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I. Introduction

Modern physics has revealed to us a bewildering 
array of fundamental particles and forces:



Most recently — and excitingly — the 
Higgs boson was discovered at CERN.

Plans are in the works for 
a bigger machine. What  
will we discover there!??



Happily, we don’t need to know for this talk.  I am going 
to discuss the force we understood (in some quantitative 

detail) first — gravity.

Newton’s understanding (built on his discovery of calculus):

F = G
m1m2

r2



The next big advance came with Einstein.

His general theory of relativity is, at heart, a  
geometric theory.

— Matter/energy tells space how to curve 
— curved space tells matter how to move



Einstein’s theory evolved, in part, using the language of 
Riemannian geometry, a theory of curved spaces.

My goal in this talk is to update you on some of the striking 
new directions the study of connections between physics 

and geometry has gone in the past few decades.

The hero of our story 
isn’t a person.  Instead,  
it will be string theory,  

which serves as 
a magical generator 
of such connections.



II.  (Brief) introduction to string theory

A theoretical structure built on 
tiny loops of string instead of  

elementary particles.

It is a fact that the theory naturally lives in higher 
dimensions — 9+1 in some versions.

As a consequence, one considers 
“compactifications” of the theory — 
a notion first discussed by Kaluza 
and Klein almost a century ago.



The higher dimensional string theory has some 
important physical properties:

(e.g. electrons are fermions 
photons are bosons)

— Supersymmetry:



— Einstein gravity

Matter tells space how to curve; 
curved space tells matter how to move.



The basic mathematical object in general relativity 
is the “metric” on a space.  It tells one how to find 
distances between distinct points on the space:

A notable feature of Einstein’s equations is that 
its vacuum solutions are “Ricci flat”.

Examples:



Now, physicists like to study simplified models: 
“spherical cows”

The spherical cow models of string compactification 
will involve “Ricci flat,” supersymmetry preserving extra 

dimensions.



Calabi conjecture:  There is a unique Ricci flat Kahler metric 
on a Kahler manifold of vanishing first Chern class for 

each choice of the Kahler form. 

Yau:  this is true.

Result — the spherical cow models are:

(not constructive)



In this talk, I will discuss geometry problems that we have 
encountered in studying these spherical cow models of hidden dimensions. The main 
interest will be the rich connections to various subjects in physics and mathematics: 

duality, gauge theory, Einstein’s equations, algebraic geometry, and differential geometry.

We are now going to explore some simple dualities in 
string theory.   What is duality?

Duality is what happens when 
there are two equally valid ways 

of viewing the same system.

III. Duality



In string theory, duality often arises because strings 
“see” geometry a different way than point particles do.

Let us start by considering string compactification 
on a circle.  Beyond oscillating, the string has two 

other means of excitation:

We’ll be interested in whether the string states are 
organized in representations of some beautiful hidden

symmetry.  

So we need to know how to think about the spectrum of 
particles one gets out of string theory.

Very roughly, there are three kinds of states:

Momentum &
Winding
modes
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It is an old fact from quantum mechanics that  
single-valuedness of wavefunctions requires 

momenta on a circle to be quantized:

p =
1

R
,
2

R
,
3

R
, · · ·

On the other hand, in units of the string scale, winding 
modes have energies:

E = R, 2R, 3R . . .



This set of energy levels exhibits an exchange symmetry: 
winding on a circle of size R is like momentum on a circle 

of size “1/R”:

String theory on a circle of radius R is the same 
as string theory on a circle of radius “1/R”!



You might think that this kind of bizarre “fuzziness” of the 
geometry only happens for very simple spaces, like the 

circle.  Not so.

To discuss this, let us consider strings on a Calabi-Yau 
 space.  Consider one such topology.



Yau’s theorem says that such a topology admits 
many different metrics which solve Einstein’s equation.

You can vary 
the “shape” or 

“complex structure”

You can also 
vary the “size” 

or “Kahler structure,” 
keeping fixed shape.



