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(Provocative) Introduction

Consider type II string compactifications of the form
Rp ×M where M is an internal manifold. E.g.
p = 4 and M = a CY manifold
or p = 6 and M = a K3 manifold.
Such a compactification defines a quantum theory of
gravity on Rp. At the quantum (loop) level the graviton
scattering amplitudes depend on details of the
compactification manifold M (e.g. the value of the moduli of
the CY manifold).
It is an obvious - but nonetheless remarkable - fact that this
dependence drops out at classical (tree) level. This follows
immediately from the fact that graviton vertex operators lie
entirely in the Rp part of the worldsheet CFT. Tree level
scattering amplitudes are also the same for IIA, IIB and
Type I theory.
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Introduction

Restated, classical type II theory on Rp ×M admits a
consistent truncation to a universal (i.e. M independent)
theory which describes the interaction of gravitons and an
infinite number of additional fields. This is true at all
energies in string units.
Heterotic (and Bosonic) compactifications also admit
consistent truncations to their own universal sectors.
Finally, there is another, more elementary example of a
‘classical’ S matrix (defined as having only poles and no
cuts). This is the classical Einstein S matrix.
As far as I am aware, these examples exhaust the set of
classical S matrices that emerge in any parameteric limit of
string theory. The parametric limits relevant to the
enumerated examples is gs → 0 (with no restriction on
energy) for the string S matrices and E/mp → 0 with no
restrictions on gs for the Einstein S matrix. The last limit is classical

theory provided all low energy degrees of freedom is vanishingly small at low energies.
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Provocative Conjecture

The observations of the previous transparency motivate
the following bold conjecture.
Conjecture I: The classical Einstein S matrix, the tree level
type II S matrix, and the tree level Heterotic S matrix
constitute the exhaustive list of ‘consistent’ tree level S
matrices of gravity. Restated, every ‘consistent’ classical
gravitational theory admits a consistent truncation to one of
these three universal sectors.
By ‘tree level S matrix’ in the conjecture above we mean an
S matrix whose only singularities are poles corresponding
to the exchange of a massive or massless particle
transforming in some representation of the Little group.
The word ‘consistent’ in the conjecture above is yet to be
completely defined, but in particular it means that the
theory in question obeys all the good properties we usually
demand of classical theories, in particular causality and
boundedness of energy.
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Attribution

That something like Conjecture I should hold has been
suggested on several occasions by Nima Arkani Hamed
(though perhaps not in print).
The validity - or otherwise - of conjecture I was also one of
my “Two Questions About Gravity” in the talk by that title
that I gave in the 50th Anniversary of String Theory
session at Strings 2018.
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Implied Conjectures

The (perhaps crazy sounding) Conjecture I implies the
following two successively weaker results.
Conjecture II: The only consistent tree level gravitational S
matrix with poles of bounded spin is the Einstein S matrix
Conjecture III: The only consistent tree level gravitational S
matrix with only gravitational poles is the Einstein S matrix.
This is a heirarchy of Russian dolls of conjectures.
I =⇒ II =⇒ III but the reverse implications do not hold.
In this talk we will study aspects of the weaker conjectures
III and II. We will have nothing further to say about the
fascinating conjecture I, which, however, forms part of the
motivational framework for this talk.
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Review: Three graviton scattering

The conjectures of the previous subsection apply to the
scattering of n gravitons, for all n = 3,4,5 . . .. The case
n = 3 is especially simple.
This simplicity has its root in the fact that 3 graviton S
matrices are highly kinematically constrained. The most
general 3 graviton S matrix - classical or quanutm - is
necessrily a linear combination of three structures.

T1 = (ε1.ε2ε3.p1 + perm)2 2 der : Einstein

T2 = (ε1 ∧ ε2 ∧ ε3 ∧ p1 ∧ p2)
2 4 der : GaussBonnet

T3 = tr(f1f2)tr(f2f3)tr(f1f3) 6 der : Reimann3

fµνi = pµi ε
ν
i − pνi ε

µ
i . The formulae above are actually valid only for D ≥ 5. In D = 4, T2

vanishes but a new parity odd structure appears.)

Note in particular that all 3 graviton scattering amplitudes -
classical or quantum - are always analytic in momenta.
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Review: CEMZ result

The most general 3 graviton S matrix takes the form

aT1 + bT2 + cT3

where a, b and c are numbers (they have mass
dimensions but are independent of momenta).
Camanho, Edelstein, Maldacena and Zhiboedov (CEMZ)
demonstrated that any theory in which either b or c is
nonzero is necessarily acausal unless it couples to higher
spin particles of arbitrarily high spin.
In other words, CEMZ have already established Conjecture
II at the level of 3 graviton scattering.
This is very encouraging. However note that 3 graviton
scattering is special as it is parameterized by finite data.
Scattering with 4 or more gravitons has qualitatively
greater complexity. I turn, in the rest of the talk, to the
study of 4 graviton S matrices.

Shiraz Minwalla



Analytic Structure

In this talk we study tree level 4 graviton S matrices
generated by local Lagrangians with a finite number of
fields. All such S matrices are given by the sum of a finite
number of exchange pole plus polynomials in momenta.
The most general pole contribution is obtained by using the
propagator of an intermediate particle R to sew together
two ggR onshell three particle S matrices together.
It follows that a complete classification of ggR three point
couplings, for all little group reprentations R, effectively
gives us a complete classification of pole contributions to
the S matrix.
While ggR couplings had previously been listed in special
cases (e.g. D = 4 using the spinor helicity formalism) we
were not able to locate a systematic ennumeration in
general dimension, so we undertook this exercise
ourselves.

Shiraz Minwalla



3 point couplings: Ennumeration

In more detail, for every massive particle S we enumerated
The full list of SO(D − 1) little group representations R that
can couple onshell to two gravitons.
The independent number of ggS couplings (parity even
and parity odd) for every representation S. (This number
turns out to be bounded from above by 8).
A completely explicit basis for each of these couplings.
A completely explicit basis for the local lagrangians that
generate these couplings.

Though we will not need them in this talk, we also have similar
results for arbitrary ppS couplings, where p is a photon.
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3 point couplings: Method

I briefly outline the method we used to carry out this
(simple) ennumeration exercise.
The momenta k1 and k2 of the two gravitons span an R1,1

subspace of RD−1,1. We call this the scattering two plane.
The massive particle transforms in its little group
representation of the SO(D − 1) that stabilizes k1 + k2.
The graviton polarizations transform in the traceless
symmetric represention of the SO(D − 2) that stabilizes
the scattering two plane.
The Bose symmetric SO(D − 2) invariants formed from the
product of these three representations are easily
enumerated and constructed using SO(D − 2) group
theory. Note the same group theory counting also enumerates distinct TµνTµνS correlators in a

D − 1 dimensional CFT.

