energy tells space how to curve
— curved space tells matter how to move



Einstein’s theory evolved, in part, using the language of
Riemannian geometry, a theory of curved spaces.

My goal in this talk is to update you on some of the striking
new directions the study of connections between physics
and geometry has gone in the past few decades.

The hero of our story
Isn’'t a person. Instead,
it will be string theory,
which serves as
a magical generator
of such connections.




Il. (Brief) introduction to string theory

A theoretical structure built on
tiny loops of string instead of
elementary particles.

It is a fact that the theory naturally lives in higher
dimensions — 9+1 In some versions.

AS a conseqguence, one considers
“‘compactifications” of the theory —
a notion first discussed by Kaluza
and Klein almost a century ago.




The higher dimensional string theory has some
important physical properties:
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— Einstein gravity

Matter tells space how to curve;
curved space tells matter how to move.



The basic mathematical object in general relativity
s the "metric” on a space. It tells one how to find
distances between distinct points on the space:

A notable feature of Einstein’s equations is that
Its vacuum solutions are

Examples:




Now, physicists like to study simplitied models:
‘spherical cows”

me a spherical cow of uniform density,
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Calabi conjecture: There is a unique Ricci flat Kahler metric
on a Kahler manifold of vanishing first Chern class for
each choice of the Kahler form.

Yau: this is true.

Result — the spherical cow models are:
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In this talk, | will discuss geometry problems that we have
encountered in studying these spherical cow models of hidden dimensions. The main
Interest will be the rich connections to various subjects in physics and mathematics:
duality, gauge theory, Einstein’s equations, algebraic geometry, and differential geometry.

We are now going to explore some simple dualities in
string theory. What is duality?

DUCK

Duality is what happens when
there are two equally valid ways
of viewing the same system.



In string theory, duality often arises because strings
‘see” geometry a ditferent way than point particles do.

Let us start by considering string compactification
on a circle. Beyond oscillating, the string has two
other means of excitation:

- Momentum &
( : « Winding
% N— modes




't Is an old fact from quantum mechanics that
single-valuedness of wavefunctions requires
momenta on a circle to be quantized:

On the other hand, in units of the string scale, winding
modes have energies:

E=R,2R.3R...



This set of energy levels exhibits an exchange symmetry:
winding on a circle of size R is like momentum on a circle
of size “1/R":

Winding Motion

These configurations
are equivalent
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String theory on a circle of radius R is the same
as string theory on a circle of radius “1/R”!



You might think that this kind of bizarre "fuzziness” of the
geometry only happens for very simple spaces, like the
circle. Not so.

To discuss this, let us consider strings on a Calabi-Yau
space. Consider one such topology.




Yau's theorem says that such a topology admits
many different metrics which solve Einstein’s equation.

You can vary
the “shape” or
‘complex structure”

You can also
vary the “size”
or “Kahler structure,”
keeping fixed shape.




Physicists talk about the “moduli space of complex
structures” and “moduli space of Kahler structures”
on a Calabi-Yau. These are the parameter spaces
of possible shapes and sizes.




These parameters show up in 4d physics as the
expectation values of scalar fields:

You've probably seen
pictures like this of the
Higgs potential. The
moduli fields move along
multi-dimensional analogues
of the flat valley.
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determine the strength of low-energy interactions.

interactions in QED.

But there is an important detall:

The fine structure constant
controls electron-photon



— there are ditterent versions of 10d string theory

llA string theory [IB string theory

coupling controlled coupling controlled
by size moduli by shape moduli
guantum corrections classical result Is

exist! exact!



The quantum corrections, when they exist, are
horrendous to calculate.

They correspond to counts of spheres of minimal area
embedded in the Calabi-Yau manifold.



In simple cases, such spheres are labelled by
an integer “degree” (roughly controlling the area).

In one simple Calabi-Yau manifold, mathematicians
had worked for years and had almost made it
to degree three.

degree # of curves

1 2,875
609,250



“The universe that God chose to exist
IS the best of all possible worlds.”

B ;,J o — Leibniz

At least in this case, things work out that way. It turns
out that Calabi-Yau manifolds come in pairs!

1A on X IBonY



Physics of string theory on two manifolds with
drastically different topologies can be identical!

The coupling constants controlled by quantum
corrections on X, can be discovered by doing
classical computations on the “mirror manifold” Y.

Candelas, de la Ossa, Green, Parkes:

P. Candelas et al. / Calabi-Yau manifolds
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The numbers of rational curves of degree k for1 <k <10
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The subject of mirror symmetry — and understanding
how to get Y from X — remains very active and
fruitful!

Mirror symmetry first emerged in the late 1980s as an unexpected duality between seemingly unrelated
quantum field theories. Important work of Yau and of Kontsevich suggested that these dualities were
anifestations of deep mathematical connections between previously disparate mathematical disciplines,

ncluding algebraic geometry, symplectic topology and category theory. The Simons Collaboration on
Homological Mirror Symmetry is motivated by the idea that the time is now ripe to prove fundamental
heorems establishing the existence of mirror symmetry in full generality, and to explore the applications of
his symmetry.

