SixTrackLib: Design & Implementation of a GPU Accelerated Beam-Dynamics Simulation Library

Martin Schwinzerl June 19th, 2020 :: BE Seminar :: CERN

Supervisors:

Riccardo De Maria (CERN)

Gundolf Haase (University of Graz, Austria)

Supported by the Austrian Doctoral Student Program @ CERN Special Thanks & Acknowledgements:

Hannes Bartosik (CERN), Massimo Giovannozzi (CERN), Giovanni Iadarola (CERN), Carlo Emilio Montanari (U. Bologna), Adrian Oeftiger (GSI/FAIR), Konstantinos Paraschou (AUTH, CERN)

- Introduce single-particle tracking, symplectic tracking and SixTrackLibs approach to data-parallelism
- Explain & motivate design decisions for SixTrackLib
- Provide a minimal API demonstration (Cf. accompanying jupyter-notebook)
- Give overview about the preliminary performance figures
- Showcase examples of real-world applications

- Introduce single-particle tracking, symplectic tracking and SixTrackLibs approach to data-parallelism
- Explain & motivate design decisions for SixTrackLib
- Provide a minimal API demonstration (Cf. accompanying jupyter-notebook)
- Give overview about the preliminary performance figures
- Showcase examples of real-world applications

- Introduce single-particle tracking, symplectic tracking and SixTrackLibs approach to data-parallelism
- Explain & motivate design decisions for SixTrackLib
- Provide a minimal API demonstration (Cf. accompanying jupyter-notebook)
- Give overview about the preliminary performance figures
- Showcase examples of real-world applications

- Introduce single-particle tracking, symplectic tracking and SixTrackLibs approach to data-parallelism
- Explain & motivate design decisions for SixTrackLib
- Provide a minimal API demonstration (Cf. accompanying jupyter-notebook)
- Give overview about the preliminary performance figures
- Showcase examples of real-world applications

- Introduce single-particle tracking, symplectic tracking and SixTrackLibs approach to data-parallelism
- Explain & motivate design decisions for SixTrackLib
- Provide a minimal API demonstration (Cf. accompanying jupyter-notebook)
- Give overview about the preliminary performance figures
- Showcase examples of real-world applications

Introduction

Hamiltonian Formulation

- $\boldsymbol{q} \equiv (x, p)$ conjugate coordinates
- for given start- and end-points in phase-space **q**(t₀) and **q**(t₁) and

•
$$S := \int_{t_0}^{t_1} dt \, [p \cdot \dot{x} - H(x, p, t)],$$

• find expressions for ${m q}$ so that $\delta S
ightarrow 0$

• We define a (Transfer) **Map** as a transformation that has the same effect as integrating \dot{q}_i from $t_0 \mapsto t_1$, i.e. $\boldsymbol{q}(t_1) = \boldsymbol{M}_{t_0 \mapsto t_1}(\boldsymbol{q}(t_0))$

Hamiltonian Formulation

- $\boldsymbol{q} \equiv (x, p)$ conjugate coordinates
- for given start- and end-points in phase-space **q**(t₀) and **q**(t₁) and

•
$$S := \int_{t_0}^{t_1} dt \, [p \cdot \dot{x} - H(x, p, t)],$$

• find expressions for $oldsymbol{q}$ so that $\delta S
ightarrow 0$

Hamilton Equations of Motion, Transfer Maps

It can be shown, that if x, p, H, and t obey the equations

$$\dot{x} = \frac{dx}{dt} = \frac{\partial H}{\partial p}, \quad \dot{p} = \frac{dp}{dt} = -\frac{\partial H}{\partial x}$$

then $\delta S \rightarrow 0$ indeed is true. In physics, the Hamiltonian $H \equiv T + V$

1

• We define a (Transfer) **Map** as a transformation that has the same effect as integrating \dot{q}_i from $t_0 \mapsto t_1$, i.e. $\boldsymbol{q}(t_1) = \boldsymbol{M}_{t_0 \mapsto t_1}(\boldsymbol{q}(t_0))$

(1)

Hamiltonian Formulation

- $\boldsymbol{q} \equiv (x, p)$ conjugate coordinates
- for given start- and end-points in phase-space **q**(t₀) and **q**(t₁) and

•
$$S := \int_{t_0}^{t_1} dt \, [p \cdot \dot{x} - H(x, p, t)],$$

• find expressions for $oldsymbol{q}$ so that $\delta S
ightarrow 0$

Hamilton Equations of Motion, Transfer Maps

It can be shown, that if x, p, H, and t obey the equations

$$\dot{x} = \frac{dx}{dt} = \frac{\partial H}{\partial p}, \quad \dot{p} = \frac{dp}{dt} = -\frac{\partial H}{\partial x}$$
 (1)

then $\delta S
ightarrow 0$ indeed is true. In physics, the Hamiltonian $H \equiv T + V$

1

• We define a (Transfer) **Map** as a transformation that has the same effect as integrating \dot{q}_i from $t_0 \mapsto t_1$, i.e. $\boldsymbol{q}(t_1) = \boldsymbol{M}_{t_0 \mapsto t_1}(\boldsymbol{q}(t_0))$

• For
$$\delta t \to 0$$
, $q \equiv (q_0, q_1)$, we find $q_i(t_0 + \delta t) = q_i(t_0) + \delta t \cdot \dot{q}_i$

• With (1) and $\Omega_{ik} = (\Omega)_{ik} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, this becomes $q(t_0 + \delta t) = q_i(t_0) + \delta t \cdot \Omega_{ik} \cdot \frac{\partial^2 H}{\partial q_i \partial q_k} \Big|_{t=t_0}$

• Jacobian of the Transformation

$$J_{ij} = \frac{\partial q_i(t_0 + \delta t)}{\partial q_j(t_0)} = \delta_{ij} + \delta t \cdot \Omega_{ik} \cdot \left. \frac{\partial^2 H}{\partial q_j \partial q_k} \right|_{t=t_0} \Rightarrow J = I + \delta t \cdot \Omega \cdot \tilde{H}$$

- J as derived via (1) fulfills symplectivity condition
- Thus $J_{t_0 \mapsto t_0+2\delta t} = J_{(t_0+\delta t) \mapsto (t_0+2\delta t)} \circ J_{t_0 \mapsto t_0+\delta t}$ also symplectic
- *M*_{t0→t1} constructed from a composition of symplectic *J* is also symplectic (i.e. *M* is a symplectic Map)

• For
$$\delta t \to 0$$
, $q \equiv (q_0, q_1)$, we find $q_i(t_0 + \delta t) = q_i(t_0) + \delta t \cdot \dot{q}_i$

• With (1) and
$$\Omega_{ik} = (\Omega)_{ik} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, this becomes $q(t_0 + \delta t) = q_i(t_0) + \delta t \cdot \Omega_{ik} \cdot \frac{\partial^2 H}{\partial q_i \partial q_k} \Big|_{t=t_0}$

