
Martin Schwinzerl SixTrackLib June 19th 2020 1 / 45

Goals

• Introduce single-particle tracking, symplectic tracking and
SixTrackLibs approach to data-parallelism

• Explain & motivate design decisions for SixTrackLib

• Provide a minimal API demonstration (Cf. accompanying
jupyter-notebook)

• Give overview about the preliminary performance figures

• Showcase examples of real-world applications

Martin Schwinzerl SixTrackLib June 19th 2020 2 / 45

Goals

• Introduce single-particle tracking, symplectic tracking and
SixTrackLibs approach to data-parallelism

• Explain & motivate design decisions for SixTrackLib

• Provide a minimal API demonstration (Cf. accompanying
jupyter-notebook)

• Give overview about the preliminary performance figures

• Showcase examples of real-world applications

Martin Schwinzerl SixTrackLib June 19th 2020 2 / 45

Goals

• Introduce single-particle tracking, symplectic tracking and
SixTrackLibs approach to data-parallelism

• Explain & motivate design decisions for SixTrackLib

• Provide a minimal API demonstration (Cf. accompanying
jupyter-notebook)

• Give overview about the preliminary performance figures

• Showcase examples of real-world applications

Martin Schwinzerl SixTrackLib June 19th 2020 2 / 45

Goals

• Introduce single-particle tracking, symplectic tracking and
SixTrackLibs approach to data-parallelism

• Explain & motivate design decisions for SixTrackLib

• Provide a minimal API demonstration (Cf. accompanying
jupyter-notebook)

• Give overview about the preliminary performance figures

• Showcase examples of real-world applications

Martin Schwinzerl SixTrackLib June 19th 2020 2 / 45

Goals

• Introduce single-particle tracking, symplectic tracking and
SixTrackLibs approach to data-parallelism

• Explain & motivate design decisions for SixTrackLib

• Provide a minimal API demonstration (Cf. accompanying
jupyter-notebook)

• Give overview about the preliminary performance figures

• Showcase examples of real-world applications

Martin Schwinzerl SixTrackLib June 19th 2020 2 / 45

Introduction

Martin Schwinzerl SixTrackLib June 19th 2020 3 / 45

Hamiltonian Formulation

• q ≡ (x , p) conjugate coordinates

• for given start- and end-points in
phase-space q(t0) and q(t1) and

• S :=
∫ t1
t0

dt [p · ẋ − H (x , p, t)],

• find expressions for q so that δS → 0
• We define a (Transfer) Map as a transformation that has the same

effect as integrating q̇i from t0 7→ t1, i.e. q(t1) = Mt0 7→t1 (q(t0))

Martin Schwinzerl SixTrackLib June 19th 2020 4 / 45

Hamiltonian Formulation

• q ≡ (x , p) conjugate coordinates

• for given start- and end-points in
phase-space q(t0) and q(t1) and

• S :=
∫ t1
t0

dt [p · ẋ − H (x , p, t)],

• find expressions for q so that δS → 0

Hamilton Equations of Motion, Transfer Maps

It can be shown, that if x , p, H, and t obey the equations

ẋ =
dx

dt
=
∂H

∂p
, ṗ =

dp

dt
= −∂H

∂x
(1)

then δS → 0 indeed is true. In physics, the Hamiltonian H ≡ T + V

• We define a (Transfer) Map as a transformation that has the same
effect as integrating q̇i from t0 7→ t1, i.e. q(t1) = Mt0 7→t1 (q(t0))

Martin Schwinzerl SixTrackLib June 19th 2020 4 / 45

Hamiltonian Formulation

• q ≡ (x , p) conjugate coordinates

• for given start- and end-points in
phase-space q(t0) and q(t1) and

• S :=
∫ t1
t0

dt [p · ẋ − H (x , p, t)],

• find expressions for q so that δS → 0

Hamilton Equations of Motion, Transfer Maps

It can be shown, that if x , p, H, and t obey the equations

ẋ =
dx

dt
=
∂H

∂p
, ṗ =

dp

dt
= −∂H

∂x
(1)

then δS → 0 indeed is true. In physics, the Hamiltonian H ≡ T + V

• We define a (Transfer) Map as a transformation that has the same
effect as integrating q̇i from t0 7→ t1, i.e. q(t1) = Mt0 7→t1 (q(t0))

Martin Schwinzerl SixTrackLib June 19th 2020 4 / 45

Symplectic Transformation & Integration

• For δt → 0, q ≡ (q0, q1), we find qi (t0 + δt) = qi (t0) + δt · q̇i

• With (1) and Ωik = (Ω)ik =

[
0 1
−1 0

]
, this becomes

q(t0 + δt) = qi (t0) + δt · Ωik · ∂2H
∂qj∂qk

∣∣∣
t=t0

• Jacobian of the Transformation
Jij = ∂qi (t0+δt)

∂qj (t0)
= δij + δt · Ωik · ∂2H

∂qj∂qk

∣∣∣
t=t0
⇒ J = I + δt · Ω · H̃

• J as derived via (1) fulfills symplectivity condition

• Thus Jt0 7→t0+2δt = J(t0+δt)7→(t0+2δt) ◦ Jt0 7→t0+δt also symplectic

• Mt0 7→t1 constructed from a composition of symplectic J is also
symplectic (i.e. M is a symplectic Map)

Martin Schwinzerl SixTrackLib June 19th 2020 5 / 45

Symplectic Transformation & Integration

• For δt → 0, q ≡ (q0, q1), we find qi (t0 + δt) = qi (t0) + δt · q̇i

• With (1) and Ωik = (Ω)ik =

[
0 1
−1 0

]
, this becomes

q(t0 + δt) = qi (t0) + δt · Ωik · ∂2H
∂qj∂qk

∣∣∣
t=t0

• Jacobian of the Transformation
Jij = ∂qi (t0+δt)

∂qj (t0)
= δij + δt · Ωik · ∂2H

∂qj∂qk

∣∣∣
t=t0
⇒ J = I + δt · Ω · H̃

• J as derived via (1) fulfills symplectivity condition

• Thus Jt0 7→t0+2δt = J(t0+δt)7→(t0+2δt) ◦ Jt0 7→t0+δt also symplectic

• Mt0 7→t1 constructed from a composition of symplectic J is also
symplectic (i.e. M is a symplectic Map)