V. Gauge theory

We now turn to a naively distinct subject; it will
circle back.



We are all forced to learn Coulomb’s law in high school.

What we don't learn then is that the coupling “constant”
appearing in the law isn't constant.

In guantum mechanics, electron/
positron pairs can “virtually” appear
from the vacuum and screen the
Coulomb force.




Result: the QED coupling gets weaker at
long distances (where we do experiments!).
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This just makes our life easier. It is easy to
understand very weak interactions.



Unfortunately, Nature also contains
e.g., nuclear forces.

We see nucleons pictured here — the neutron
and the proton.



The powerful accelerators we've built over the
past decades have acted as microscopes to let
us see ever further into the structure of matter:

. electron
<10™em

proton

(neutron)
quark
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Because of “anti-screening” of the strong force,
free quarks are never seen.

A A Deep Inelastic Scattering
oe e¢te— Annihilation

o Hadron Collisions

=QCDh 0o/(MZ)=0.1189%0.0010

Q [GeV]

Instead, quarks are confined.




Both electromagnetism and the strong interactions are
described by theories known as gauge theories.

he examples like the strong force — with interaction
strength that grows strong at long distance — are too
hard for us to solve.

-

By adding supersymmetry, we can imagine
“spherical cow” examples of such gauge
0 theories. Can we solve them?




What do we mean by “solve them”™?

— These supersymmetric gauge theories again have
‘moduli spaces of vacua.”

We will say we've solved the theory If we can tell you
the precise masses and charges of particles at all points
on the space of vacuum states.



supersymmetry gives us a tool to do this.

—in e.g. QED, you can imagine

* particles with electric charge

* particles with magnetic charge




It we call the complex parameter parametrizing our
1d moduli space “a,” then supersymmetry says that
there is a special function

“prepotential”

which controls the particle masses, the coupling
‘constant,” and the metric on moduli space.

In particular,



To “solve” the theory, we need to:

— determine this function

— determine the degeneracies at a given value
of the charges

These are both challenging problems that have
been subjects of research!



The main challenge In determining the prepotential:

(easy)

‘Instantons™ are field configurations of the gluon
field of the strongly interacting theory. There are
1,2,3,... Instanton configurations. Determining
their contributions - a counting problem of sorts -
S |




T ‘ This was first done in seminal work of Seiberg
o and Witten in guantum field theory.

We soon found that string theory also gives
a striking way of solving such theories!

Certain string compactifications on singular
Calabi-Yau manifolds give supersymmetric
strongly interacting gauge theories.




The string model that makes the interpretation
INn terms of gauge theory obvious is a ||A model.

It geometrizes the instantons
we wish to count as minimal area
spheres in the Calabi-Yau space.

We can count these using mirror symmetry as
in the previous part of the talk!

S.K., Vafa;
S.K., Klemm, Lerche,
Mayr, Vafa; ...




So far, we've discussed two kinds of geometric
oroblems and their applications to physics (and equally,
the “unreasonable effectiveness of physics in
mathematics”):

— enumerative geometry and the physics of
Calabi-Yau compactification in string theory

— dynamics of gauge theories, counting
instantons, and geometry



A central role has been played by Calabi-Yau spaces:

We haven't discussed the most basic piece of data
INn specifying such a space in general relativity:
ts Riccli-tlat metric.



For K3, we can combine the two stories I've told so far
to obtain explicit analytical expressions for the metric
which solves Einstein’s equations!

S.K., Tripathy,
Zimet

The basic observation is rather simple.

DO-brane D1-brane

String theory is a highly constrained structure, but within
ts list of ingredients, it includes “D-branes.”



At low energies, the theories of stuft “living on”
the D-branes are ordinary gauge theories of the sort we've
discussed.

The gauge theories on D-branes
iInvolve particle species arising
from open strings that stretch

from one brane to another.

There is a particularly useful packaging of the data
of a K3 surface (in some limit), as the geometry
arising from a certain collection of D-branes.




One views the K3 surface as a collection of two-tori
(“donuts”) varying over a base two-sphere.

A solution of string theory can be obtained by compactitying
on the two-sphere, and inserting D7-branes transverse to the
two-sphere, at the points where the “"donuts” degenerate
as shown.




We can consider the guantum field theory on a
D3-brane “probing” this K3 surface.

Sen; Banks,
Douglas, Seiberg

— |t has a moduli space of vacua, much like the
gauge theories we considered In section |V.

— The BPS states in this theory arise from strings
that stretch from the D3-brane to the singular fibers:



Shown is a simple example of such
a BPS state; the stars are singular
fibers, and the dot is the D3-brane.

To “solve” the D3 brane theory, we need;

— a prepotential:

— a BPS state count:



In fact, It we can determine this data, we do more

than just solve the theory:

F — metric on moduli space

F + # — metric on K3

This is a very complicated problem.
Happily, the ideas of section |ll of the talk rescue us.
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Doing this in detail would take me far beyond the
confines of a popular lecture!

What | hope | did convey:

algebraic strongly interacting
geometry quantum field theory
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