• Jacobian of the Transformation

$$J_{ij} = \frac{\partial q_i(t_0 + \delta t)}{\partial q_j(t_0)} = \delta_{ij} + \delta t \cdot \Omega_{ik} \cdot \frac{\partial^2 H}{\partial q_j \partial q_k} \Big|_{t=t_0} \Rightarrow J = I + \delta t \cdot \Omega \cdot \tilde{H}$$

• J as derived via (1) fulfills symplectivity condition

- Thus $J_{t_0 \mapsto t_0+2\delta t} = J_{(t_0+\delta t) \mapsto (t_0+2\delta t)} \circ J_{t_0 \mapsto t_0+\delta t}$ also symplectic
- *M*_{t0→t1} constructed from a composition of symplectic *J* is also symplectic (i.e. *M* is a symplectic Map)

- For $\delta t \to 0$, $q \equiv (q_0, q_1)$, we find $q_i(t_0 + \delta t) = q_i(t_0) + \delta t \cdot \dot{q}_i$
- With (1) and $\Omega_{ik} = (\Omega)_{ik} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, this becomes $q(t_0 + \delta t) = q_i(t_0) + \delta t \cdot \Omega_{ik} \cdot \frac{\partial^2 H}{\partial q_j \partial q_k} \Big|_{t=t_0}$
- Jacobian of the Transformation $J_{ij} = \frac{\partial q_i(t_0 + \delta t)}{\partial q_j(t_0)} = \delta_{ij} + \delta t \cdot \Omega_{ik} \cdot \frac{\partial^2 H}{\partial q_j \partial q_k} \Big|_{t=t_0} \Rightarrow J = I + \delta t \cdot \Omega \cdot \tilde{H}$

Definition: Symplectic Transformation

- J as derived via (1) fulfills symplectivity condition
- Thus $J_{t_0 \mapsto t_0 + 2\delta t} = J_{(t_0 + \delta t) \mapsto (t_0 + 2\delta t)} \circ J_{t_0 \mapsto t_0 + \delta t}$ also symplectic
- *M*_{t0→t1} constructed from a composition of symplectic *J* is also symplectic (i.e. *M* is a symplectic Map)

- For $\delta t \to 0$, $q \equiv (q_0, q_1)$, we find $q_i(t_0 + \delta t) = q_i(t_0) + \delta t \cdot \dot{q}_i$
- With (1) and $\Omega_{ik} = (\Omega)_{ik} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, this becomes $q(t_0 + \delta t) = q_i(t_0) + \delta t \cdot \Omega_{ik} \cdot \frac{\partial^2 H}{\partial q_j \partial q_k} \Big|_{t=t_0}$
- Jacobian of the Transformation $J_{ij} = \frac{\partial q_i(t_0 + \delta t)}{\partial q_j(t_0)} = \delta_{ij} + \delta t \cdot \Omega_{ik} \cdot \frac{\partial^2 H}{\partial q_j \partial q_k} \Big|_{t=t_0} \Rightarrow J = I + \delta t \cdot \Omega \cdot \tilde{H}$

Definition: Symplectic Transformation

- J as derived via (1) fulfills symplectivity condition
- Thus $J_{t_0 \mapsto t_0+2\delta t} = J_{(t_0+\delta t) \mapsto (t_0+2\delta t)} \circ J_{t_0 \mapsto t_0+\delta t}$ also symplectic
- *M*_{t0→t1} constructed from a composition of symplectic *J* is also symplectic (i.e. *M* is a symplectic Map)

- For $\delta t \to 0$, $q \equiv (q_0, q_1)$, we find $q_i(t_0 + \delta t) = q_i(t_0) + \delta t \cdot \dot{q}_i$
- With (1) and $\Omega_{ik} = (\Omega)_{ik} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, this becomes $q(t_0 + \delta t) = q_i(t_0) + \delta t \cdot \Omega_{ik} \cdot \frac{\partial^2 H}{\partial q_j \partial q_k} \Big|_{t=t_0}$
- Jacobian of the Transformation $J_{ij} = \frac{\partial q_i(t_0 + \delta t)}{\partial q_j(t_0)} = \delta_{ij} + \delta t \cdot \Omega_{ik} \cdot \frac{\partial^2 H}{\partial q_j \partial q_k} \Big|_{t=t_0} \Rightarrow J = I + \delta t \cdot \Omega \cdot \tilde{H}$

Definition: Symplectic Transformation

- J as derived via (1) fulfills symplectivity condition
- Thus $J_{t_0\mapsto t_0+2\delta t} = J_{(t_0+\delta t)\mapsto (t_0+2\delta t)} \circ J_{t_0\mapsto t_0+\delta t}$ also symplectic
- *M*_{t0→t1} constructed from a composition of symplectic *J* is also symplectic (i.e. *M* is a symplectic Map)

- For $\delta t \to 0$, $q \equiv (q_0, q_1)$, we find $q_i(t_0 + \delta t) = q_i(t_0) + \delta t \cdot \dot{q}_i$
- With (1) and $\Omega_{ik} = (\Omega)_{ik} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, this becomes $q(t_0 + \delta t) = q_i(t_0) + \delta t \cdot \Omega_{ik} \cdot \frac{\partial^2 H}{\partial q_j \partial q_k} \Big|_{t=t_0}$
- Jacobian of the Transformation $J_{ij} = \frac{\partial q_i(t_0 + \delta t)}{\partial q_j(t_0)} = \delta_{ij} + \delta t \cdot \Omega_{ik} \cdot \frac{\partial^2 H}{\partial q_j \partial q_k} \Big|_{t=t_0} \Rightarrow J = I + \delta t \cdot \Omega \cdot \tilde{H}$

Definition: Symplectic Transformation

- J as derived via (1) fulfills symplectivity condition
- Thus $J_{t_0\mapsto t_0+2\delta t} = J_{(t_0+\delta t)\mapsto (t_0+2\delta t)} \circ J_{t_0\mapsto t_0+\delta t}$ also symplectic
- *M*_{t0→t1} constructed from a composition of symplectic *J* is also symplectic (i.e. *M* is a symplectic Map)

- J is symplectic ⇒ det(J) = ±1 Preservation of phase space volume (Liouville Theorem)
- Hamiltonian formalism allows algebraic transformation of independent variable from $t \longrightarrow s$ (i.e. distance from start of turn)
- \implies Allows to approximate the effect of "beam-elements" located at spatial position *s* with sequence of symplectic maps
- Composition of beam-element maps \rightarrow symplectic one-turn-map

- J is symplectic $\implies det(J) = \pm 1$ Preservation of phase space volume (Liouville Theorem)
- Hamiltonian formalism allows algebraic transformation of independent variable from $t \longrightarrow s$ (i.e. distance from start of turn)
- => Allows to approximate the effect of "beam-elements" located at spatial position *s* with sequence of symplectic maps
- Composition of beam-element maps \rightarrow symplectic one-turn-map