Martin Schwinzerl SixTrackLib June 19th 2020 5 / 45

Symplectic Transformation & Integration

• For δt → 0, q ≡ (q0, q1), we find qi (t0 + δt) = qi (t0) + δt · q̇i

• With (1) and Ωik = (Ω)ik =

[
0 1
−1 0

]
, this becomes

q(t0 + δt) = qi (t0) + δt · Ωik · ∂2H
∂qj∂qk

∣∣∣
t=t0

• Jacobian of the Transformation
Jij = ∂qi (t0+δt)

∂qj (t0)
= δij + δt · Ωik · ∂2H

∂qj∂qk

∣∣∣
t=t0
⇒ J = I + δt · Ω · H̃

Definition: Symplectic Transformation

J is a symplectic transformation :⇐⇒ JTΩJ = Ω

• J as derived via (1) fulfills symplectivity condition

• Thus Jt0 7→t0+2δt = J(t0+δt)7→(t0+2δt) ◦ Jt0 7→t0+δt also symplectic

• Mt0 7→t1 constructed from a composition of symplectic J is also
symplectic (i.e. M is a symplectic Map)

Martin Schwinzerl SixTrackLib June 19th 2020 5 / 45

Symplectic Transformation & Integration

• For δt → 0, q ≡ (q0, q1), we find qi (t0 + δt) = qi (t0) + δt · q̇i

• With (1) and Ωik = (Ω)ik =

[
0 1
−1 0

]
, this becomes

q(t0 + δt) = qi (t0) + δt · Ωik · ∂2H
∂qj∂qk

∣∣∣
t=t0

• Jacobian of the Transformation
Jij = ∂qi (t0+δt)

∂qj (t0)
= δij + δt · Ωik · ∂2H

∂qj∂qk

∣∣∣
t=t0
⇒ J = I + δt · Ω · H̃

Definition: Symplectic Transformation

J is a symplectic transformation :⇐⇒ JTΩJ = Ω

• J as derived via (1) fulfills symplectivity condition

• Thus Jt0 7→t0+2δt = J(t0+δt)7→(t0+2δt) ◦ Jt0 7→t0+δt also symplectic

• Mt0 7→t1 constructed from a composition of symplectic J is also
symplectic (i.e. M is a symplectic Map)

Martin Schwinzerl SixTrackLib June 19th 2020 5 / 45

Symplectic Transformation & Integration

• For δt → 0, q ≡ (q0, q1), we find qi (t0 + δt) = qi (t0) + δt · q̇i

• With (1) and Ωik = (Ω)ik =

[
0 1
−1 0

]
, this becomes

q(t0 + δt) = qi (t0) + δt · Ωik · ∂2H
∂qj∂qk

∣∣∣
t=t0

• Jacobian of the Transformation
Jij = ∂qi (t0+δt)

∂qj (t0)
= δij + δt · Ωik · ∂2H

∂qj∂qk

∣∣∣
t=t0
⇒ J = I + δt · Ω · H̃

Definition: Symplectic Transformation

J is a symplectic transformation :⇐⇒ JTΩJ = Ω

• J as derived via (1) fulfills symplectivity condition

• Thus Jt0 7→t0+2δt = J(t0+δt)7→(t0+2δt) ◦ Jt0 7→t0+δt also symplectic

• Mt0 7→t1 constructed from a composition of symplectic J is also
symplectic (i.e. M is a symplectic Map)

Martin Schwinzerl SixTrackLib June 19th 2020 5 / 45

Symplectic Transformation & Integration

• For δt → 0, q ≡ (q0, q1), we find qi (t0 + δt) = qi (t0) + δt · q̇i

• With (1) and Ωik = (Ω)ik =

[
0 1
−1 0

]
, this becomes

q(t0 + δt) = qi (t0) + δt · Ωik · ∂2H
∂qj∂qk

∣∣∣
t=t0

• Jacobian of the Transformation
Jij = ∂qi (t0+δt)

∂qj (t0)
= δij + δt · Ωik · ∂2H

∂qj∂qk

∣∣∣
t=t0
⇒ J = I + δt · Ω · H̃

Definition: Symplectic Transformation

J is a symplectic transformation :⇐⇒ JTΩJ = Ω

• J as derived via (1) fulfills symplectivity condition

• Thus Jt0 7→t0+2δt = J(t0+δt)7→(t0+2δt) ◦ Jt0 7→t0+δt also symplectic

• Mt0 7→t1 constructed from a composition of symplectic J is also
symplectic (i.e. M is a symplectic Map)

Martin Schwinzerl SixTrackLib June 19th 2020 5 / 45

Consequences (Hamiltonian EoM, Symplectic Maps)

• J is symplectic =⇒ det(J) = ±1
Preservation of phase space volume (Liouville Theorem)

• Hamiltonian formalism allows algebraic transformation of independent
variable from t −→ s (i.e. distance from start of turn)

• =⇒ Allows to approximate the effect of ”beam-elements” located at
spatial position s with sequence of symplectic maps

• Composition of beam-element maps → symplectic one-turn-map

Martin Schwinzerl SixTrackLib June 19th 2020 6 / 45

Consequences (Hamiltonian EoM, Symplectic Maps)

• J is symplectic =⇒ det(J) = ±1
Preservation of phase space volume (Liouville Theorem)

• Hamiltonian formalism allows algebraic transformation of independent
variable from t −→ s (i.e. distance from start of turn)

• =⇒ Allows to approximate the effect of ”beam-elements” located at
spatial position s with sequence of symplectic maps

• Composition of beam-element maps → symplectic one-turn-map

Martin Schwinzerl SixTrackLib June 19th 2020 6 / 45

Consequences (Hamiltonian EoM, Symplectic Maps)

• J is symplectic =⇒ det(J) = ±1
Preservation of phase space volume (Liouville Theorem)

• Hamiltonian formalism allows algebraic transformation of independent
variable from t −→ s (i.e. distance from start of turn)