Finally, each of these invariants can be systematically lifted
to a Lorentz and gauge invariant onshell S matrix.
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Three Point Couplings: Important take away

Observation: Every coupling on our list is of fourth or
higher order in derivatives.
This fact has a simple physical interpretation. Every
genuine ggS interaction term is constructed out of a
product of (derivatives of) two Reimann tensors with the
field S.
Note that two derivative interaction terms like

∫ √
−gSR or∫ √

−gRµναβSµναβ also generate hhS couplings. However
these couplings are fake. The same Lagrangians also
generate quadratic hS couplings. The field redefinitions
that we need to make to diagonalize the propagator also
kill these fake hhS couplings. In the special case of

∫ √
−gSR this field

redefinition is simply ‘moving to the Einstein Frame’.
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Consistent Truncation

It follows that (atleast as at the cubic level) that every 2
derivative classical theory of gravity interacting with other
fields necessarily admits a consistent truncation to Einstein
gravity. This is the first hint that Conjecture II is at all
plausible.
Note that electromagnetism behave very different from
gravity in this regard. Photon three point couplings are
easily constructed out of two field strength operators and
so exist at two derivative order.
For this reason an electromagnetic analogue of Conjecture
II cannot hold: exchange interactions generated by∫
φFµνFµν are a simple counter example.

With the poles under control we turn to the polynomial part
of the amplitude. This involves genuine 4 particle
interactions and so is more complicated.
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Polynomial 4 particle S matrices

The most general polynomial S matrix is simply the most
general polynomial built out of polarizations and momenta that
is

1: Lorentz Invariant
2: Separately quadratic in all polarzations
3: Gauge Invariant
4: Bose symmetric, i.e. invariant under S4 permutations.

We have arrived at a completely explicit listing of all such S
matrices. In the next few slides I explain some of the
ingredients that went into our ennumeration.
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Module Structure

To begin with let us put aside the requirement of S4
invariance. Let us call the most general polynomial of
momenta and polarizations that obeys conditions 1-3 (but
not necessarily condition 4) of the previous page as the
space of ‘unsymmetrized polynomial S matrices’.
Let M be any unsymmetrized polynomial S matrix. It is
then obvious that P(s, t)M is also such an S matrix (here P
is any polynomial of the Mandlestam variables).
In mathematical language, the space of unsymmetrized
polynomial S matrices is a ‘module over the the ring of
polynomials of Mandlestam variables’.

Shiraz Minwalla



The Module of Quasi Invariant S matrices

Now it is not difficult to verify that the Z2 × Z2 subgroup of
S4, consisting of I, P12P34, P13P24 and P14P23 leaves the
Mandlestam variables s, t and u invariant.
Let us call the collections of polynomials of polarizations
and momenta that obey conditions 1-3 above - but are also
Z2 × Z2 invariant - the space of ‘Qasi Invariant’ polynomial
S matrices.
The Z2 × Z2 invariance of Mandlestam variables
immeditely tells us that the space of Quasi Invariant
Polynomial S matrices is also a module over the ring of
polynomials of s, t and u.
The space of Quasi Invariant S matrices can be
decomposed into irreps of S4/(Z2 × Z2) = S3.
Recall that S3 has 3 irreps; the one dimensional completely symmetric irrep S, the one dimensional

completely antisymmetric irrep A. And the two dimensional mixed representation M.
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Characterizing these modules

A module can be completely characterized by its
generators (e.g. ‘Virasoro Primaries’) and the generators
of its relations (e.g. ‘Null States’). In our paper we have
explicitly listed both the generators and the null states
(when they exist) for all the quasiprimary S matrix module
in every dimension D
With the module of quasi invariant S matrices under
complete control, it is now a simple matter to enumerate all
polynomial S matrices. They are simply the projection of
the quasi invairant module onto the space of S3 singlets.
In our paper we have provided a completely explicit listing
of all such S matrices - both parity even and parity odd - in
every dimension. We have also explicitly listed the
Lagrangians that generate these S matrices.
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Results: Counting

dimension Even partition function Odd partition function
D ≥ 10 x8(x−2 + 6 + 9x2 + 10x4 + 3x6)D 0
D = 9 x8(x−2 + 6 + 9x2 + 10x4 + 3x6)D 0
D = 8 x8(x−2 + 6 + 9x2 + 10x4 + 3x6)D 0
D = 7 x8(x−2 + 6 + 9x2 + 10x4 + 3x6)D x8(2x−1 + 3x + 2x3)D

D = 6 x8(6 + 9x2 + 10x4 + 3x6)D 3x10(x2 + x4 + x6)D

D = 5 x8(4 + 7x2 + 8x4 + 3x6)D x11(x2 + x4 + x6)D

D = 4 x8(2 + 2x2 + 3x4 − x6 − x8)D x8(1 + x2 + 2x4 − x6 − x8)D

Table: Partition function over 4 graviton S-matrices.
D = 1

(1−x4)(1−x6)
. The coefficient of xm in these expressions gives

the number of independent polynomial S matrices at m
derivative order.

Though we do not need them in this talk, we have also explicitly
constructed the quasi invariant modules for 4 photon scattering and
have evaluated the analogues of the partition functions evaluated
above for that case also.
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Tests

We are very confident that our results are correct because
we have two different ways of counting the number of
polynomial S matrices graded by dimension.
The first way is to construct the generators (and relations)
and then count parameters using the module structure, as
described above.
The second independent method proceeds by explicitly
ennumerating local Lagrangians upto field refinitions and
total derivatives rather than S matrices.
We perform this ennumeration by evaluating an SO(D)
matrix integral that projects the ‘four graviton letter’
partition function onto the space of SO(D) singlets after
removing total derivatives. The computation is not
completely trivial, but we managed to carry it through. Both
methods give exactly the same final results, giving a highly
nontrivial test of our module constructions.
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Constraining Polynomial S matrices