- J is symplectic $\implies det(J) = \pm 1$ Preservation of phase space volume (Liouville Theorem)
- Hamiltonian formalism allows algebraic transformation of independent variable from $t \longrightarrow s$ (i.e. distance from start of turn)
- \implies Allows to approximate the effect of "beam-elements" located at spatial position *s* with sequence of symplectic maps
- Composition of beam-element maps \rightarrow symplectic one-turn-map

- J is symplectic $\implies det(J) = \pm 1$ Preservation of phase space volume (Liouville Theorem)
- Hamiltonian formalism allows algebraic transformation of independent variable from $t \longrightarrow s$ (i.e. distance from start of turn)
- \implies Allows to approximate the effect of "beam-elements" located at spatial position *s* with sequence of symplectic maps
- Composition of beam-element maps \rightarrow symplectic one-turn-map

- J is symplectic ⇒ det(J) = ±1
 Preservation of phase space volume (Liouville Theorem)
- Hamiltonian formalism allows algebraic transformation of independent variable from $t \longrightarrow s$ (i.e. distance from start of turn)
- \implies Allows to approximate the effect of "beam-elements" located at spatial position *s* with sequence of symplectic maps
- Composition of beam-element maps \rightarrow symplectic one-turn-map
- Cyclic Motion

- J is symplectic ⇒ det(J) = ±1
 Preservation of phase space volume (Liouville Theorem)
- Hamiltonian formalism allows algebraic transformation of independent variable from $t \longrightarrow s$ (i.e. distance from start of turn)
- \implies Allows to approximate the effect of "beam-elements" located at spatial position *s* with sequence of symplectic maps
- Composition of beam-element maps \rightarrow symplectic one-turn-map
- Cyclic Motion

- J is symplectic ⇒ det(J) = ±1
 Preservation of phase space volume (Liouville Theorem)
- Hamiltonian formalism allows algebraic transformation of independent variable from $t \longrightarrow s$ (i.e. distance from start of turn)
- \implies Allows to approximate the effect of "beam-elements" located at spatial position *s* with sequence of symplectic maps
- Composition of beam-element maps \rightarrow symplectic one-turn-map
- Cyclic Motion

- J is symplectic ⇒ det(J) = ±1
 Preservation of phase space volume (Liouville Theorem)
- Hamiltonian formalism allows algebraic transformation of independent variable from $t \longrightarrow s$ (i.e. distance from start of turn)
- \implies Allows to approximate the effect of "beam-elements" located at spatial position *s* with sequence of symplectic maps
- Composition of beam-element maps \rightarrow symplectic one-turn-map
- Cyclic Motion \longrightarrow Closed Orbit

- J is symplectic ⇒ det(J) = ±1
 Preservation of phase space volume (Liouville Theorem)
- Hamiltonian formalism allows algebraic transformation of independent variable from $t \longrightarrow s$ (i.e. distance from start of turn)
- \implies Allows to approximate the effect of "beam-elements" located at spatial position *s* with sequence of symplectic maps
- Composition of beam-element maps \rightarrow symplectic one-turn-map
- Cyclic Motion → Closed Orbit (approximations/truncations → deviations; but: orbit still closed!)

• Accelerator ~ sequence of discrete beam-elements ("lattice")

- Tracking a particle over $N \ge 10^4 \dots 10^8$ turns \rightarrow numerically expensive & challenging (non-linear, on-setting chaos,...)
- If any two particles P_i and P_j $i \neq j \in [0, N_P)$ do not interact \rightarrow "single-particle tracking"

- Accelerator ~ sequence of discrete beam-elements ("lattice")
- Tracking a single particle over a lattice \implies sequential operation

- Tracking a particle over $N \ge 10^4 \dots 10^8$ turns \rightarrow numerically expensive & challenging (non-linear, on-setting chaos,...)
- If any two particles P_i and P_j $i \neq j \in [0, N_P)$ do not interact \rightarrow "single-particle tracking"

- Accelerator ~ sequence of discrete beam-elements ("lattice")
- Tracking a single particle over a lattice \implies sequential operation

- Tracking a particle over $N \ge 10^4 \dots 10^8$ turns \rightarrow numerically expensive & challenging (non-linear, on-setting chaos,...)
- If any two particles P_i and P_j $i \neq j \in [0, N_P)$ do not interact \rightarrow "single-particle tracking"

- Accelerator ~ sequence of discrete beam-elements ("lattice")
- Tracking a single particle over a lattice \implies sequential operation

- Tracking a particle over $N \ge 10^4 \dots 10^8$ turns \rightarrow numerically expensive & challenging (non-linear, on-setting chaos,...)
- If any two particles P_i and P_j $i \neq j \in [0, N_P)$ do not interact \rightarrow "single-particle tracking"

- Accelerator ~ sequence of discrete beam-elements ("lattice")
- Tracking a single particle over a lattice \implies sequential operation

- Tracking a particle over $N \ge 10^4 \dots 10^8$ turns \rightarrow numerically expensive & challenging (non-linear, on-setting chaos,...)
- If any two particles P_i and P_j $i \neq j \in [0, N_P)$ do not interact \rightarrow "single-particle tracking"
- Single-Particle Tracking $+ N_P >> 1 \longrightarrow$ "embarrassingly parallel problem" (data-parallelism)

SixTrackLib is a

- Parallel
- 2 Single-Particle
- 3 Symplectic Tracking
- 4 Library
- Re-implementation of the core functionality of SixTrack, focusing only on tracking
- Under development for > 2 years
- https://github.com/ SixTrack/sixtracklib

- Numerical accuracy, stability & reproducibility
- Wide range of supported hardware → multiple parallel backends
- Good scalability towards N_P >> 1 (parallel processors, GPUs)
- High code efficiency for $N_P \sim 1$ (CPU)
- Strict separation between "physics" and "business logic" code
- Single code base, bindings to multiple languages

SixTrackLib is a

- Parallel
- 2 Single-Particle
- 3 Symplectic Tracking
- 4 Library
- Re-implementation of the core functionality of SixTrack, focusing only on tracking
- Under development for > 2 years
- https://github.com/ SixTrack/sixtracklib

- Numerical accuracy, stability & reproducibility
- Wide range of supported hardware → multiple parallel backends
- Good scalability towards N_P >> 1 (parallel processors, GPUs)
- High code efficiency for $N_P \sim 1$ (CPU)
- Strict separation between "physics" and "business logic" code
- Single code base, bindings to multiple languages

SixTrackLib is a

- Parallel
- 2 Single-Particle
- 3 Symplectic Tracking
- 4 Library
- Re-implementation of the core functionality of SixTrack, focusing only on tracking
- Under development for > 2 years
- https://github.com/ SixTrack/sixtracklib

Requirements:

- Numerical accuracy, stability & reproducibility
- Wide range of supported hardware → multiple parallel backends
- Good scalability towards N_P >> 1 (parallel processors, GPUs)
- High code efficiency for $N_P \sim 1 \; ({
 m CPU})$
- Strict separation between "physics" and "business logic" code
- Single code base, bindings to multiple languages