Physicists talk about the “moduli space of complex 
structures” and “moduli space of Kahler structures” 
on a Calabi-Yau.  These are the parameter spaces 

of possible shapes and sizes.

M
complex

(X) MKahler(X)

(set of possible shapes) (set of possible sizes)



These parameters show up in 4d physics as the 
expectation values of scalar fields:

You’ve probably seen 
pictures like this of the 
Higgs potential.  The 

moduli fields move along 
multi-dimensional analogues 

of the flat valley.



These fields appear in the 4d physics in an 
interesting way.  For instance, they control the 
values of “gauge coupling constants” — which 

determine the strength of low-energy interactions.

The fine structure constant 
controls electron-photon 

interactions in QED.

But there is an important detail:



— there are different versions of 10d string theory

IIA string theory               IIB string theory

coupling controlled 
by size moduli

coupling controlled  
by shape moduli

quantum corrections 
exist!

classical result is 
exact!



The quantum corrections, when they exist, are 
horrendous to calculate.   

They correspond to counts of spheres of minimal area 
embedded in the Calabi-Yau manifold. 



In simple cases, such spheres are labelled by 
an integer “degree” (roughly controlling the area).

In one simple Calabi-Yau manifold, mathematicians 
had worked for years and had almost made it 

to degree three.

degree               # of curves

1 
2

2,875 
609,250



“The universe that God chose to exist 
is the best of all possible worlds.” 

— Leibniz

At least in this case, things work out that way.  It turns 
out that Calabi-Yau manifolds come in pairs!

IIA on X IIB on Y

=



The coupling constants controlled by quantum 
corrections on X, can be discovered by doing 

classical computations on the “mirror manifold” Y. 

Physics of string theory on two manifolds with  
drastically different topologies can be identical!

60 P. Candelas et at / Calabi-Yau manifolds 

TABLE 4 
The numbers of rational curves of degree k for 1 ~< k ~< 10 

k nk 

1 2875 
2 609250 
3 3172 06375 
4 24 2467530000 
5 22930 58888 87625 
6 248 24974 21180 22000 
7 2 95091 05057 08456 59250 
8 3756 3216093747 66035 50000 
9 50 38405 10416 98524 36451 06250 

I0 70428 81649 78454 68611 34882 49750 

number of conics [28] (rational curves of degree two). Clemens has shown [30] that 
n~ ~: 0 for infinitely many k and has conjectured that n k ~: 0 for all k, but it seems 
that the direct calculation of these numbers becomes difficult beyond k = 2 (see 
also ref. [28]). It is however straightforward to develop the series (5.12) to more 
terms and to find the n~ by comparison with (5.13). We present the first few n k in 
table 4. These numbers provide compelling evidence that our assumption about 
the form of the prefactor is in fact correct. The evidence is not so much that we 
obtain in this way the correct values for n~ and n 2, but rather that the coefficients 
in eq. (5.12) have remarkable divisibility properties. For example asserting that the 
second coefficient 4,876,875 is of the form 23n2 + n I requires that the result of 
subtracting n~ from the coefficient yields an integer that is divisible by 2 3. 

Similarly, the result of subtracting n~ from the third coefficient must yield an 
integer divisible by 3 3. These conditions become increasingly intricate for large k. 
It is therefore remarkable that the n k calculated in this way turn out to be 
integers. 

The values for the nk shown in the table are particular to P4(5), however we can 
abstract from eq. (5.13) a form for the mirror map which we conjecture to be of 
general validity, 

e2rri.2,'[w] 
= . ~ 3  (5 .14)  7~v ~e'w + .2'~t¢~] 1 - e 2~'i-2'[w1 

where we regard the complex structure of 7 f  as being parametrized by the 
complex K~ihler form w = B + / J  of ~#, and 

Results in  
striking (and now 

verified) mathematical 
predictions of 
string theory!

Candelas, de la Ossa, Green, Parkes:



The subject of mirror symmetry — and understanding 
how to get Y from X — remains very active and 

fruitful!