Recall that the CEMZ programme for constraining 3
graviton scattering had 2 steps. The first step was to use
symmetry considerations to minimally parameterize the S
matrix. We are now done with the analogous step for the 4
graviton S matrix.
As you can see the result here is much more complicated;
as opposed to 3 numbers it is given in high enough
dimensions in terms of terms of 10 unknown functions of s
and t .
We now turn to the second step of the programme, namely
to use a physical principle to constrain the parameters that
appear in the S matrix.
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Chaos Bound

Recall the following result obtained by Maldacena,
Shenker and Stanford. Consider a large N CFT. Consider
the (ordinary time ordered) four point function of four
idnentical operators inserted on the x , t plane as follows.
The first two operators are inserted at the point t = 0,
x = 1 but then boosted respectively with boost parameters
e
τ
2 and e−

τ
2 . The next two operators are first placed at

t = 0 and x = −1 and then boosted with the same two
boosts.
MSS considered the limit N →∞ first and then τ →∞.
They demonstrated that the four point function described
above is allowed to grow as τ →∞, but no faster than eτ .
We will now examine the consequences of this result for
the holographic dual of such a CFT.
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The Chaos Bound and S matrices

Let us now consider a situation in which the holographic
dual to our CFT has a scalar field with a local Lagrangian -
and more generally couplings that would generate a local
S matrix.
Such lagrangians are paremeterized in precisely the
manner described earlier in this talk. Heemskerk,
Penedones, Polchinski and Sully used the usual AdS/CFT
dictionary to explicitly construct the boudary 4 point
function that arises out of any given bulk Lagrangian.
Using their results one can verify the following result.
Consider a term in the bulk Lagrangian that would lead to a
flat space S matrix that scales in the Regge limit (large s,
fixed t) like sm+1. The four point function that follows from
the same bulk term scales like emτ .
It follows immediately that any local bulk term that leads to
an S matrix that grows faster than s2 in the Regge limit
violates the chaos bound and so must be unphysical.
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Conjecture for bounds on Regge Scattering

The observations above lead us to make the following
Classical Regge Growth (CRG) conjecture.
Classical theories whose S matrices grow faster than s2 in
the Regge limit are unphysical.
That something like the above should be true has been
suggested - perhaps a bit implicitly - by many people
including CEMZ, MSS, Caron-Huot, Zhibeodov,
Arkani-Hamed ...
The sharp link between the CRG conjecture and the
Chaos bound has so far been most clearly established for
scalars. In ongoing work we have made a fair amount of
progress in verifying that this connection continues to hold
in a sharp manner also for spinning particles like gravitons.
Note that the CRG bound is saturated by scattering in
Einstein gravity, and that α′ effects in string theory change
the power 2 to a power less than 2.
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Implications of CRG: contact graviton interactions

We can now use our painstakingly constructed explicit
parameterization of polynomial graviton S matrices to list
the most general S matrid of this form that obeys CRG
scaling. We find that there is only one such S matrix
namely

a (ε1 ∧ ε2 ∧ ε3 ∧ ε4 ∧ p1 ∧ p2 ∧ p3)
2

This 6 derivative S matrix - which, (roughly speaking)
scales like stu and so is CRG allowed is generate by the
Lagrangian

χ6 =

∫ √
−g
(

1
8
δ

g
[aδ

h
bδ

i
cδ

j
dδ

k
eδ

l
f ] R gh

ab R ij
cd R kl

ef

)
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Gravitions: Implications

In summary, that the most general purely gravitational
CRG action (upto terms that cannot affect 4 graviton
scattering) is

a(Einstein) + b(GB) + c(Reimann3) + dχ6

Recall again

χ6 =

∫ √
−g
(

1
8
δ

g
[aδ

h
bδ

i
cδ

j
dδ

k
eδ

l
f ] R gh

ab R ij
cd R kl

ef

)
=

∫ √
−g
(

4R cd
ab R ef

cd R ab
ef − 8R c d

a b R e f
c d R a b

e f − 24RabcdRabc
eRde + 3RabcdRabcdR

+ 24RabcdRacRbd + 16R b
a R c

b R a
c − 12R b

a R a
b R + R3

)
(1)
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D ≤ 6

χ6 =

∫ √
−g
(

1
8
δ

g
[aδ

h
bδ

i
cδ

j
dδ

k
eδ

l
f ] R gh

ab R ij
cd R kl

ef

)

It is obvious that χ6 vanishes identially for D ≤ 5. In D = 6
this term is a total derivative. The term is classically
nontrivial only for D ≥ 7. This fact is already apparent from
the form of its S matrix.
In D ≤ 6 it thus follows that the most general CRG allowed
purely gravitational action (upto terms that cannot impact
the four graviton scattering) in D ≤ 6 is

a(Einstein) + b(GB) + c(Reimann3).
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Exchange Contributions: Graviton Exchange

So far we have considered the implications of the CRG
conjecture on the polynomial contributions to 4 graviton
scattering. As we have already discussed above the most
general contribution also has exchange contributions.
The exchange contributions relevant to Conjecture III are
graviton poles, so lets study those first.
These amplitudes can be thought of as a quadratic form in
the coefficients a, b and c (of the allowed 3 point structures
of 3 graviton scattering).
We have explicitly constructed the most general exchange
contribution of this nature (and also decomposed it in terms
of our ‘generator’ index structures above). The final answer
is a bit complicated. Main important result, however, is that
this pole contribution to the amplitude grows faster than s2

in the Regge limit unless b = c = 0. It follows that the most
general CRG allowed purely gravitational action in D ≤ 6 is
Einstein. In particular we CRG implies CEMZ + more.
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sJ?

In the last slide I claimed that exchange contributions from, e.g.,
two GB vertices grows faster than s2. On the other hand we
often hear the following claim: the contribution to the S matrix
from the exchange of paricles of spin J scales like sJ . Given that
GB exchange contributions capture only gravity exchange (i.e.
J = 2) don’t we have a contradiction?
The resolution is the following. The contribution of spin J
particles to the S matrix scales like sJ only in the t channel. The
contribution from the s and u channels is not universal. They
depend on the details of the three point couplings. These
contributions grow faster than s2 in for GB-GB exchange.
Note that t channel contributions are special. They are non
polynomial in t even in the Regge limit. These are thus the only
contributions that contribute to scattering at nonzero impact
parameter in the Regge limit. In other words GB 4 graviton
scattering violates the CRG conjecture - but not in a way that
can be seen at nonzero impact parameter.
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On the other hand s and u channel contributions are
typically analytic in t in the Regge limit, and (like contact
terms) contribute to scattering only at zero impact
parameter.
In order to conclude that a GB coupling is unphysical, it is
thus not sufficient to check that the exchange contribution
from two GB vertices grows faster than s2. We must also
check that this growth is of the form that that cannot be
cancelled by addition of a local counterterm. We have
indeed checked this.
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Massive Exchanges: General Analysis