SixTrackLib is a

- Parallel
- 2 Single-Particle
- 3 Symplectic Tracking
- 4 Library
- Re-implementation of the core functionality of SixTrack, focusing only on tracking
- Under development for > 2 years
- https://github.com/ SixTrack/sixtracklib

Requirements:

- Numerical accuracy, stability & reproducibility
- Wide range of supported hardware → multiple parallel backends
- Good scalability towards N_P >> 1 (parallel processors, GPUs)
- High code efficiency for $N_P \sim 1$ (CPU)
- Strict separation between "physics" and "business logic" code
- Single code base, bindings to multiple languages

SixTrackLib is a

- Parallel
- 2 Single-Particle
- 3 Symplectic Tracking
- 4 Library
- Re-implementation of the core functionality of SixTrack, focusing only on tracking
- Under development for > 2 years
- https://github.com/ SixTrack/sixtracklib

Requirements:

- Numerical accuracy, stability & reproducibility
- Wide range of supported hardware → multiple parallel backends
- Good scalability towards N_P >> 1 (parallel processors, GPUs)
- High code efficiency for $N_P \sim 1 \; ({
 m CPU})$
- Strict separation between "physics" and "business logic" code
- Single code base, bindings to multiple languages

Implementation, Design & Basic Usage

6 Main Degrees Of Freedom

•
$$p_x = P_x/P_0$$
, $p_y = P_y/P_0$ [rad]

•
$$\zeta = \beta \cdot (s/\beta_0 - c \cdot t)$$
 [m]

•
$$\delta = (P - P_0)/P_0$$

6 Main Degrees Of Freedom

• x, y [m]

•
$$p_x = P_x/P_0$$
, $p_y = P_y/P_0$ [rad]

•
$$\zeta = \beta \cdot (s/\beta_0 - c \cdot t)$$
 [m]

•
$$\delta = (P - P_0)/P_0$$

6 Main Degrees Of Freedom

•
$$p_x = P_x / P_0$$
, $p_y = P_y / P_0$ [rad]

•
$$\zeta = \beta \cdot (s/\beta_0 - c \cdot t)$$
 [m]

•
$$\delta = (P - P_0)/P_0$$

4 Logical Coordinates

- particle_id
- at_element
- at_turn
- state

$$(0 == lost, 1 == active)$$

$\vec{Q}(x, y, s, t)$ $\hat{y}(s)$ $\hat{x}(s)$ particle trajectory	6 Main Degrees Of Freedom		
reference particle trajectory \hat{X}	• x, y [m] • $p_x = P_x/P_0$, $p_y = P_y/P_0$ [rad] • $\zeta = \beta \cdot (s/\beta_0 - c \cdot t)$ [m] • $\delta = (P - P_0)/P_0$		
4 Logical Coordinates	6 Auxiliary Attributes		
• particle_id	• <i>s</i> [m]		
• at_element	• $p_{\sigma} = (E - E_0)/(\beta_0 \cdot P_0 \cdot c)$		
• at_turn	• $r_{pp} = P_0/P$, $r_{vv} = \beta/\beta_0$		
• state	• charge_ratio $= q/q_0$		
(0 == lost, 1 == active)	• $\gamma = (a/a0)/(m/m_{o})$		

Additionally, we have

- charge q_0 ($[q_0] = 1$ proton charge)
- mass $m_0 \ ([m_0] = 1 eV/c^2$
- $\beta_0 = v_0/c$
- $\gamma_0 = (1 \beta_0^2)^{-1/2}$
- $pOc = (P_0 \cdot c) [pOc] = eV$
- In total: **21** attributes (\sim 168 Bytes/particle)
- Store N_p particles in one structure: struct-of-arrays
- \implies replicate q_0 , m_0 , β_0 , γ_0 , p0c for all N_p particles! Why?
 - Consistency: tracking is asynchronous and can update ref.
 - Performance: vectorisation, burstable loads
 - Flexibility: allow different ref. parameters per particle

Additionally, we have

- charge q_0 ([q_0] = 1 proton charge)
- mass $m_0 \; ([m_0] = 1 eV/c^2$
- $\beta_0 = v_0/c$
- $\gamma_0 = (1 \beta_0^2)^{-1/2}$
- $pOc = (P_0 \cdot c) [pOc] = eV$
- In total: **21** attributes (\sim 168 Bytes/particle)
- Store N_p particles in one structure: struct-of-arrays
- \implies replicate q_0 , m_0 , β_0 , γ_0 , p0c for all N_p particles! Why?
 - Consistency: tracking is asynchronous and can update ref.
 - 2 Performance: vectorisation, burstable loads
 - Flexibility: allow different ref. parameters per particle

Additionally, we have

- charge q_0 ([q_0] = 1 proton charge)
- mass $m_0 \; ([m_0] = 1 eV/c^2$
- $\beta_0 = v_0/c$
- $\gamma_0 = (1 \beta_0^2)^{-1/2}$
- $pOc = (P_0 \cdot c) [pOc] = eV$
- In total: 21 attributes (\sim 168 Bytes/particle)
- Store N_p particles in one structure: struct-of-arrays
- \implies replicate q_0 , m_0 , β_0 , γ_0 , p0c for all N_p particles! Why?
 - Consistency: tracking is asynchronous and can update ref.
 - Performance: vectorisation, burstable loads
 - Flexibility: allow different ref. parameters per particle

Additionally, we have

5 Attributes Describing The Reference Particle "0"

- charge q_0 ([q_0] = 1 proton charge)
- mass $m_0 \; ([m_0] = 1 eV/c^2$
- $\beta_0 = v_0/c$
- $\gamma_0 = (1 \beta_0^2)^{-1/2}$
- $pOc = (P_0 \cdot c) [pOc] = eV$
- In total: 21 attributes (\sim 168 Bytes/particle)
- Store N_p particles in one structure: struct-of-arrays
- \implies replicate q_0 , m_0 , β_0 , γ_0 , p0c for all N_p particles! Why?

Consistency: tracking is asynchronous and can update ref.

- Performance: vectorisation, burstable loads
- S Flexibility: allow different ref. parameters per particle

Additionally, we have

- charge q_0 ([q_0] = 1 proton charge)
- mass $m_0 \; ([m_0] = 1 eV/c^2$
- $\beta_0 = v_0/c$
- $\gamma_0 = (1 \beta_0^2)^{-1/2}$
- $pOc = (P_0 \cdot c) [pOc] = eV$
- In total: 21 attributes (\sim 168 Bytes/particle)
- Store N_p particles in one structure: struct-of-arrays
- \implies replicate q_0 , m_0 , β_0 , γ_0 , p0c for all N_p particles! Why?
 - 1 Consistency: tracking is asynchronous and can update ref.
 - 2 Performance: vectorisation, burstable loads
 - **3** Flexibility: allow different ref. parameters per particle

Lattice & Beam Elements

In General: Similar to SixTrack

- Drift, DriftExact
- Multipole (incl. Dipoles, Quadrupoles, Sextupoles, etc.)
- Cavity
- RFMultipole
- XYShift: transversal shift
- SRotation: rotation in the transversal plane
- DipoleEdge
- BeamMonitor: programmable dump of particle state
- BeamBeam4D, BeamBeam6D
- SpaceChargeCoasting, SpaceChargeBunched¹
- LimitRect, LimitEllipse, LimitRectEllipse: aperture checks

 1 , SpaceChargeBunched ightarrow SpaceChargeQGaussian

Lattice & Beam Elements II

There are different approaches to build a new or import an existing lattice for SixTrackLib:

- 1 Build manually, element by element
- 2 Import from pysixtrack
- 3 Import from MAD-X (via pysixtrack and cpymad)
- Import from SixTrack (via pysixtrack and sixtracktools)
- 6 Load from binary dump

Related Python-Centric Projects Under the SixTrack Umbrella:

- pysixtrack: https://github.com/SixTrack/pysixtrack
- sixtracktools: https://github.com/SixTrack/sixtracktools
- cobjects: https://github.com/SixTrack/cobjects

Cf. accompanying jupyter notebook + data samples!