© Simons Foundation

Mirror symmetry first emerged in the late 1980s as an unexpected duality between seemingly unrelated
quantum field theories. Important work of Yau and of Kontsevich suggested that these dualities were
manifestations of deep mathematical connections between previously disparate mathematical disciplines,
including algebraic geometry, symplectic topology and category theory. The Simons Collaboration on
Homological Mirror Symmetry is motivated by the idea that the time is now ripe to prove fundamental
theorems establishing the existence of mirror symmetry in full generality, and to explore the applications of
this symmetry.

The Simons Collaboration on It from Qubit: Quantum Fields, Gravity, and Information aims to use insights
from quantum information theory and quantum computing to make progress on the deep question of
reconciling the laws of quantum mechanics and of gravitation. Perspectives gained from two decades of
study of terrestrial quantum phenomena, in particular the recognition of the importance of quantum
mechanical entanglement, are providing new insights into quantum field theories and the quantum gravity
problems. The collaboration brings together string theorists, computer scientists and quantum information
specialists to examine the entanglement properties of quantum field theories and their gravity duals.

More information about each collaboration will be available on our website in the coming weeks.

The Simons Foundation expects to support more collaborations in future years; groups interested in
applying should review the Request for Applications available on our website.

IV.  Gauge theory

We now turn to a naively distinct subject; it will 
circle back.



We are all forced to learn Coulomb’s law in high school.

What we don’t learn then is that the coupling “constant” 
appearing in the law isn’t constant.

In quantum mechanics, electron/ 
positron pairs can “virtually” appear 

from the vacuum and screen the 
Coulomb force.



Result: the QED coupling gets weaker at 
long distances (where we do experiments!).

This just makes our life easier.  It is easy to  
understand very weak interactions.



Unfortunately, Nature also contains strong interactions — 
e.g., nuclear forces.

1.  Introduction

Today, I’m going to discuss one of the central questions
in modern condensed matter physics:

What are novel ways that metals can die?

Let us sharpen the question a little bit.  The simplest
theories of metals are based on these pictures:

Non-Fermi liquids A. J. Schofield 2

can be obtained relatively simply using Fermi’s golden
rule (together with Maxwell’s equations) and I have in-
cluded these for readers who would like to see where
some of the properties are coming from.

The outline of this review is as follows. I begin with
a description of Fermi-liquid theory itself. This the-
ory tells us why one gets a very good description of a
metal by treating it as a gas of Fermi particles (i.e. that
obey Pauli’s exclusion principle) where the interactions
are weak and relatively unimportant. The reason is
that the particles one is really describing are not the
original electrons but electron-like quasiparticles that
emerge from the interacting gas of electrons. Despite its
recent failures which motivate the subject of non-Fermi
liquids, it is a remarkably successful theory at describ-
ing many metals including some, like UPt3, where the
interactions between the original electrons are very im-
portant. However, it is seen to fail in other materials
and these are not just exceptions to a general rule but
are some of the most interesting materials known. As
an example I discuss its failure in the metallic state of
the high temperature superconductors.

I then present four examples which, from a theo-
retical perspective, generate non-Fermi liquid metals.
These all show physical properties which can not be
understood in terms of weakly interacting electron-like
objects:

• Metals close to a quantum critical point. When a
phase transition happens at temperatures close to
absolute zero, the quasiparticles scatter so strongly
that they cease to behave in the way that Fermi-
liquid theory would predict.

• Metals in one dimension–the Luttinger liquid. In
one dimensional metals, electrons are unstable and
decay into two separate particles (spinons and
holons) that carry the electron’s spin and charge
respectively.

• Two-channel Kondo models. When two indepen-
dent electrons can scatter from a magnetic impu-
rity it leaves behind “half an electron”.

• Disordered Kondo models. Here the scattering
from disordered magnetic impurities is too strong
to allow the Fermi quasiparticles to form.