Using the fact that ggP couplings always involve 4
derivatives, in our paper we have presented a general
argument that all massive exchange contributions to 4
graviton scattering grow faster than s2 atleast for D ≤ 6,
and this growh is of the form that cannot be cancelled by a
local counterterm.
Moreover exchange contributions - unilike contact term
contributions - always come with a definite sign (this
follows from the reality of three point couplings and the fact
that propagators have to have the right sign). For this
reason the contribution of various different exchange
contributions cannot cancel each other.
It follows that the CRG conjecture excludes all exchange
contributions. Assuming the CRG conjecture we thus more
or less have a proof of conjecture II for D ≤ 6 for the
special case of four graviton scattering.
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Discussions and Conclusions

In this talk we first presented a complete classification of 4
graviton (and four photon) classical S matrices in the
theory whose Lagrangian has a finite number of derivatives
and has a finite number of fields.
We then presented a conjecture about the allowed growth
of S matrices in classical theories. We then used this
conjecture to completely classify allowed classical theories
of gravity, upto Lagrangian terms of order Riemann5 or
higher that do not impact 4 graviton scattering.
It would be very nice to understand our s2 conjecture
better - and if possible to replace it with a clear physical
argument directly in flat space. We have some ideas that
we are working on.
It would also be interesting to understand the status of the
ambiguity of the action in D ≥ 7. Is this a genuine
ambiguity, or does another physical argument set a to
zero?

Shiraz Minwalla



Discussions and Conclusions

Using AdS/CFT one can turn our results into a constraint
on stress tensor four point functions in the large N limit.
Our results suggest that the only Chaos bound allowed
large N TTTT four point function that receives
contributions from a finite number of single trace exchange
blocks (in addition to double stress tensor exchanges) is
the result generated by the pure Einstein action in the bulk.
It would be very interesting to generalize the results of this
talk to the scattering of more than 4 gravitions, and
complete the process of characterizing the most general
classical local theory of gravity consistent with general
principles.
Finally, if all this works out we could get more ambitious
and generalize the study of this talk beyond local S
matrices, with the hope of establishing Conjecture I: i.e the
uniqueness of string scattering.
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Rough Work
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Detail: Universality of String Scattering 1

Consider type II string compactifications of the form
Rp ×M where M is an internal manifold. E.g.
p = 4 and M = a CY manifold.
Such a compactification defines a quantum theory of
gravity on Rp. The spectrum of the theory includes p
dimensional gravitons.
The scattering amplitudes of these gravitons are given by
the following schematic formula

A =
∑

g

∫
dτidzi < V1(z1) . . .Vn(zn) >

where Vn are the graviton vertex operators, zi are their
insertion locations, and τi are the moduli of the genus g
Reimann surface. Expectations values are taken in the
sigma model on Rp ×M.
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Detail: Universality of String Scattering II

As graviton vertex operators all lie in the Rp part of the
CFT, the formula above can be simplified to

A =
∑

g

∫
dτi ZM(τi) CRp(τi)

C(τi) =

∫
dzi < V1(z1) . . .Vn(zn) > |Rp

where ZM(τi) is partition function of the sigma model on M
on the Reimann surface. The vertex operator expectation
values are taken purely in the Rp part of the CFT.
Even though C(τi) are universal - independent of M -
Z (τi)M - and hence the integral over τi above - clearly
depends on M. It follows that graviton scattering
amplitudes at generic values of g depend on details of the
compactification manifold M (e.g. are intricate functions
the CY moduli).
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Detail: Universality of String Scattering III

The story above holds for generic g. Let us now, however,
focus on the special case g = 0. As the Reimann sphere
has no moduli, the integral over τi is absent at g = 0. It
follows that

Ag=0 = Z S2

M CS2

Rp

Here Z S2

M is the partition function of the M CFT on the 2
sphere. Z S2

M is a multiplicative factor for all scattering
amplitudes. It is an overall number that sets the value of
the effective p dimensional Newton constant.
CS2

Rp , the nontrivial part of the scattering amplitude is
universal (i.e. independent of M). It is not hard to convince
oneself that CS2

Rp is the same for type IIA, IIB and Type I
theory.
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Detail: Three particle scattering, Counting 1

Consider the scattering of 2 gravitons and a massive
particle in a representation R of the little group SO(D − 1).
Spacetime can be divided up into the ‘scattering 2 plane’
spanned by k1, k2 and its orthogonal compliment.
The polarization ε1 of the graviton with momentum k1
obeys k1.ε1 = 0. Implies ε1 = ε⊥1 + a1k1 where ε⊥1 lies in
the orthogonal compliment. As far as gauge invariant
amplitudes go, ε1 = ε⊥1 . Sim for ε2. It follows that graviton
polarization states are labelled by traceless symmetric
tensors of SO(D − 2) that stabilizes the scattering two
plane.
On the other hand the representation R of SO(D − 1)
(which stabilizes k1 + k2) descends, via SO(D − 1)
branching rules, to a finite set of representations of the
SO(D − 2) that also stabilizes k1 − k2, and so the full
scattering two plane
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Detail: Three particle scattering: Counting 2

In order to enumerate all possible ggP three point functions we
Enumerate all SO(D − 2) singlets in the product of two
SO(D − 2) tranceless symmetric tensors and one copy of
any of the SO(D − 2) reps that descend from R.
Retain only those singlets that respect the Bose symmetry
of gravitons.