Example: Simple Tracking Example

```
import sixtracklib as st
import numpy as np
# Create an initial particle distribution:
beam = st.ParticlesSet()
p = beam.Particles(num particles=10, p0c=6.5e12)
p.x[:] = np.linspace(-le-6, +le-6, p.num particles)
# Load the lattice containing all the beam-elements in sequence from a prepared file
lattice = st.Elements().fromfile("./lhc no bb lattice.bin")
# Most users will only interact with the so called "Track Job"
# Setup an instance:
job = st.TrackJob( lattice, beam )
# Track *until* all active particles arrive in turn 100
job.track until( 100 )
# Actively mark a specific particle as lost
p.state[0] = 0 # 0 == lost, 1 == active
# Track *until* all active particles arrive in turn 200
job.track until( 200 )
# Print the result to verifiy the success of the operation
if p.num particles <= 16:</pre>
   print( f"at element after tracking for 200 turns: {p.at element}" )
   print( f"at_turn after tracking for 200 turns: {p.at_turn}" )
   print( f"state after tracking for 200 turns: {p.state}" )
   print( f"x after tracking for 200 turns; {p.x}")
at element after tracking for 200 turns: [0 0 0 0 0 0 0 0 0 0]
after tracking for 200 turns: [0 1 1 1 1 1 1 1 1]
state
          after tracking for 200 turns: [-9.99845051e-07 -7.77491911e-07 -5.55303462e-07 -3.33123094e-07
х
 -1.10949224e-07 1.11219787e-07 3.33385573e-07 5.55549726e-07
  7.77713872e-07 9.99879665e-071
```

Martin Schwinzerl

Modes & Logistics Of Tracking

2 track_elem_by_elem Mode:

Track all active particles
until they reach at_turn N
job.track_until(N)

Like track_until(), but dump (i.e. copy) the particle state to an external buffer before each beam-element job.track_elem_by_elem(N)

3 track_line Mode:

Track over subset of lattice [begin, end) job.track_line(begin, end,

end_turn=False)

Using SixTrackLib On A GPU

	C 1		
Martin	Sch	winz	erl

Martin	Schwinz	rerl
en enn	00000	

		C 1		
IVIa	rtin	Sch	าพเทร	rer

Example: Tracking Code Working On CPUs & GPUs (With Minimal Changes)

```
beam = st.ParticlesSet()
p = beam.Particles(num particles=10, p0c=6.5e12)
p.x[:] = np.linspace(-le-6, +le-6, p.num particles)
lattice = st.Elements().fromfile("./lhc no bb lattice.bin")
#device=None # Or:
device="opencl:0.0" #for GPU
iob = st.TrackJob( lattice. beam. device=device )
print( f"Architecture of the track job: {job.arch str}")
iob.track until( 100 )
job.collect particles()
p.state[0] = 0 # Mark particle 0 explicitly as lost
job.push particles()
iob.track until( 200 )
job.collect particles()
if p.num particles <= 16:</pre>
   print( f"at element after 200 turns : {p.at element}" )
   print(f"at turn after 200 turns : {p.at turn}")
    print( f"state
                       after 200 turns : {p.state}" )
Architecture of the track job: opencl
```

at_element after 200 turns : [0 0 0 0 0 0 0 0 0 0] at_turn after 200 turns : [100 200 200 200 200 200 200 200 200 200] state after 200 turns : [0 1 1 1 1 1 1 1 1]

Quantifying Parallel Performance

Performance CPU TrackJob)

 $(\textbf{Remember}: \ single-particle \ tracking, \ "embarrassingly" \ parallel \ program)$

- Sequential portion of the run-time t_s
 - Data-dependent branching in kernels (SPMD/SIMD) \rightarrow renders data-dependent code-paths sequential
 - Limited bandwidth and finite latency in collect_* and push_* calls
 - Latency in starting kernels / waiting until kernel execution is finished
- Individual threads can not be scheduled on GPUs code execution in multiples of warp / wavefront sizes (32/64 threads)
- Limited Available Resources (Registers, Shared Memory, etc.) \longrightarrow number of threads that can be executed / scheduled concurrently is reduced
- Reduced number of warps/wavefronts in flight \rightarrow less opportunity to mitigate I/O blocks and other latency issues by switching from a stalled to a warp/wavefront that can be executed \rightarrow again, t_s increases

- Sequential portion of the run-time t_s
 - Data-dependent branching in kernels (SPMD/SIMD) \rightarrow renders data-dependent code-paths sequential
 - Limited bandwidth and finite latency in collect_* and push_* calls
 - Latency in starting kernels / waiting until kernel execution is finished
- Individual threads can not be scheduled on GPUs code execution in multiples of warp / wavefront sizes (32/64 threads)
- Limited Available Resources (Registers, Shared Memory, etc.) \longrightarrow number of threads that can be executed / scheduled concurrently is reduced
- Reduced number of warps/wavefronts in flight \rightarrow less opportunity to mitigate I/O blocks and other latency issues by switching from a stalled to a warp/wavefront that can be executed \rightarrow again, t_s increases

- Sequential portion of the run-time t_s
 - Data-dependent branching in kernels (SPMD/SIMD) \rightarrow renders data-dependent code-paths sequential
 - Limited bandwidth and finite latency in collect_* and push_* calls
 - Latency in starting kernels / waiting until kernel execution is finished
- Individual threads can not be scheduled on GPUs code execution in multiples of warp / wavefront sizes (32/64 threads)
- Limited Available Resources (Registers, Shared Memory, etc.) \longrightarrow number of threads that can be executed / scheduled concurrently is reduced
- Reduced number of warps/wavefronts in flight \rightarrow less opportunity to mitigate I/O blocks and other latency issues by switching from a stalled to a warp/wavefront that can be executed \rightarrow again, t_s increases