While some of these ideas have been used to try and un-
derstand the high temperature superconductors, I will
show that in many cases one can see the physics illus-
trated by these examples in other materials. I believe
that we are just seeing the tip of an iceberg of new types
of metal which will require a rather different starting
point from the simple electron picture to understand
their physical properties.

Figure 1: The ground state of the free Fermi gas in mo-
mentum space. All the states below the Fermi surface
are filled with both a spin-up and a spin-down elec-
tron. A particle-hole excitation is made by promoting
an electron from a state below the Fermi surface to an
empty one above it.

2. Fermi-Liquid Theory: the electron quasi-
particle

The need for a Fermi-liquid theory dates from the
first applications of quantum mechanics to the metallic
state. There were two key problems. Classically each
electron should contribute 3kB/2 to the specific heat
capacity of a metal—far more than is actually seen ex-
perimentally. In addition, as soon as it was realized
that the electron had a magnetic moment, there was
the puzzle of the magnetic susceptibility which did not
show the expected Curie temperature dependence for
free moments: χ ∼ 1/T .

These puzzles were unraveled at a stroke when
Pauli (Pauli 1927, Sommerfeld 1928) (apparently
reluctantly—see Hermann et al. 1979) adopted Fermi
statistics for the electron and in particular enforced the
exclusion principle which now carries his name: No two
electrons can occupy the same quantum state. In the
absence of interactions one finds the lowest energy state
of a gas of free electrons by minimizing the kinetic en-
ergy subject to Pauli’s constraint. The resulting ground
state consists of a filled Fermi sea of occupied states
in momentum space with a sharp demarcation at the
Fermi energy ϵF and momentum pF = h̄kF (the Fermi
surface) between these states and the higher energy un-
occupied states above. The low energy excited states
are obtained simply by promoting electrons from just
below the Fermi surface to just above it (see Fig. 1).
They are uniquely labelled by the momentum and spin
quantum numbers of the now empty state below the
Fermi energy (a hole) and the newly filled state above
it. These are known as particle-hole excitations.

This resolves these early puzzles since only a small
fraction of the total number of electrons can take part
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A slab of metal is composed of an array
of atoms.  Isolated atoms have a  “solar

system” caricature:

In a metal, the nuclei arrange themselves in a regular
lattice, while the most loosely bound electrons roam

free:

We see nucleons pictured here — the neutron 
and the proton.



Particle physicists used high-energy electrons as a  
“microscope” to see inside the nucleus:

The results:  there is internal structure within each 
proton and neutron!  They behave as if made of 

3 point-like constituents -- “up” and “down” quarks.

The powerful accelerators we’ve built over the 
past decades have acted as microscopes to let 
us see ever further into the structure of matter:



Because of “anti-screening” of the strong force, 
free quarks are never seen. 
In fact the behavior of strong interactions is opposite to 

electromagnetism.  There is “anti-screening”:

As one probes the nucleus with
higher energy particles (looks closer to the 
quark constituents), the effective interquark 

coupling seems to be vanishing.

Instead, quarks are confined.



Both electromagnetism and the strong interactions are 
described by theories known as gauge theories.

The examples like the strong force — with  interaction 
strength that grows strong at long distance — are too 

hard for us to solve.

By adding supersymmetry, we can imagine 
“spherical cow” examples of such gauge 

theories.  Can we solve them?



What do we mean by “solve them”?

— These supersymmetric gauge theories again have 
“moduli spaces of vacua.” 

simplest examples: the moduli 
space has one complex dimension. 
Generically get QED-like theories.

We will say we’ve solved the theory if we can tell you 
the precise masses and charges of particles at all points 

on the space of vacuum states.



Supersymmetry gives us a tool to do this.

— in e.g. QED, you can imagine

* particles with electric charge

* particles with magnetic charge



If we call the complex parameter parametrizing our 
1d moduli space “a,” then supersymmetry says that 

there is a special function 

M(ne, nm) � |nea+ nm
@F
@a

|

F(a) “prepotential”

which controls the particle masses, the coupling 
“constant,” and the metric on moduli space.   