This exercise is not difficult to undertake. Turns out that the
number of three point structures - as we vary over R - ranges
from zero to three. Once we have enumerated all structures it is
also easy to explicitly construct them all, and also to list the
Lagrangians from which they follow.
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Detail: 3 particle scattering, Listing 1

It is also not difficult to explicitly construct all relevant 3 point
functions. For instance for D ≥ 8. Yellow boxes denote indices
effectively contracted with k1 − k2 in order to facilitate
comparison with counting outlined above.

a b : ∇a∇bRcdef Rcdef Sab
a b : RefgaRefgbSab

a b α β : RcadbRcαdβSabαβ

a b
c

: ∇d Racef Rbdef S[ac]b
a b c d
e

: ∇hRaedi Rhbci S[ae]bcd

a b c
d

: Refch∇b∇hRefad S[ad ]bc
a b c d e
f

: ∇βRαbch∇h∇e∇αRβdaf S[af ]bcde

a
b
c

: ∇f RabdeRcfdeS[abc]
a d e
b
c

: ∇hRabdf Rchef S[abc]de
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Detail: 3 point structures, Listing 2

r t
s u

and r t
s u

: RpqrsRpqtuS[rs][tu] and Rprqt RpsquS[rs][tu]

a c e f
b d

: RabehRcdfhS[ab][cd ]ef

c i d
a j

: Rabdk∇k Rbcij S[ca][ij]d

a d f i
b e
c

: ∇i Rabfj RcjdeS[abc][de]fi

a d f
b e
c

: Rabfi RcideS[abc][de]f

a d
b e
c f

: RabdhRchef S[abc][def ]
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Detail: 3 point structures, Listing 3

c i k e
a j d

: Rabkd∇eRbcij S[ca][ij][kd ]e

a b c d e
f i j

: ∇k Rafcj∇eRbidk S[af ][bi][cj]de

a d f
b e i
c

: ∇j RabdeRcjfi S[abc][de][fi]

a c e i
b d f j

: Rabcd Refij S[ab][cd ][ef ][ij]
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Detail: Decomposition of Polynomials into S3 reps

The space of polynomials of s, t , u of any given degree can be
decomposed into representations of S3. Let the number of
representations of type α at degree n/2 be denoted as nα(n). (n
counts the number of derivatives). Then

Let Zα(x) =
∑

n

nα(n)xn,

ZS(x) = D, ZA(x) = x6D, ZM(x) = (x2 + x4)D,

D =
1

(1− x4)(1− x6)
(2)

Below we will also need a formula for the partition function,
ZZ2(x), over the space of polynomials that are symmetric under
interchange of s and t only. Using the fact that every particle
exchange is represented as unity in the S representation, as −1
in the A representation and as a 2× 2 matrix with eigenvalues
±1 in the M representation it follows that

ZZ2(x) = ZS(x) + ZM(x).
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Detail: Fusion Rules of S3

The S3 fusion rules are

S× R = R, A× A = S, A× S = A, A×M = M,
M×M = S + A + M

(3)

Note that the S representation only appears on the RHS of
the product of two equal representations. It follows that the
most general polynomial S matrix takes the form∑

I

f a
I (s, t ,u)E

a
I

where Ea
I run over the all ‘primitive’ or ‘generator’ index

structures, each of which transform in some representation
of S3 (a is an index label within representations), and f a

I are
any polynomials that transform in the same representation
of S3 (the sum over a projects onto singlets).
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Detail: Descendent Lagrangians

As we have mentioned above Generators of the Local S
matrix module are not always S3 invariant. On the other
hand Lagrangians always give rise to S3 invariant S
matrices. Nonetheless there an interesting way to
associate Lagrangians with generators.
We say a Lagrangian structure A is a descendent of a
structure B if first A has more derivatives than B, but all the
extra derivatives that are in A but not in B have indices that
contract with each other. Second, if we remove all these
contracted derivatives A reduces to B.
We say a Lagrangian structure corresponds to a given
generator if the set of all desendents from that Lagrangian
yield a set of S matrices that coincides with the restriction
to S3 singlets of the set of S matrices generated by the
generator in question.
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Detail: Parity even photon S matrices in D ≥ 5.

For D ≥ 5 the most general local parity invariant S matrix
for 4 photons is freely generated.
The most general S matrix parameterized by by three
polynomials in the S representation and two in the M
representations. Equivalently - and more conveniently for
some purposes, these set of polynomials may be shown to
be characterized by 2 Z2 invariant functions (i.e. functions
that are symmetric under u goes to t interchange)
A0,1(t ,u) and a single S3 invariant function A2,1(s, t ,u).
A0,1 and A0,2 parameterize descendents of the four
derivative structures (TrF 2)2 and Tr(F 4) respectively while
A1,2 parameterizes descendents of the six derivative term

FabTr(∂aF∂bFF )
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Detail: Explicit parameterization of 4 photon S
matrices 1

Explicitly the most general parity even 4 photon S matrix in
D ≥ 5 is given by the sum of

A0,1(t ,u)
(
p1
µε

1
ν − p1

νε
1
µ

) (
p2
µε

2
ν − p2

νε
2
µ

) (
p3
αε

3
β − p3

βε
3
α

) (
p4
αε

4
β − p4

βε
4
α

)
+A0,1(s,u)

(
p1
µε

1
ν − p1

νε
1
µ

) (
p3
µε

3
ν − p3

νε
3
µ

) (
p2
αε

2
β − p2

βε
2
α

) (
p4
αε

4
β − p4

βε
4
α

)
+A0,1(t , s)

(
p1
µε

1
ν − p1

νε
1
µ

) (
p4
µε

4
ν − p4

νε
4
µ

) (
p3
αε

3
β − p3

βε
3
α

) (
p2
αε

2
β − p2

βε
2
α

)
(4)

and

A0,2(t ,u)
(
p1
µε

1
ν − p1

νε
1
µ

) (
p3
νε

3
α − p3

αε
3
ν

) (
p2
αε

2
β − p2

βε
2
α

) (
p4
βε

4
µ − p4

µε
4
β

)
+A0,2(s,u)

(
p1
µε

1
ν − p1

νε
1
µ

) (
p2
νε

2
α − p2

αε
2
ν

) (
p3
αε

3
β − p3

βε
3
α

) (
p4
βε

4
µ − p4

µε
4
β

)
+A0,2(t , s)

(
p1
µε

1
ν − p1

νε
1
µ

) (
p3
νε

3
α − p3

αε
3
ν

) (
p4
αε

4
β − p4

βε
4
α

) (
p2
βε

2
µ − p2

µε
2
β

)
(5)
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Detail: Explicit parameterization of 4 photon S
matrices 2

(
A2,1(s, t) + A2,1(t ,u) + A2,1(u, s)