• =⇒ Allows to approximate the effect of ”beam-elements” located at
spatial position s with sequence of symplectic maps

• Composition of beam-element maps → symplectic one-turn-map

Martin Schwinzerl SixTrackLib June 19th 2020 6 / 45

Consequences (Hamiltonian EoM, Symplectic Maps)

• J is symplectic =⇒ det(J) = ±1
Preservation of phase space volume (Liouville Theorem)

• Hamiltonian formalism allows algebraic transformation of independent
variable from t −→ s (i.e. distance from start of turn)

• =⇒ Allows to approximate the effect of ”beam-elements” located at
spatial position s with sequence of symplectic maps

• Composition of beam-element maps → symplectic one-turn-map

Martin Schwinzerl SixTrackLib June 19th 2020 6 / 45

Consequences (Hamiltonian EoM, Symplectic Maps)

• J is symplectic =⇒ det(J) = ±1
Preservation of phase space volume (Liouville Theorem)

• Hamiltonian formalism allows algebraic transformation of independent
variable from t −→ s (i.e. distance from start of turn)

• =⇒ Allows to approximate the effect of ”beam-elements” located at
spatial position s with sequence of symplectic maps

• Composition of beam-element maps → symplectic one-turn-map

• Cyclic Motion

Martin Schwinzerl SixTrackLib June 19th 2020 6 / 45

Consequences (Hamiltonian EoM, Symplectic Maps)

• J is symplectic =⇒ det(J) = ±1
Preservation of phase space volume (Liouville Theorem)

• Hamiltonian formalism allows algebraic transformation of independent
variable from t −→ s (i.e. distance from start of turn)

• =⇒ Allows to approximate the effect of ”beam-elements” located at
spatial position s with sequence of symplectic maps

• Composition of beam-element maps → symplectic one-turn-map

• Cyclic Motion

Martin Schwinzerl SixTrackLib June 19th 2020 6 / 45

Consequences (Hamiltonian EoM, Symplectic Maps)

• J is symplectic =⇒ det(J) = ±1
Preservation of phase space volume (Liouville Theorem)

• Hamiltonian formalism allows algebraic transformation of independent
variable from t −→ s (i.e. distance from start of turn)

• =⇒ Allows to approximate the effect of ”beam-elements” located at
spatial position s with sequence of symplectic maps

• Composition of beam-element maps → symplectic one-turn-map

• Cyclic Motion

Martin Schwinzerl SixTrackLib June 19th 2020 6 / 45

Consequences (Hamiltonian EoM, Symplectic Maps)

• J is symplectic =⇒ det(J) = ±1
Preservation of phase space volume (Liouville Theorem)

• Hamiltonian formalism allows algebraic transformation of independent
variable from t −→ s (i.e. distance from start of turn)

• =⇒ Allows to approximate the effect of ”beam-elements” located at
spatial position s with sequence of symplectic maps

• Composition of beam-element maps → symplectic one-turn-map

• Cyclic Motion −→ Closed Orbit

Martin Schwinzerl SixTrackLib June 19th 2020 6 / 45

Consequences (Hamiltonian EoM, Symplectic Maps)

• J is symplectic =⇒ det(J) = ±1
Preservation of phase space volume (Liouville Theorem)

• Hamiltonian formalism allows algebraic transformation of independent
variable from t −→ s (i.e. distance from start of turn)

• =⇒ Allows to approximate the effect of ”beam-elements” located at
spatial position s with sequence of symplectic maps

• Composition of beam-element maps → symplectic one-turn-map

• Cyclic Motion −→ Closed Orbit
(approximations/truncations → deviations; but: orbit still closed!)

Martin Schwinzerl SixTrackLib June 19th 2020 6 / 45

Single Particle Tracking, Parallelism

• Accelerator ∼ sequence of discrete beam-elements (”lattice”)

• Tracking a particle over N ≥ 104 . . . 108 turns → numerically
expensive & challenging (non-linear, on-setting chaos,...)

• If any two particles Pi and Pj i 6= j ∈ [0,NP) do not interact →
”single-particle tracking”

Martin Schwinzerl SixTrackLib June 19th 2020 7 / 45

Single Particle Tracking, Parallelism

• Accelerator ∼ sequence of discrete beam-elements (”lattice”)

• Tracking a single particle over a lattice =⇒ sequential operation

• Tracking a particle over N ≥ 104 . . . 108 turns → numerically
expensive & challenging (non-linear, on-setting chaos,...)

• If any two particles Pi and Pj i 6= j ∈ [0,NP) do not interact →
”single-particle tracking”

Martin Schwinzerl SixTrackLib June 19th 2020 7 / 45

Single Particle Tracking, Parallelism

• Accelerator ∼ sequence of discrete beam-elements (”lattice”)

• Tracking a single particle over a lattice =⇒ sequential operation

• Tracking a particle over N ≥ 104 . . . 108 turns → numerically
expensive & challenging (non-linear, on-setting chaos,...)

• If any two particles Pi and Pj i 6= j ∈ [0,NP) do not interact →
”single-particle tracking”

Martin Schwinzerl SixTrackLib June 19th 2020 7 / 45

Single Particle Tracking, Parallelism

• Accelerator ∼ sequence of discrete beam-elements (”lattice”)

• Tracking a single particle over a lattice =⇒ sequential operation

• Tracking a particle over N ≥ 104 . . . 108 turns → numerically
expensive & challenging (non-linear, on-setting chaos,...)

• If any two particles Pi and Pj i 6= j ∈ [0,NP) do not interact →
”single-particle tracking”

Martin Schwinzerl SixTrackLib June 19th 2020 7 / 45

Single Particle Tracking, Parallelism

• Accelerator ∼ sequence of discrete beam-elements (”lattice”)

• Tracking a single particle over a lattice =⇒ sequential operation

• Tracking a particle over N ≥ 104 . . . 108 turns → numerically
expensive & challenging (non-linear, on-setting chaos,...)