- Sequential portion of the run-time t_s
 - Data-dependent branching in kernels (SPMD/SIMD) \rightarrow renders data-dependent code-paths sequential
 - Limited bandwidth and finite latency in collect_* and push_* calls
 - Latency in starting kernels / waiting until kernel execution is finished
- Individual threads can not be scheduled on GPUs code execution in multiples of warp / wavefront sizes (32/64 threads)
- Limited Available Resources (Registers, Shared Memory, etc.) \longrightarrow number of threads that can be executed / scheduled concurrently is reduced
- Reduced number of warps/wavefronts in flight \rightarrow less opportunity to mitigate I/O blocks and other latency issues by switching from a stalled to a warp/wavefront that can be executed \rightarrow again, t_s increases

- Sequential portion of the run-time t_s
 - Data-dependent branching in kernels (SPMD/SIMD) \rightarrow renders data-dependent code-paths sequential
 - Limited bandwidth and finite latency in collect_* and push_* calls
 - $\bullet\,$ Latency in starting kernels / waiting until kernel execution is finished
- Individual threads can not be scheduled on GPUs code execution in multiples of warp / wavefront sizes (32/64 threads)
- Limited Available Resources (Registers, Shared Memory, etc.) \longrightarrow number of threads that can be executed / scheduled concurrently is reduced
- Reduced number of warps/wavefronts in flight \rightarrow less opportunity to mitigate I/O blocks and other latency issues by switching from a stalled to a warp/wavefront that can be executed \rightarrow again, t_s increases

- Sequential portion of the run-time t_s
 - Data-dependent branching in kernels (SPMD/SIMD) \rightarrow renders data-dependent code-paths sequential
 - Limited bandwidth and finite latency in collect_* and push_* calls
 - Latency in starting kernels / waiting until kernel execution is finished
- Individual threads can not be scheduled on GPUs code execution in multiples of warp / wavefront sizes (32/64 threads)
- Limited Available Resources (Registers, Shared Memory, etc.) \longrightarrow number of threads that can be executed / scheduled concurrently is reduced
- Reduced number of warps/wavefronts in flight \rightarrow less opportunity to mitigate I/O blocks and other latency issues by switching from a stalled to a warp/wavefront that can be executed \rightarrow again, t_s increases

- Sequential portion of the run-time t_s
 - Data-dependent branching in kernels (SPMD/SIMD) \rightarrow renders data-dependent code-paths sequential
 - Limited bandwidth and finite latency in collect_* and push_* calls
 - Latency in starting kernels / waiting until kernel execution is finished
- Individual threads can not be scheduled on GPUs code execution in multiples of warp / wavefront sizes (32/64 threads)
- Limited Available Resources (Registers, Shared Memory, etc.) \longrightarrow number of threads that can be executed / scheduled concurrently is reduced
- Reduced number of warps/wavefronts in flight \rightarrow less opportunity to mitigate I/O blocks and other latency issues by switching from a stalled to a warp/wavefront that can be executed \rightarrow again, t_s increases

Performance Parallel Environment (GPUs & CPUs))

Performance Parallel Environment (GPUs & CPUs))

Using and Extending SixTrackLib: Real-World Scenarios
- 1 Use track_*, collect_*, push_* API (C, C++, Python)
- ② Compile And Launch Custom Kernel via SixTrackLib Infrastructure + use track_line to hand-off/take over from the custom kernel(Currently only OpenCL, C99; CUDA with NVRTC possible)
- Share particles state "in-place" with other applications (zero-copy) together with track_line (Currently only CUDA, C++ or Python)
- Implement the required functionality (e.g. "beam-elements") into SixTrackLib (C99, C++, Python)
- Directly include C99 header-only subset of SixTrackLib into application kernel or link application against C99 or C++ API of SixTrackLib (C99 + Most Other Languages)

- 1 Use track_*, collect_*, push_* API (C, C++, Python)
- ② Compile And Launch Custom Kernel via SixTrackLib Infrastructure + use track_line to hand-off/take over from the custom kernel(Currently only OpenCL, C99; CUDA with NVRTC possible)
- Share particles state "in-place" with other applications (zero-copy) together with track_line (Currently only CUDA, C++ or Python)
- Implement the required functionality (e.g. "beam-elements") into SixTrackLib (C99, C++, Python)
- Directly include C99 header-only subset of SixTrackLib into application kernel or link application against C99 or C++ API of SixTrackLib (C99 + Most Other Languages)

- 1 Use track_*, collect_*, push_* API (C, C++, Python)
- ② Compile And Launch Custom Kernel via SixTrackLib Infrastructure + use track_line to hand-off/take over from the custom kernel(Currently only OpenCL, C99; CUDA with NVRTC possible)
- Share particles state "in-place" with other applications (zero-copy) together with track_line (Currently only CUDA, C++ or Python)
- Implement the required functionality (e.g. "beam-elements") into SixTrackLib (C99, C++, Python)
- Directly include C99 header-only subset of SixTrackLib into application kernel or link application against C99 or C++ API of SixTrackLib (C99 + Most Other Languages)

- Use track_*, collect_*, push_* API (C, C++, Python)
- ② Compile And Launch Custom Kernel via SixTrackLib Infrastructure + use track_line to hand-off/take over from the custom kernel(Currently only OpenCL, C99; CUDA with NVRTC possible)
- Share particles state "in-place" with other applications (zero-copy) together with track_line (Currently only CUDA, C++ or Python)
- Implement the required functionality (e.g. "beam-elements") into SixTrackLib (C99, C++, Python)
- O Directly include C99 header-only subset of SixTrackLib into application kernel or link application against C99 or C++ API of SixTrackLib (C99 + Most Other Languages)

- Use track_*, collect_*, push_* API (C, C++, Python)
- ② Compile And Launch Custom Kernel via SixTrackLib Infrastructure + use track_line to hand-off/take over from the custom kernel(Currently only OpenCL, C99; CUDA with NVRTC possible)
- Share particles state "in-place" with other applications (zero-copy) together with track_line (Currently only CUDA, C++ or Python)
- Implement the required functionality (e.g. "beam-elements") into SixTrackLib (C99, C++, Python)
- Directly include C99 header-only subset of SixTrackLib into application kernel or link application against C99 or C++ API of SixTrackLib (C99 + Most Other Languages)

A Selection Of Usage Examples

- Dynamic Aperture (DA), Beam-Stability, Resonances
 Carlo Emilio Montanari (Università di Bologna), Massimo Giovannozzi
- 2 Symplectic Kicks From An Electron Cloud Konstantinos Paraschou (AUTH,CERN), Giovanni Iadarola, et al
- Simulating Beam-Beam Interactions & Space-Charge Effects Hannes Bartosik, Giovanni Iadarola, et al
- Integrating SixTrackLib with PyHEADTAIL Adrian Oeftiger (GSI/FAIR)

- Study uses SixTrackLib directly to perform tracking for N turns
- Performs analysis and evaluation between turns on the host
- "Simple" use case no extension and customisation was required

Figure: Sampling stable region via radial scans over N_{turns}

 Visualising 4D space (r, α, Θ₁, Θ₂ is challenging - SixTrackLib helps with creating interactive views by being embeddable into parameterised visualisations

Figure: Evolution of r over α for a given Θ_1, Θ_2 slice over N_{turns}

2D binning (128 × 128) over the (θ_1 , θ_2) space of a particle tracked for 10000 turns.