)
×[(

p1
aε

1
b − p1

bε
1
a
)

p2
a
(
p2
µε

2
ν − p2

νε
2
µ

)
p3

b
(
p3
νε

3
α − p3

αε
3
ν

) (
p4
αε

4
µ − p4

µε
4
α

)
+
(
p2

aε
2
b − p2

bε
2
a
)

p1
a
(
p1
µε

1
ν − p1

νε
1
µ

)
p4

b
(
p4
νε

4
α − p4

αε
4
ν

) (
p3
αε

3
µ − p3

µε
3
α

)
+
(
p3

aε
3
b − p3

bε
3
a
)

p4
a
(
p4
µε

4
ν − p4

νε
4
µ

)
p1

b
(
p1
νε

1
α − p1

αε
1
ν

) (
p2
αε

2
µ − p2

µε
2
α

)
+
(
p4

aε
4
b − p4

bε
4
a
)

p3
a
(
p3
µε

3
ν − p3

νε
3
µ

)
p2

b
(
p2
νε

2
α − p2

αε
2
ν

) (
p1
αε

1
µ − p1

µε
1
α

)]
(6)

The most general local S matrices are given by the form
listed above with A0,1, A0,2 and A1,2 polynomials of s, t and
u. We have counted the data in such S matrices above-
our photon S matrix has 7 degrees of freedom. The most
general S matrices - not necessarily local - are also given
by the forms above allowing for more general (not
necessarily polynomial) dependences of the unknown
functions. Shiraz Minwalla



S matrices for 4 identical gravitons

As another example we present the most general parity
even gravity S matrix in D ≥ 7.
This S matrix turns out to be parameterized by 7 Z2
invariant, one function that enjoys no permutation
symmetry and two functions that are completely
permutation symmetric. or a total of 29 degrees of
freedom.
In more detail we have one completely symmetric
generator at 6 derivatives (Riemann3) term

χ6 =

∫ √
−g
(

1
8
δ

g
[aδ

h
bδ

i
cδ

j
dδ

k
eδ

l
f ] R gh

ab R ij
cd R kl

ef

)
(7)

Second Lovelock term. One d.o.f.
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S matrices for 4 identical Gravitions: parity even
D ≥ 7.

At 8 derivative order we have 5 generators in the 3 and one
generator in the 6 rep of S3. Total 21 dofs.
At 10 derivative order there are 2 generators in the 3 rep. 6
degrees of freedom.
Finally at 12 derivative order there is a single generator in
the S rep. One d.o.f.
Note: If we set gµν(k) = ηµν + εµ(k)εν(k)eik .x with k2 = 0
then it turns out that Rabmn evaluated to linearized order is
proportional to Fab(k)Fmn(k) where Fmn = kmεn − knεn. In
our Lagrangian terms below we will sometimes replace
Rabmn with FabFmn.
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Explicit parameterization of the general 4 graviton S
matrix: 1

Explicitly, the most general 4 gravition S matrix is given by
the sum of

S1 = 3B0,0(s, t ,u) (ε1 ∧ ε2 ∧ ε3 ∧ ε4 ∧ p1 ∧ p2 ∧ p3)
2 (8)

with B0,0(s, t ,u) completely symmetric (this is from
descendents of the Reimann3 structure) and

B0,1(s, t)
[(

p1
pε

1
q − p1

qε
1
p
) (

p2
pε

2
q − p2

qε
2
p
) (

p3
r ε

3
s − p3

sε
3
r
) (

p4
r ε

4
s − p4

sε
4
r
)(

p1
aε

1
b − p1

bε
1
a
) (

p2
bε

2
c − p2

cε
2
b
) (

p3
cε

3
d − p3

dε
3
c
) (

p4
dε

4
a − p4

aε
4
d
)]

+ B0,1(s,u) [3↔ 4] + B0,1(t , s) [2↔ 3] + B0,1(t ,u) [2↔ 3 then 2↔ 4]

+ B0,1(u, t) [2↔ 4] + B0,1(u, s) [2↔ 4 then 2↔ 3]
(9)

where B0,1 has no special symmetry property; this term is
from descendents of Tr(F 1F 2)Tr(F 3F 4)Tr(F 1F 2F 3F 4)

Shiraz Minwalla



Explicit parameterization of the gravity S matrix:2

B0,2(t ,u)
[(

p1
pε

1
q − p1

qε
1
p
) (

p2
pε

2
q − p2

qε
2
p
) (

p3
r ε

3
s − p3

sε
3
r
) (

p4
r ε

4
s − p4

sε
4
r
)(

p1
aε

1
b − p1

bε
1
a
) (

p3
bε

3
c − p3

cε
3
b
) (

p2
cε

2
d − p2

dε
2
c
) (

p4
dε

4
a − p4

aε
4
d
)]

+ B0,2(s,u) [3↔ 2] + B0,2(s, t) [2↔ 4]
(10)

where
B0,2(t ,u) = B0,2(u, t) (11)

From descendents of Tr(F 1F 2)Tr(F 3F 4)Tr(F 1F 3F 2F 4).

B0,3(s,u)
[(

p1
aε

1
b − p1

bε
1
a
) (

p2
bε

2
c − p2

cε
2
b
) (

p3
cε

3
d − p3

dε
3
c
) (

p4
dε

4
a − p4

aε
4
d
)(

p1
pε

1
q − p1

qε
1
p
) (

p2
qε

2
r − p2

r ε
2
q
) (

p3
r ε

3
s − p3

sε
3
r
) (

p4
sε

4
p − p4

pε
4
s
)]

+ B0,3(t ,u) [3↔ 2] + B0,3(s, t) [3↔ 4]
(12)

B0,3(s,u) = B0,3(u, s) (13)

(from descendents of Tr(F 1F 2F 3F 4)Tr(F 1F 2F 3F 4))
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Explicit parameterization of the Gravity S matrix: 3

B0,4(s, t)
[(

p1
aε

1
b − p1

bε
1
a
) (

p2
bε

2
c − p2

cε
2
b
) (

p3
cε

3
d − p3

dε
3
c
) (

p4
dε

4
a − p4

aε
4
d
)(

p1
pε

1
q − p1

qε
1
p
) (

p3
qε

3
r − p3

r ε
3
q
) (

p2
r ε

2
s − p2

sε
2
r
) (

p4
sε

4
p − p4

pε
4
s
)]

+ B0,4(s,u) [3↔ 4] + B0,4(u, t) [2↔ 4]
(14)

B0,4(s, t) = B0,4(t , s) (15)

from descendents of Tr(F 1F 2F 3F 4)Tr(F 1F 3F 2F 4)