• If any two particles Pi and Pj i 6= j ∈ [0,NP) do not interact →
”single-particle tracking”

• Single-Particle Tracking + NP >> 1 −→
”embarrassingly parallel problem” (data-parallelism)

Martin Schwinzerl SixTrackLib June 19th 2020 7 / 45

Bringing It All Together: SixTrackLib

SixTrackLib is a

1 Parallel

2 Single-Particle

3 Symplectic Tracking

4 Library

• Re-implementation of the
core functionality of
SixTrack, focusing only on
tracking

• Under development for > 2
years

• https://github.com/

SixTrack/sixtracklib

• Numerical accuracy, stability
& reproducibility

• Wide range of supported
hardware → multiple parallel
backends

• Good scalability towards
NP >> 1 (parallel
processors, GPUs)

• High code efficiency for
NP ∼ 1 (CPU)

• Strict separation between
”physics” and ”business
logic” code

• Single code base, bindings
to multiple languages

Martin Schwinzerl SixTrackLib June 19th 2020 8 / 45

https://github.com/SixTrack/sixtracklib
https://github.com/SixTrack/sixtracklib

Bringing It All Together: SixTrackLib

SixTrackLib is a

1 Parallel

2 Single-Particle

3 Symplectic Tracking

4 Library

• Re-implementation of the
core functionality of
SixTrack, focusing only on
tracking

• Under development for > 2
years

• https://github.com/

SixTrack/sixtracklib

• Numerical accuracy, stability
& reproducibility

• Wide range of supported
hardware → multiple parallel
backends

• Good scalability towards
NP >> 1 (parallel
processors, GPUs)

• High code efficiency for
NP ∼ 1 (CPU)

• Strict separation between
”physics” and ”business
logic” code

• Single code base, bindings
to multiple languages

Martin Schwinzerl SixTrackLib June 19th 2020 8 / 45

https://github.com/SixTrack/sixtracklib
https://github.com/SixTrack/sixtracklib

Bringing It All Together: SixTrackLib

SixTrackLib is a

1 Parallel

2 Single-Particle

3 Symplectic Tracking

4 Library

• Re-implementation of the
core functionality of
SixTrack, focusing only on
tracking

• Under development for > 2
years

• https://github.com/

SixTrack/sixtracklib

Requirements:

• Numerical accuracy, stability
& reproducibility

• Wide range of supported
hardware → multiple parallel
backends

• Good scalability towards
NP >> 1 (parallel
processors, GPUs)

• High code efficiency for
NP ∼ 1 (CPU)

• Strict separation between
”physics” and ”business
logic” code

• Single code base, bindings
to multiple languages

Martin Schwinzerl SixTrackLib June 19th 2020 8 / 45

https://github.com/SixTrack/sixtracklib
https://github.com/SixTrack/sixtracklib

Bringing It All Together: SixTrackLib

SixTrackLib is a

1 Parallel

2 Single-Particle

3 Symplectic Tracking

4 Library

• Re-implementation of the
core functionality of
SixTrack, focusing only on
tracking

• Under development for > 2
years

• https://github.com/

SixTrack/sixtracklib

Requirements:

• Numerical accuracy, stability
& reproducibility

• Wide range of supported
hardware → multiple parallel
backends

• Good scalability towards
NP >> 1 (parallel
processors, GPUs)

• High code efficiency for
NP ∼ 1 (CPU)

• Strict separation between
”physics” and ”business
logic” code

• Single code base, bindings
to multiple languages

Martin Schwinzerl SixTrackLib June 19th 2020 8 / 45

https://github.com/SixTrack/sixtracklib
https://github.com/SixTrack/sixtracklib

Bringing It All Together: SixTrackLib

SixTrackLib is a

1 Parallel

2 Single-Particle

3 Symplectic Tracking

4 Library

• Re-implementation of the
core functionality of
SixTrack, focusing only on
tracking

• Under development for > 2
years

• https://github.com/

SixTrack/sixtracklib

Requirements:

• Numerical accuracy, stability
& reproducibility

• Wide range of supported
hardware → multiple parallel
backends

• Good scalability towards
NP >> 1 (parallel
processors, GPUs)

• High code efficiency for
NP ∼ 1 (CPU)

• Strict separation between
”physics” and ”business
logic” code

• Single code base, bindings
to multiple languages

Martin Schwinzerl SixTrackLib June 19th 2020 8 / 45

https://github.com/SixTrack/sixtracklib
https://github.com/SixTrack/sixtracklib

Implementation, Design & Basic Usage

Martin Schwinzerl SixTrackLib June 19th 2020 9 / 45

Modelling the State Of The Particles

Martin Schwinzerl SixTrackLib June 19th 2020 10 / 45

Modelling the State Of The Particles

Martin Schwinzerl SixTrackLib June 19th 2020 10 / 45

Modelling the State Of The Particles

Martin Schwinzerl SixTrackLib June 19th 2020 10 / 45

Modelling the State Of The Particles

6 Main Degrees Of Freedom

• x , y [m]

• px = Px/P0, py = Py/P0 [rad]

• ζ = β · (s/β0 − c · t) [m]

• δ = (P − P0)/P0

Martin Schwinzerl SixTrackLib June 19th 2020 10 / 45

Modelling the State Of The Particles

6 Main Degrees Of Freedom

• x , y [m]

• px = Px/P0, py = Py/P0 [rad]

• ζ = β · (s/β0 − c · t) [m]

• δ = (P − P0)/P0

Martin Schwinzerl SixTrackLib June 19th 2020 10 / 45

Modelling the State Of The Particles

6 Main Degrees Of Freedom

• x , y [m]

• px = Px/P0, py = Py/P0 [rad]

• ζ = β · (s/β0 − c · t) [m]

• δ = (P − P0)/P0

4 Logical Coordinates
• particle id

• at element

• at turn

• state

(0 == lost, 1 == active)

Martin Schwinzerl SixTrackLib June 19th 2020 10 / 45

Modelling the State Of The Particles

6 Main Degrees Of Freedom

• x , y [m]

• px = Px/P0, py = Py/P0 [rad]

• ζ = β · (s/β0 − c · t) [m]

• δ = (P − P0)/P0

4 Logical Coordinates
• particle id

• at element

• at turn

• state

(0 == lost, 1 == active)

6 Auxiliary Attributes

• s [m]

• pσ = (E − E0)/(β0 · P0 · c)

• rpp = P0/P, rvv = β/β0

• charge ratio = q/q0
• χ = (q/q0)/(m/m0)

Martin Schwinzerl SixTrackLib June 19th 2020 10 / 45

Modelling the State Of The Particles II

• Additionally, we have

5 Attributes Describing The Reference Particle ”0”

• charge q0 ([q0] = 1 proton charge)

• mass m0 ([m0] = 1eV /c2

• β0 = v0/c

• γ0 = (1− β2
0)−1/2

• p0c = (P0 · c) [p0c] = eV

• In total: 21 attributes (∼ 168 Bytes/particle)

• Store Np particles in one structure: struct-of-arrays

• =⇒ replicate q0, m0, β0, γ0, p0c for all Np particles! Why?