Figure: Histogram and average measured r over 1, Θ_2 plane in dependence of initial value for α

2D binning (128 × 128) over the (θ_1 , θ_2) space of a particle tracked for 10000 turns.

Figure: Histogram and average measured r over 1, Θ_2 plane in dependence of initial value for α

2 Symplectic Kicks From An Electron Cloud

For various reasons and under certain conditions (fulfilled in the LHC), there exists a complex distribution of electrons within the vacuum chamber that interacts with the beam called **"Electron Cloud"**.

Distribution strongly depends on x, y and time! (as bunch passes through the electron cloud)

0.0

-ct [m]

Example PyECLOUD simulation:

Particles with an amplitude of 1 beam- σ oscillate within the black line

0.2

Under usual approximations⁰ the interaction can be written as a thin-lens through the Hamiltonian: qL

$$H(x, y, \tau; s) = \frac{qL}{\beta_0 P_0 c} \phi(x, y, \tau) \delta(s)$$

-0.2

where ϕ is the scalar potential describing the electron cloud.

⁰see G. ladarola, CERN-ACC-NOTE-2019-0033.

2 Symplectic Kicks From An Electron Cloud

- PyECLOUD would produce ϕ on a discrete grid (x, y, time) $\rightarrow \phi$ should be **interpolated**
- To study slow effects, interpolation should produce symplectic kicks \rightarrow Tricubic Interpolation: $\phi(x, y, \tau) = \sum_{i,j,k=0}^{3} a_{ijk} x^{i} y^{j} \tau^{k}$
- Add custom beam-element TriCub to implement the map
- N^3 coefficients with typically $N \sim O(10^2)$ per TriCub element $\Rightarrow O(10^3)$ MByte of data for each TriCub
- But: interpolation data can be shared between many beam-elements (e.g. All focusing quadrupole magnets have similar Electron Cloud)
- Idea: implement infrastructure to store data externally from TriCub elements and assign & share coefficient data

2 Symplectic Kicks From An Electron Cloud

- In principle, TriCub element general enough to describe any interaction whose Hamiltonian can be discretized on a grid of (x,y, \(\tau\))
- GPUs: large global memory (4-16 GByte), adequate memory bandwidth \rightarrow perfect environment for simulations with TriCub beam-elements.

3 Beam-Beam Interactions & Space-Charge Effects

- SixTrackLib implements 4D and 6D beam-beam (BB) interactions using a weak-strong beam formulation²
- Frozen Space-Charge (SC) beam-elements share infrastructure with the BB implementation
 - Coasting SpaceChargeCoasting
 - Bunched SpaceChargeQGaussianProfile
 - Bunched SpaceChargeInterpolatedProfile using linear and cubic spline longitudinal interpolation (under development)
- SpaceChargeInterpolatedProfile uses API to assign external data to a number of beam-elements to share profile samples and interpolation parameters between SC elements

 $^{^2 {\}rm G.}$ ladarola et al. CERN-ACC-NOTE-2018-0023 $^{\prime\prime} {\rm 6D}$ beam-beam interaction step-by-step

Observations from CERN SPS experiment

· Benchmark experiment

- Horizontal 3rd order resonance at Qx = 20.33 deliberately excited
- Additional resonance observed at Qx = 20.40 (space charge driven)

²H. Bartosik, F. Schmidt "Studies on Tune Ripple", 4th ICFA Mini-Workshop on SpaceCharge 2019, https://indico.cern.ch/event/828559/contributions/3528378

Martin Schwinzerl

Observations from CERN SPS experiment

Benchmark experiment

- Horizontal 3rd order resonance at Qx = 20.33 deliberately excited
- Additional resonance observed at Qx = 20.40 (space charge driven)
- Simulations with frozen potential far from experiment unless SPS tune ripple from quadrupole power converters is taken into account

After each turn: collect, update quadrupoles, push!

²H. Bartosik, F. Schmidt "Studies on Tune Ripple", 4th ICFA Mini-Workshop on SpaceCharge 2019, https://indico.cern.ch/event/828559/contributions/3528378

Martin Schwinzerl

Beyond the single-particle treatment within SixTrackLib, model collective effects as "true" interaction between macro-particles via PyHEADTAIL³:

- accelerated on the GPU via (Py)CUDA
- self-consistent models for (e.g. 3D PIC/particle-in-cell) space charge, wake fields and feedback systems

Figure: PIC space charge

Figure: wake fields

³https://github.com/PyCOMPLETE/PyHEADTAIL

Martin	Sch	winz	er
en enn	000		

Share particle memory between SixTrackLib and PyHEADTAIL:

- use SixTrackLib's track_line API to advance particles through parts of accelerator lattice
- expose particle coordinates on GPU via SixTrackLib's get_particle_addresses interface to apply kick in PyHEADTAIL
- ⇒ alternating single- and multi-particle physics while *remaining* on GPU device memory!

Share particle memory between SixTrackLib and PyHEADTAIL:

- use SixTrackLib's track_line API to advance particles through parts of accelerator lattice
- expose particle coordinates on GPU via SixTrackLib's get_particle_addresses interface to apply kick in PyHEADTAIL
- ⇒ alternating single- and multi-particle physics while *remaining* on GPU device memory!

Icons: https://openclipart.org - License: Public Domain

Icons: https://openclipart.org - License: Public Domain

Icons: https://openclipart.org - License: Public Domain

- CUDA: Memory is managed via raw pointers \rightarrow works
- But: Resource Management, Lifetime Management, Context & Device Selection → very difficile
- OpenCL: memory is managed via cl_mem Objects \rightarrow more challenging
- Idea: Use OpenCL 2.x feature SVM \rightarrow pointers again
- We are working on a proof of concept implementation for OpenCL

Icons: https://openclipart.org - License: Public Domain

- CUDA: Memory is managed via raw pointers \rightarrow works
- But: Resource Management, Lifetime Management, Context & Device Selection → very difficile
- OpenCL: memory is managed via cl_mem Objects \rightarrow more challenging
- Idea: Use OpenCL 2.x feature SVM \rightarrow pointers again
- We are working on a proof of concept implementation for OpenCL

Icons: https://openclipart.org - License: Public Domain

- CUDA: Memory is managed via raw pointers \rightarrow works
- But: Resource Management, Lifetime Management, Context & Device Selection → very difficile
- OpenCL: memory is managed via cl_mem Objects \rightarrow more challenging
- Idea: Use OpenCL 2.x feature SVM \rightarrow pointers again
- We are working on a proof of concept implementation for OpenCL

Icons: https://openclipart.org - License: Public Domain

- CUDA: Memory is managed via raw pointers \rightarrow works
- But: Resource Management, Lifetime Management, Context & Device Selection \rightarrow very difficile
- OpenCL: memory is managed via cl_mem Objects \rightarrow more challenging
- Idea: Use OpenCL 2.x feature SVM \rightarrow pointers again
- We are working on a proof of concept implementation for OpenCL