B0,5(t ,u)
[(

p1
pε

1
q − p1

qε
1
p
) (

p2
pε

2
q − p2

qε
2
p
) (

p3
r ε

3
s − p3

sε
3
r
) (

p4
r ε

4
s − p4

sε
4
r
)(

p1
aε

1
b − p1

bε
1
a
) (

p2
aε

2
b − p2

bε
2
a
) (

p3
cε

3
d − p3

dε
3
c
) (

p4
cε

4
d − p4

dε
4
c
)]

+ B0,5(s,u) [3↔ 2] + B0,5(s, t) [2↔ 4]
(16)

B0,5(t ,u) = B0,5(u, t) (17)

from descendents of Tr(F 1F 2)Tr(F 3F 4)Tr(F 1F 2)Tr(F 3F 4)
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Explicit prameterization of the four graviton S matrix: 4

B0,6(s,u)
[(

p1
pε

1
q − p1

qε
1
p
) (

p4
pε

4
q − p4

qε
4
p
) (

p2
r ε

2
s − p2

sε
2
r
) (

p3
r ε

3
s − p3

sε
3
r
)(

p1
aε

1
b − p1

bε
1
a
) (

p2
aε

2
b − p2

bε
2
a
) (

p3
cε

3
d − p3

dε
3
c
) (

p4
cε

4
d − p4

dε
4
c
)]

+ B0,6(t ,u) [3↔ 2] + B0,6(s, t) [3↔ 4]
(18)

B0,6(s,u) = B0,6(u, s) (19)

from descendents of Tr(F 1F 2)Tr(F 3F 4)Tr(F 1F 4)Tr(F 2F 3)

This completes the listing of the S matrices of
denscendents of 6 and 8 derivative terms. We now turn to
the listing of S matrices that follow from descendents of the
two 10 derivative and one 12 derivative terms.
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Explicit prameterization of the general 4 graviton S
matrix: 5

+
(
B2,1(s,u)

(
p1

pε
1
q − p1

qε
1
p
) (

p2
qε

2
r − p2

r ε
2
q
) (

p3
r ε

3
s − p3

sε
3
r
) (

p4
sε

4
p − p4

pε
4
s
)

B2,1(t ,u)
(
p1

pε
1
q − p1

qε
1
p
) (

p3
qε

3
r − p3

r ε
3
q
) (

p2
r ε

2
s − p2

sε
2
r
) (

p4
sε

4
p − p4

pε
4
s
)

+ B2,1(t , s)
(
p1

pε
1
q − p1

qε
1
p
) (

p3
qε

3
r − p3

r ε
3
q
) (

p4
r ε

4
s − p4

sε
4
r
) (

p2
sε

2
p − p2

pε
2
s
))((

p1
aε

1
b − p1

bε
1
a
)

p2
a
(
p2
µε

2
ν − p2

νε
2
µ

)
p3

b
(
p3
νε

3
α − p3

αε
3
ν

) (
p4
αε

4
µ − p4

µε
4
α

)
+
(
p2

aε
2
b − p2

bε
2
a
)

p1
a
(
p1
µε

1
ν − p1

νε
1
µ

)
p4

b
(
p4
νε

4
α − p4

αε
4
ν

) (
p3
αε

3
µ − p3

µε
3
α

)
+
(
p3

aε
3
b − p3

bε
3
a
)

p4
a
(
p4
µε

4
ν − p4

νε
4
µ

)
p1

b
(
p1
νε

1
α − p1

αε
1
ν

) (
p2
αε

2
µ − p2

µε
2
α

)
+
(
p4

aε
4
b − p4

bε
4
a
)

p3
a
(
p3
µε

3
ν − p3

νε
3
µ

)
p2

b
(
p2
νε

2
α − p2

αε
2
ν

) (
p1
αε

1
µ − p1

µε
1
α

))
(20)

B2,1(s,u) = B2,1(u, s) (21)

from descendents of Tr(F 1F 2F 3F 4)F 1
abTr(p2

aF 2p3
bF 3F 4).
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Explicit parameterization of the general 4 graviton S
matrix: 6

(
B2,2(t ,u)

(
p1

pε
1
q − p1

qε
1
p
) (

p2
pε

2
q − p2

qε
2
p
) (

p3
r ε

3
s − p3

sε
3
r
) (

p4
r ε

4
s − p4

sε
4
r
)

+ B2,2(s,u)
(
p1

pε
1
q − p1

qε
1
p
) (

p3
pε

3
q − p3

qε
3
p
) (

p2
r ε

2
s − p2

sε
2
r
) (

p4
r ε

4
s − p4

sε
4
r
)

+ B2,2(t , s)
(
p1

pε
1
q − p1

qε
1
p
) (

p4
pε

4
q − p4

qε
4
p
) (

p3
r ε

3
s − p3

sε
3
r
) (

p2
r ε

2
s − p2

sε
2
r
))((

p1
aε

1
b − p1

bε
1
a
)

p2
a
(
p2
µε

2
ν − p2

νε
2
µ

)
p3

b
(
p3
νε

3
α − p3

αε
3
ν

) (
p4
αε

4
µ − p4

µε
4
α

)
+
(
p2

aε
2
b − p2

bε
2
a
)

p1
a
(
p1
µε

1
ν − p1

νε
1
µ

)
p4

b
(
p4
νε

4
α − p4

αε
4
ν

) (
p3
αε

3
µ − p3

µε
3
α

)
+
(
p3

aε
3
b − p3

bε
3
a
)

p4
a
(
p4
µε

4
ν − p4

νε
4
µ

)
p1

b
(
p1
νε

1
α − p1

αε
1
ν

) (
p2
αε

2
µ − p2

µε
2
α

)
+
(
p4

aε
4
b − p4

bε
4
a
)

p3
a
(
p3
µε

3
ν − p3

νε
3
µ

)
p2

b
(
p2
νε

2
α − p2

αε
2
ν

) (
p1
αε

1
µ − p1

µε
1
α

))
(22)

B2,2(t ,u) = B2,2(u, t) (23)

from descendents of
Tr(F 1F 2)Tr(F 3F 4)F 1

abTr(p2
aF 2p3

bF 3F 4)
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Explicit prameterization of the general 4 graviton S
matrix:7

(
B4,1(s, t) + B4,1(t ,u) + B4,1(u, s)