1 Consistency: tracking is asynchronous and can update ref.
2 Performance: vectorisation, burstable loads
3 Flexibility: allow different ref. parameters per particle

Martin Schwinzerl SixTrackLib June 19th 2020 11 / 45

Modelling the State Of The Particles II

• Additionally, we have

5 Attributes Describing The Reference Particle ”0”

• charge q0 ([q0] = 1 proton charge)

• mass m0 ([m0] = 1eV /c2

• β0 = v0/c

• γ0 = (1− β2
0)−1/2

• p0c = (P0 · c) [p0c] = eV

• In total: 21 attributes (∼ 168 Bytes/particle)

• Store Np particles in one structure: struct-of-arrays

• =⇒ replicate q0, m0, β0, γ0, p0c for all Np particles! Why?

1 Consistency: tracking is asynchronous and can update ref.
2 Performance: vectorisation, burstable loads
3 Flexibility: allow different ref. parameters per particle

Martin Schwinzerl SixTrackLib June 19th 2020 11 / 45

Modelling the State Of The Particles II

• Additionally, we have

5 Attributes Describing The Reference Particle ”0”

• charge q0 ([q0] = 1 proton charge)

• mass m0 ([m0] = 1eV /c2

• β0 = v0/c

• γ0 = (1− β2
0)−1/2

• p0c = (P0 · c) [p0c] = eV

• In total: 21 attributes (∼ 168 Bytes/particle)

• Store Np particles in one structure: struct-of-arrays

• =⇒ replicate q0, m0, β0, γ0, p0c for all Np particles! Why?

1 Consistency: tracking is asynchronous and can update ref.
2 Performance: vectorisation, burstable loads
3 Flexibility: allow different ref. parameters per particle

Martin Schwinzerl SixTrackLib June 19th 2020 11 / 45

Modelling the State Of The Particles II

• Additionally, we have

5 Attributes Describing The Reference Particle ”0”

• charge q0 ([q0] = 1 proton charge)

• mass m0 ([m0] = 1eV /c2

• β0 = v0/c

• γ0 = (1− β2
0)−1/2

• p0c = (P0 · c) [p0c] = eV

• In total: 21 attributes (∼ 168 Bytes/particle)

• Store Np particles in one structure: struct-of-arrays

• =⇒ replicate q0, m0, β0, γ0, p0c for all Np particles! Why?

1 Consistency: tracking is asynchronous and can update ref.
2 Performance: vectorisation, burstable loads
3 Flexibility: allow different ref. parameters per particle

Martin Schwinzerl SixTrackLib June 19th 2020 11 / 45

Modelling the State Of The Particles II

• Additionally, we have

5 Attributes Describing The Reference Particle ”0”

• charge q0 ([q0] = 1 proton charge)

• mass m0 ([m0] = 1eV /c2

• β0 = v0/c

• γ0 = (1− β2
0)−1/2

• p0c = (P0 · c) [p0c] = eV

• In total: 21 attributes (∼ 168 Bytes/particle)

• Store Np particles in one structure: struct-of-arrays

• =⇒ replicate q0, m0, β0, γ0, p0c for all Np particles! Why?

1 Consistency: tracking is asynchronous and can update ref.
2 Performance: vectorisation, burstable loads
3 Flexibility: allow different ref. parameters per particle

Martin Schwinzerl SixTrackLib June 19th 2020 11 / 45

Lattice & Beam Elements

In General: Similar to SixTrack

• Drift, DriftExact

• Multipole (incl. Dipoles, Quadrupoles, Sextupoles, etc.)

• Cavity

• RFMultipole

• XYShift: transversal shift

• SRotation: rotation in the transversal plane

• DipoleEdge

• BeamMonitor: programmable dump of particle state

• BeamBeam4D, BeamBeam6D

• SpaceChargeCoasting, SpaceChargeBunched1

• LimitRect, LimitEllipse, LimitRectEllipse: aperture checks

1, SpaceChargeBunched → SpaceChargeQGaussian
Martin Schwinzerl SixTrackLib June 19th 2020 12 / 45

Lattice & Beam Elements II

There are different approaches to build a new or import an existing lattice
for SixTrackLib:

1 Build manually, element by element

2 Import from pysixtrack

3 Import from MAD-X (via pysixtrack and cpymad)

4 Import from SixTrack (via pysixtrack and sixtracktools)

5 Load from binary dump

Related Python-Centric Projects Under the SixTrack Umbrella:

• pysixtrack: https://github.com/SixTrack/pysixtrack

• sixtracktools: https://github.com/SixTrack/sixtracktools

• cobjects: https://github.com/SixTrack/cobjects

Cf. accompanying jupyter notebook + data samples!