Space Charge Model Benchmarking

Comparison between realistic (computationally demanding) PIC and approximative frozen (fast) space charge models for half-integer stop-band:

Figure: ICFA Beam Dynamics Newsletter #79, SIS100 contribution

 \Rightarrow choose from variety of space charge models for identical lattice

Applications of SixTrackLib + PyHEADTAIL

90 deg stop-band

Interplay of coherent vs. incoherent resonances driven by space charge

Figure: running 3D PIC in FODO

FAIR synchrotron SIS100

Beam loss studies with space charge and nonlinear magnet imperfections

Applications of SixTrackLib + PyHEADTAIL

90 deg stop-band

Interplay of coherent vs. incoherent resonances driven by space charge

FAIR synchrotron SIS100

Beam loss studies with space charge and nonlinear magnet imperfections

Martin Schwinzerl

Applications of SixTrackLib + PyHEADTAIL

90 deg stop-band

Interplay of coherent vs. incoherent resonances driven by space charge

FAIR synchrotron SIS100

Beam loss studies with space charge and nonlinear magnet imperfections

Martin Schwinzerl

- Delivering scalable single-particle tracking on massively parallel systems to users without GPU programming Know-How is possible :-)
- Retaining symplectivity is crucial for studying effects over N >> 1 turns
- SixTrackLib is still under heavy development but already useful in controlled settings with early adopters
- Still a lot of work to do, especially concerning optimisation and numerical stability & reproducibility

- Delivering scalable single-particle tracking on massively parallel systems to users without GPU programming Know-How is possible :-)
- Retaining symplectivity is crucial for studying effects over N >> 1 turns
- SixTrackLib is still under heavy development but already useful in controlled settings with early adopters
- Still a lot of work to do, especially concerning optimisation and numerical stability & reproducibility

- Delivering scalable single-particle tracking on massively parallel systems to users without GPU programming Know-How is possible :-)
- Retaining symplectivity is crucial for studying effects over N >> 1 turns
- SixTrackLib is still under heavy development but already useful in controlled settings with early adopters
- Still a lot of work to do, especially concerning optimisation and numerical stability & reproducibility

- Delivering scalable single-particle tracking on massively parallel systems to users without GPU programming Know-How is possible :-)
- Retaining symplectivity is crucial for studying effects over N >> 1 turns
- SixTrackLib is still under heavy development but already useful in controlled settings with early adopters
- Still a lot of work to do, especially concerning optimisation and numerical stability & reproducibility

Thank You For Your Attention!
Extra Slides

2 Symplectic Kicks From An Electron Cloud

278 /* From be_tricub/be_tricub.h */	54 /* From be_tricub/track.h */
279 280 typedef struct NS(TriCub)	55 56 SIXTRL INLINE NS(track status t) NS(Track particle tricub)(
281 🔻 {	57 SIXTRL_PARTICLE_ARGPTR_DEC NS(Particles)* SIXTRL_RESTRICT particles,
282 NS(be_tricub_real_t) x_shift SIXTRL_ALIGN(8);	58 NS(particle_num_elements_t) const ii, 50 SIXTOL BE ADGOID DEC const struct NS(TriCub) teanst SIXTOL DESTRICT tricub.)
284 NS(be_tricub_real_t) tau shift SIXTRL_ALIGN(8);	60 V {
<pre>285 NS(be_tricub_real_t) dipolar_kick_px SIXTRL_ALIGN(8);</pre>	<pre>61 typedef NS(be_tricub_real_t) real_t;</pre>
<pre>286 NS(be_tricub_real_t) dipolar_kick_py SIXTRL_ALIGN(8);</pre>	<pre>62 typedef NS(be_tricub_int_t) int_t;</pre>
287 NS(be_tricub_real_t) dipolar_kick_ptau_Six(RL_ALIGN(8);	03
289 NS(buffer_addr_t) data_addr SIXTRL_ALIGN(8);	65 NS(TriCub const data)(tricub):
290 }	00
291 NS(Tricub); "POINTER" TO EXTERNAL IFICUDDATA	<pre>67 real_t const length = NS(TriCub_length)(tricub);</pre>
292	<pre>08 08 const x shift = NS(TriCub x shift)(tricub);</pre>
	79 real t const v shift = NS(TriCub v shift)(tricub):
	<pre>71 real_t const z_shift = NS(TriCub_tau_shift)(tricub);</pre>
	72
	// method = 1 -> Finite Differences for derivatives (Do not use)
33 typedef struct NS(TriCubData)	75 // method = 3 -> Exact derivatives and mirrored in X, Y
34 🔻 {	76
35 NS(be_tricub_real_t) x0 SIXIRL_ALIGN(8);	<pre>77 real_t const inv_dx = 1./(NS(TriCubData_dx)(tricub_data));</pre>
37 NS(betricub int t) ox SIXTRI ALIGN(8):	<pre>78 real_t const inv_dy = 1./(NS(TriCubData_dy)(tricub_data));</pre>
38	
39 NS(be_tricub_real_t) y0 SIXTRL_ALIGN(8);	<pre>e1 real_t const x0 = NS(TriCubData_x0)(tricub_data);</pre>
40 NS(be_tricub_real_t) dy SIXTRL_ALIGN(8);	<pre>e2 real_t const y0 = NS(TriCubData_y0)(tricub_data);</pre>
47	<pre>real_t const z0 = NS(TriCubData_z0)(tricub_data);</pre>
43 NS(be_tricub_real_t) z0 SIXTRL_ALIGN(8);	<pre>85 real t const zeta = NS(Particles get zeta value)(particles, ii):</pre>
44 NS(be_tricub_real_t) dz SIXTRL_ALIGN(8);	<pre>86 real_t const rvv = NS(Particles_get_rvv_value)(particles, ii);</pre>
<pre>45 NS(be_tricub_int_t) nz SIXTRL_ALIGN(8);</pre>	<pre>87 real_t const beta0 = NS(Particles_get_beta0_value)(particles, ii);</pre>
47 NS(be tricub int t) mirror x SIXTRL ALIGN(8):	88
48 NS(be_tricub_int_t) mirror_y SIXTRL_ALIGN(8);	
<pre>49 NS(be_tricub_int_t) mirror_z SIXTRL_ALIGN(8);</pre>	 Implemented in external branch knarasch master
	implemented in external branch (paraberi_indote)
52 }	https://github.com/martinschwinzerl/sixtracklib/tree/kparasch_master
53 NS(TriCubData): "Pointer" managed by CObjects Buffer	
54 → tricubic coefficients stored in	 To be merged into SixTrack/sixtracklib:master (PR#123)
lineasie coefficients stored in	· · · · · · · · · · · · · · · · · · ·
linear array	

Impact of Kernel Complexity On Parallel Performance))

Impact of Kernel Complexity On Parallel Performance

 Calculation of field components (according to a Gaussian distribution) and the complex error function (Faddeeva function) is shared between BB and SC elements