)
×[(

p1
aε

1
b − p1

bε
1
a
)

p2
a
(
p2
µε

2
ν − p2

νε
2
µ

)
p3

b
(
p3
νε

3
α − p3

αε
3
ν

) (
p4
αε

4
µ − p4

µε
4
α

)(
p1

pε
1
q − p1

qε
1
p
)

p2
p
(
p2
βε

2
γ − p2

γε
2
β

)
p3

q
(
p3
γε

3
δ − p3

δε
3
γ

) (
p4
δε

4
β − p4

βε
4
δ

)
+ (1↔ 2) + (1↔ 3) + (1↔ 4)]

(24)

B4,1(s, t) = B4,1(u, t) = B4,1(t , s) = B4,1(u, s) = B4,1(s,u) = B4,1(t ,u)
(25)

from descendents of
F 1

pqTr(p2
pF 2p3

qF 3F 4)F 1
abTr(p2

aF 2p3
bF 3F 4)
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Detail: Examples of use of 4 photon scattering
parameterization

The tree level scattering of 4 photons in type 1 theory (or in
type II theory on D branes) has a single index structure -
the structure that follows from the Lagrangian structure

Lss
4V ∝

1
16

(
Tr(F 4)− 1

4
(Tr(F 2))2

)
(26)

which itself can be obtained by expanding the Born Infeld
action to quartic order in Fµν . Consequently this scattering
amplitude can be cast into our general form with A2,1 = 0
and A0,2 = −1

4A0,1. The actual expression for A0,1 is a well
knonwn Veneziano type function.
We have also recast the formula for tree level scattering in
the open bosonic string into our general form. The final
result is more complicated - and we do not write it here, but
simply note that it involves all three of our structures.
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Detail: Examples of Use of the S matrix

Gravitons. The 4 graviton S matrix from the Einstein
Lagrangian, which is given by

AEG
4h =

−4κ2

stu

( 1

2
ε2.ε3 (sε1.k3ε4.k2 + tε1.k2ε4.k3) +

1

2
ε1.ε4 (sε2.k4ε3.k1 + tε2.k1ε3.k4)

+
1

2
ε2.ε4 (sε1.k4ε3.k2 + uε1.k2ε3.k4) +

1

2
ε1.ε3 (sε2.k3ε4.k1 + uε2.k1ε4.k3)

+
1

2
ε3.ε4 (tε1.k4ε2.k3 + uε1.k3ε2.k4) +

1

2
ε1.ε2 (tε3.k2ε4.k1 + uε3.k1ε4.k2)

−
1

4
stε1.ε4ε2.ε3 −

1

4
suε1.ε3ε2.ε4 −

1

4
tuε1.ε2ε3.ε4

)2
(27)

This turns out to be proportional to 1
stu times the S matrix

generated the Lagrangian

LEG
4h ∝

1

32
(RpqrsRpqrs)2 −

1

2
RpqrsR t

pqr Ruvw
sRuvwt +

1

16
RpqrsR tu

pq R vw
tu Rrsvw

−
1

4
RpqrsR tu

pq R vw
rt Rsuvw − RpqrsR t u

p r RtvwsR v w
q u +

1

2
RpqrsR t u

p r R v w
t u Rqvsw (28)

which, in turn, is easily written as a linear combination of
the six 4 Reimann structures listed above.
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Detail: Examples of use of the 4 graviton S matrix

Next, the 4-graviton amplitude in Type II superstring theory
is proportional (in the sense of index structure) to the S
matrix for Einstein gravity, and so can also be easily written
in our basis.

Ass
4h = h(s, t ,u, α′)AEG

4h (29)

The tree level S matrices for the heterotic string and the
bosonic string are more complicated, but also can each be
written as a linear combination of the last 9 structures we
discussed above.
The first structure - descendents of the 6 derivative term -
never appears in tree level string amplitudes. It would be
interesting to check whether this structure appears in string
loop amplitudes. We have not yet tried this.
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Detail: Implications of CRG: contact scalar interactions

It is easy to verify that there are exactly three local scalar S
matrices that obey the conjectured bound on growth of
Regge amplitudes
These S matrices and their corresponding Lagrangian
structures are

a0 + a2(st + tu + us) + a3stu (30)

They come from the local Lagrangian

a0φ
4 + a2 (∂µ∂νφ∂µφ∂νφφ) + a3 (∂µ∂ν∂αφ∂µφ∂νφ∂αφ)

(31)

(31) is also precisely the terms that characterize that part
of the 4 point function that is undetermined by Caron
Huot’s formula (see e.g. a paper by Zhibedeov and Turaci
from 2 years ago). This is not a concidence, as the chaos
bound was a key phyiscal input into Caron Huot’s formula.
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Detail: Implications of CRG: Contact photon
interactions

It is not difficult to use our explicit parameterization of
photon S matrices to ennumerate all local photon 4 point S
matrices that grow no faster than s2 in the Regge limit.
We find these are given in terms of four constants a, b, c
and d by A01(t ,u) = a, A0,2(t ,u) = b + cs, A1,0 = d
corresponding to the four parameter set of Lagrangians

a(TrF 2)2 + bTrF 4 + cTr (∂µFF∂µFF ) + dFabTr (∂aF∂bFF )
(32)

Note that this allowed set of Lagrangians includes the
expansion of the Born Infeld action to quadratic order
In analogy with the scalar case we expect (32) to
parameterize the ambiguity in the large N version of
Caron-Huots formula for vectors.
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Detail: Non Polynomial S matrices

As a brief aside we note that our final expression for the
most general polynomial S matrix is parameterized by
collection of polynomials of s, t ,u. These polynomials are
required to have certain specified symmetry properties
under permutations of s, t and u but are otherwise
arbitrary.
Simply replacing the polynomials in the parameterizations
above by the most general functions of s, t and u with the
same symmetry properties yields a kinematical
parameterization of the most general 4 graviton S matrix
(classical or quantum).
In particular all the pole exchange S matrices described
earlier in this talk can also be recast in this form, with
suitable choices for the arbitrary functions.
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Detail: Massive exchanges: Examples

Recall that the Einstein graviton exchange contribution to
graviton scattering grew like s2. This fact might make us
suspect that there exists a massive spin to contribution to
this process that also grows in the same manner.
Remarkably enough, however, it turns out that there are 2
(rather than 3) couplings of 2 gravitons to massive spin two
particles. The couplings in question are the analogues of
the 4 and 6 derivative couplings, and always lead to
exchange contributions to graviton scattering that grows
faster than s2

It is also easy to verify that other simple examples of
exchange scattering contributions - like contributions due
to the exchage of scalar particles - also violate the CRG
conjecture in a way that cannot be compensated for by
local counterterms.
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