Martin Schwinzerl SixTrackLib June 19th 2020 13 / 45

https://github.com/SixTrack/pysixtrack
https://github.com/SixTrack/sixtracktools
https://github.com/SixTrack/cobjects

Example: Simple Tracking Example

Martin Schwinzerl SixTrackLib June 19th 2020 14 / 45

Modes & Logistics Of Tracking

1 track until Mode:

2 track elem by elem Mode:

3 track line Mode:

Martin Schwinzerl SixTrackLib June 19th 2020 15 / 45

Using SixTrackLib On A GPU

Martin Schwinzerl SixTrackLib June 19th 2020 16 / 45

(Simplified) Workflow Of A GPU Accelerated Program

Martin Schwinzerl SixTrackLib June 19th 2020 17 / 45

(Simplified) Workflow Of A GPU Accelerated Program

Martin Schwinzerl SixTrackLib June 19th 2020 17 / 45

(Simplified) Workflow Of A GPU Accelerated Program

Martin Schwinzerl SixTrackLib June 19th 2020 17 / 45

(Simplified) Workflow Of A GPU Accelerated Program

Martin Schwinzerl SixTrackLib June 19th 2020 17 / 45

(Simplified) Workflow Of A GPU Accelerated Program

Martin Schwinzerl SixTrackLib June 19th 2020 17 / 45

(Simplified) Workflow Of A GPU Accelerated Program

Martin Schwinzerl SixTrackLib June 19th 2020 17 / 45

Example: Tracking Code Working On CPUs & GPUs
(With Minimal Changes)

Martin Schwinzerl SixTrackLib June 19th 2020 18 / 45

Quantifying Parallel Performance

Martin Schwinzerl SixTrackLib June 19th 2020 19 / 45

Performance CPU TrackJob)

Martin Schwinzerl SixTrackLib June 19th 2020 20 / 45

Limiting Factors For Parallel Performance

(Remember: single-particle tracking, ”embarrassingly” parallel program)
• Sequential portion of the run-time ts

• Data-dependent branching in kernels (SPMD/SIMD) → renders
data-dependent code-paths sequential

• Limited bandwidth and finite latency in collect * and push * calls
• Latency in starting kernels / waiting until kernel execution is finished

• Individual threads can not be scheduled on GPUs - code execution in
multiples of warp / wavefront sizes (32/64 threads)

• Limited Available Resources (Registers, Shared Memory, etc.) −→
number of threads that can be executed / scheduled concurrently is
reduced

• Reduced number of warps/wavefronts in flight → less opportunity to
mitigate I/O blocks and other latency issues by switching from a
stalled to a warp/wavefront that can be executed → again, ts
increases

Martin Schwinzerl SixTrackLib June 19th 2020 21 / 45

Limiting Factors For Parallel Performance

(Remember: single-particle tracking, ”embarrassingly” parallel program)
• Sequential portion of the run-time ts

• Data-dependent branching in kernels (SPMD/SIMD) → renders
data-dependent code-paths sequential

• Limited bandwidth and finite latency in collect * and push * calls
• Latency in starting kernels / waiting until kernel execution is finished

• Individual threads can not be scheduled on GPUs - code execution in
multiples of warp / wavefront sizes (32/64 threads)

• Limited Available Resources (Registers, Shared Memory, etc.) −→
number of threads that can be executed / scheduled concurrently is
reduced

• Reduced number of warps/wavefronts in flight → less opportunity to
mitigate I/O blocks and other latency issues by switching from a
stalled to a warp/wavefront that can be executed → again, ts
increases

Martin Schwinzerl SixTrackLib June 19th 2020 21 / 45

Limiting Factors For Parallel Performance

(Remember: single-particle tracking, ”embarrassingly” parallel program)
• Sequential portion of the run-time ts

• Data-dependent branching in kernels (SPMD/SIMD) → renders
data-dependent code-paths sequential

• Limited bandwidth and finite latency in collect * and push * calls
• Latency in starting kernels / waiting until kernel execution is finished

• Individual threads can not be scheduled on GPUs - code execution in
multiples of warp / wavefront sizes (32/64 threads)

• Limited Available Resources (Registers, Shared Memory, etc.) −→
number of threads that can be executed / scheduled concurrently is
reduced

• Reduced number of warps/wavefronts in flight → less opportunity to
mitigate I/O blocks and other latency issues by switching from a
stalled to a warp/wavefront that can be executed → again, ts
increases

Martin Schwinzerl SixTrackLib June 19th 2020 21 / 45

Limiting Factors For Parallel Performance

(Remember: single-particle tracking, ”embarrassingly” parallel program)
• Sequential portion of the run-time ts

• Data-dependent branching in kernels (SPMD/SIMD) → renders
data-dependent code-paths sequential

• Limited bandwidth and finite latency in collect * and push * calls
• Latency in starting kernels / waiting until kernel execution is finished

• Individual threads can not be scheduled on GPUs - code execution in
multiples of warp / wavefront sizes (32/64 threads)

• Limited Available Resources (Registers, Shared Memory, etc.) −→
number of threads that can be executed / scheduled concurrently is
reduced

• Reduced number of warps/wavefronts in flight → less opportunity to
mitigate I/O blocks and other latency issues by switching from a
stalled to a warp/wavefront that can be executed → again, ts
increases

Martin Schwinzerl SixTrackLib June 19th 2020 21 / 45

Limiting Factors For Parallel Performance

(Remember: single-particle tracking, ”embarrassingly” parallel program)
• Sequential portion of the run-time ts

• Data-dependent branching in kernels (SPMD/SIMD) → renders
data-dependent code-paths sequential

• Limited bandwidth and finite latency in collect * and push * calls
• Latency in starting kernels / waiting until kernel execution is finished

• Individual threads can not be scheduled on GPUs - code execution in
multiples of warp / wavefront sizes (32/64 threads)

• Limited Available Resources (Registers, Shared Memory, etc.) −→
number of threads that can be executed / scheduled concurrently is
reduced

• Reduced number of warps/wavefronts in flight → less opportunity to
mitigate I/O blocks and other latency issues by switching from a
stalled to a warp/wavefront that can be executed → again, ts
increases

Martin Schwinzerl SixTrackLib June 19th 2020 21 / 45

Limiting Factors For Parallel Performance

(Remember: single-particle tracking, ”embarrassingly” parallel program)
• Sequential portion of the run-time ts

• Data-dependent branching in kernels (SPMD/SIMD) → renders
data-dependent code-paths sequential

• Limited bandwidth and finite latency in collect * and push * calls
• Latency in starting kernels / waiting until kernel execution is finished