In particular,



To “solve” the theory, we need to:

— determine this function F(a)

— determine the degeneracies at a given value 
of the charges

#(ne, nm; a)

These are both challenging problems that have 
been subjects of tremendously fruitful research!



The main challenge in determining the prepotential:

F = classical + 1� loop + instantons

(easy)

“Instantons” are field configurations of the gluon 
field of the strongly interacting theory.  There are 
1,2,3,… instanton configurations.  Determining 

their contributions - a counting problem of sorts - 
is very difficult!



This was first done in seminal work of Seiberg  
and Witten in quantum field theory.

We soon found that string theory also gives 
a striking way of solving such theories!

Certain string compactifications on singular  
Calabi-Yau manifolds give supersymmetric  

strongly interacting gauge theories.



The string model that makes the interpretation 
in terms of gauge theory obvious is a IIA model.

It geometrizes the instantons  
we wish to count as minimal area 
 spheres in the Calabi-Yau space.

We can count these using mirror symmetry as 
in the previous part of the talk!

S.K., Vafa; 
S.K., Klemm, Lerche,  

Mayr, Vafa; …



V.  Conclusion: the geometry of inner space

So far, we’ve discussed two kinds of geometric 
problems and their applications to physics (and equally,  

the “unreasonable effectiveness of physics in 
mathematics”):

— enumerative geometry and the physics of 
Calabi-Yau compactification in string theory

— dynamics of gauge theories, counting 
instantons, and geometry



A central role has been played by Calabi-Yau spaces:

Slice of a K3 surface, the unique 
non-trivial Calabi-Yau space in 

two complex dimensions

We haven’t discussed the most basic piece of data 
in specifying such a space in general relativity: 

its Ricci-flat metric.



For K3, we can combine the two stories I’ve told so far 
to obtain explicit analytical expressions for the metric 

which solves Einstein’s equations!

S.K., Tripathy,  
Zimet

The basic observation is rather simple.

String theory is a highly constrained structure, but within 
its list of ingredients, it includes “D-branes.”



At low energies, the theories of stuff “living on”  
the D-branes are ordinary gauge theories of the sort we’ve 

discussed.

The gauge theories on D-branes 
involve particle species arising  
from open strings that stretch 
 from one brane to another.

There is a particularly useful packaging of the data 
of a K3 surface (in some limit), as the geometry 

arising from a certain collection of D-branes.



One views the K3 surface as a collection of two-tori 
(“donuts”) varying over a base two-sphere.

A solution of string theory can be obtained by compactifying 
on the two-sphere, and inserting D7-branes transverse to the 

two-sphere, at the points where the “donuts” degenerate  
as shown.



We can consider the quantum field theory on a  
D3-brane “probing” this K3 surface.

K3 Really, the D3-brane is 
moving around on the 

two-sphere base.

— It has a moduli space of vacua, much like the 
gauge theories we considered in section IV. 

— The BPS states in this theory arise from strings 
that stretch from the D3-brane to the singular fibers:

Sen; Banks, 
Douglas, Seiberg



Shown is a simple example of such  
a BPS state; the stars are singular 
fibers, and the dot is the D3-brane.

To “solve” the D3 brane theory, we need:

#(ne, nm; a)

F(a)— a prepotential: 

— a BPS state count:



In fact, if we can determine this data, we do more 
than just solve the theory:

F ! metric on moduli space

F +# ! metric on K3

This is a very complicated problem. 
Happily, the ideas of section III of the talk rescue us.

There is a dual problem which allows us to 
determine the integer BPS degeneracies (analogous 

to “counting curves” in section III), and write the 
metric in this formalism.



Doing this in detail would take me far beyond the 
confines of a popular lecture!   

What I hope I did convey:

algebraic 
geometry

differential 
geometry

strongly interacting 
quantum field theory

string theory