• Individual threads can not be scheduled on GPUs - code execution in
multiples of warp / wavefront sizes (32/64 threads)

• Limited Available Resources (Registers, Shared Memory, etc.) −→
number of threads that can be executed / scheduled concurrently is
reduced

• Reduced number of warps/wavefronts in flight → less opportunity to
mitigate I/O blocks and other latency issues by switching from a
stalled to a warp/wavefront that can be executed → again, ts
increases

Martin Schwinzerl SixTrackLib June 19th 2020 21 / 45

Limiting Factors For Parallel Performance

(Remember: single-particle tracking, ”embarrassingly” parallel program)
• Sequential portion of the run-time ts

• Data-dependent branching in kernels (SPMD/SIMD) → renders
data-dependent code-paths sequential

• Limited bandwidth and finite latency in collect * and push * calls
• Latency in starting kernels / waiting until kernel execution is finished

• Individual threads can not be scheduled on GPUs - code execution in
multiples of warp / wavefront sizes (32/64 threads)

• Limited Available Resources (Registers, Shared Memory, etc.) −→
number of threads that can be executed / scheduled concurrently is
reduced

• Reduced number of warps/wavefronts in flight → less opportunity to
mitigate I/O blocks and other latency issues by switching from a
stalled to a warp/wavefront that can be executed → again, ts
increases

Martin Schwinzerl SixTrackLib June 19th 2020 21 / 45

Performance Parallel Environment (GPUs & CPUs))

Martin Schwinzerl SixTrackLib June 19th 2020 22 / 45

Performance Parallel Environment (GPUs & CPUs))

Martin Schwinzerl SixTrackLib June 19th 2020 23 / 45

Using and Extending SixTrackLib:
Real-World Scenarios

Martin Schwinzerl SixTrackLib June 19th 2020 24 / 45

Usage & Integration Strategies For SixTrackLib

Sorted in the order ”easily accessible” to ”complex & invasive”

1 Use track *, collect *, push * API (C, C++, Python)

2 Compile And Launch Custom Kernel via SixTrackLib Infrastructure
+ use track line to hand-off/take over from the custom
kernel(Currently only OpenCL, C99; CUDA with NVRTC possible)

3 Share particles state ”in-place” with other applications (zero-copy)
together with track line (Currently only CUDA, C++ or Python)

4 Implement the required functionality (e.g. ”beam-elements”) into
SixTrackLib (C99, C++, Python)

5 Directly include C99 header-only subset of SixTrackLib into
application kernel or link application against C99 or C++ API of
SixTrackLib (C99 + Most Other Languages)

Martin Schwinzerl SixTrackLib June 19th 2020 25 / 45

Usage & Integration Strategies For SixTrackLib

Sorted in the order ”easily accessible” to ”complex & invasive”

1 Use track *, collect *, push * API (C, C++, Python)

2 Compile And Launch Custom Kernel via SixTrackLib Infrastructure
+ use track line to hand-off/take over from the custom
kernel(Currently only OpenCL, C99; CUDA with NVRTC possible)

3 Share particles state ”in-place” with other applications (zero-copy)
together with track line (Currently only CUDA, C++ or Python)

4 Implement the required functionality (e.g. ”beam-elements”) into
SixTrackLib (C99, C++, Python)

5 Directly include C99 header-only subset of SixTrackLib into
application kernel or link application against C99 or C++ API of
SixTrackLib (C99 + Most Other Languages)

Martin Schwinzerl SixTrackLib June 19th 2020 25 / 45

Usage & Integration Strategies For SixTrackLib

Sorted in the order ”easily accessible” to ”complex & invasive”

1 Use track *, collect *, push * API (C, C++, Python)

2 Compile And Launch Custom Kernel via SixTrackLib Infrastructure
+ use track line to hand-off/take over from the custom
kernel(Currently only OpenCL, C99; CUDA with NVRTC possible)

3 Share particles state ”in-place” with other applications (zero-copy)
together with track line (Currently only CUDA, C++ or Python)

4 Implement the required functionality (e.g. ”beam-elements”) into
SixTrackLib (C99, C++, Python)

5 Directly include C99 header-only subset of SixTrackLib into
application kernel or link application against C99 or C++ API of
SixTrackLib (C99 + Most Other Languages)

Martin Schwinzerl SixTrackLib June 19th 2020 25 / 45

Usage & Integration Strategies For SixTrackLib

Sorted in the order ”easily accessible” to ”complex & invasive”

1 Use track *, collect *, push * API (C, C++, Python)

2 Compile And Launch Custom Kernel via SixTrackLib Infrastructure
+ use track line to hand-off/take over from the custom
kernel(Currently only OpenCL, C99; CUDA with NVRTC possible)

3 Share particles state ”in-place” with other applications (zero-copy)
together with track line (Currently only CUDA, C++ or Python)

4 Implement the required functionality (e.g. ”beam-elements”) into
SixTrackLib (C99, C++, Python)

5 Directly include C99 header-only subset of SixTrackLib into
application kernel or link application against C99 or C++ API of
SixTrackLib (C99 + Most Other Languages)

Martin Schwinzerl SixTrackLib June 19th 2020 25 / 45

Usage & Integration Strategies For SixTrackLib

Sorted in the order ”easily accessible” to ”complex & invasive”

1 Use track *, collect *, push * API (C, C++, Python)

2 Compile And Launch Custom Kernel via SixTrackLib Infrastructure
+ use track line to hand-off/take over from the custom
kernel(Currently only OpenCL, C99; CUDA with NVRTC possible)

3 Share particles state ”in-place” with other applications (zero-copy)
together with track line (Currently only CUDA, C++ or Python)

4 Implement the required functionality (e.g. ”beam-elements”) into
SixTrackLib (C99, C++, Python)

5 Directly include C99 header-only subset of SixTrackLib into
application kernel or link application against C99 or C++ API of
SixTrackLib (C99 + Most Other Languages)

Martin Schwinzerl SixTrackLib June 19th 2020 25 / 45

A Selection Of Usage Examples

1 Dynamic Aperture (DA), Beam-Stability, Resonances
Carlo Emilio Montanari (Università di Bologna), Massimo Giovannozzi

2 Symplectic Kicks From An Electron Cloud
Konstantinos Paraschou (AUTH,CERN), Giovanni Iadarola, et al

3 Simulating Beam-Beam Interactions & Space-Charge Effects
Hannes Bartosik, Giovanni Iadarola, et al

4 Integrating SixTrackLib with PyHEADTAIL
Adrian Oeftiger (GSI/FAIR)

Martin Schwinzerl SixTrackLib June 19th 2020 26 / 45

1 Dynamic Aperture (DA), Beam-Stability, Resonances

• Study uses SixTrackLib directly to perform tracking for N turns

• Performs analysis and evaluation between turns on the host

• ”Simple” use case - no extension and customisation was required

Figure: Sampling stable region via radial scans over Nturns

Martin Schwinzerl SixTrackLib June 19th 2020 27 / 45

1 Dynamic Aperture (DA), Beam-Stability, Resonances
• Visualising 4D space (r , α,Θ1,Θ2 is challenging - SixTrackLib

helps with creating interactive views by being embeddable into
parameterised visualisations

Figure: Evolution of r over α for a given Θ1,Θ2 slice over Nturns

Martin Schwinzerl SixTrackLib June 19th 2020 28 / 45

1 Dynamic Aperture (DA), Beam-Stability, Resonances

Figure: Histogram and average measured r over 1, Θ2 plane in dependence of
initial value for α

Martin Schwinzerl SixTrackLib June 19th 2020 29 / 45

1 Dynamic Aperture (DA), Beam-Stability, Resonances

Figure: Histogram and average measured r over 1, Θ2 plane in dependence of
initial value for α

Martin Schwinzerl SixTrackLib June 19th 2020 30 / 45

1 Dynamic Aperture (DA), Beam-Stability, Resonances

Martin Schwinzerl SixTrackLib June 19th 2020 31 / 45

2 Symplectic Kicks From An Electron Cloud

For various reasons and under certain
conditions (fulfilled in the LHC),
there exists a complex distribution of
electrons within the vacuum chamber
that interacts with the beam called
“Electron Cloud”.
Distribution strongly depends on x, y
and time! (as bunch passes through
the electron cloud)

Example PyECLOUD simulation:

Particles with an amplitude of 1 beam-σ
oscillate within the black line

Under usual approximations0 the interaction can be written as a thin-lens
through the Hamiltonian:

H(x , y , τ ; s) =
qL

β0P0c
φ (x , y , τ) δ(s)

where φ is the scalar potential describing the electron cloud.
0see G. Iadarola, CERN-ACC-NOTE-2019-0033.

Martin Schwinzerl SixTrackLib June 19th 2020 32 / 45

https://cds.cern.ch/record/2684858

2 Symplectic Kicks From An Electron Cloud
• PyECLOUD would produce φ on a discrete grid (x, y, time)
→ φ should be interpolated

• To study slow effects, interpolation should produce symplectic kicks
→ Tricubic Interpolation: φ(x , y , τ) =

∑3
i ,j ,k=0 aijkx

iy jτk

• Add custom beam-element TriCub to implement the map

• N3 coefficients with typically N ∼ O(102) per TriCub element
⇒ O(103) MByte of data for each TriCub

• But: interpolation data can be shared between many beam-elements
(e.g. All focusing quadrupole magnets have similar Electron Cloud)

• Idea: implement infrastructure to store data externally from TriCub

elements and assign & share coefficient data

Martin Schwinzerl SixTrackLib June 19th 2020 33 / 45

2 Symplectic Kicks From An Electron Cloud

• In principle, TriCub element general enough to describe any
interaction whose Hamiltonian can be discretized on a grid of (x,y,τ)

• GPUs: large global memory (4-16 GByte), adequate memory
bandwidth → perfect environment for simulations with TriCub
beam-elements.

Martin Schwinzerl SixTrackLib June 19th 2020 34 / 45

3 Beam-Beam Interactions & Space-Charge Effects

• SixTrackLib implements 4D and 6D beam-beam (BB) interactions
using a weak-strong beam formulation2

• Frozen Space-Charge (SC) beam-elements share infrastructure with
the BB implementation
• Coasting SpaceChargeCoasting
• Bunched SpaceChargeQGaussianProfile
• Bunched SpaceChargeInterpolatedProfile using linear and cubic

spline longitudinal interpolation (under development)

• SpaceChargeInterpolatedProfile uses API to assign external
data to a number of beam-elements to share profile samples and
interpolation parameters between SC elements

2G. Iadarola et al. CERN-ACC-NOTE-2018-0023 ”6D beam-beam interaction
step-by-step

Martin Schwinzerl SixTrackLib June 19th 2020 35 / 45

2H. Bartosik, F. Schmidt ”Studies on Tune Ripple”,
4th ICFA Mini-Workshop on SpaceCharge 2019,
https://indico.cern.ch/event/828559/contributions/3528378

Martin Schwinzerl SixTrackLib June 19th 2020 36 / 45

https://indico.cern.ch/event/828559/contributions/3528378

2H. Bartosik, F. Schmidt ”Studies on Tune Ripple”,
4th ICFA Mini-Workshop on SpaceCharge 2019,
https://indico.cern.ch/event/828559/contributions/3528378

Martin Schwinzerl SixTrackLib June 19th 2020 37 / 45

https://indico.cern.ch/event/828559/contributions/3528378

4 Integrating SixTrackLib with PyHEADTAIL
Beyond the single-particle treatment within SixTrackLib, model collective
effects as “true” interaction between macro-particles via PyHEADTAIL3:

• accelerated on the GPU via (Py)CUDA

• self-consistent models for (e.g. 3D PIC/particle-in-cell) space charge,
wake fields and feedback systems

Figure: PIC space charge Figure: wake fields

3https://github.com/PyCOMPLETE/PyHEADTAIL
Martin Schwinzerl SixTrackLib June 19th 2020 38 / 45

https://github.com/PyCOMPLETE/PyHEADTAIL

4 Integrating SixTrackLib with PyHEADTAIL

Share particle memory between SixTrackLib and PyHEADTAIL:

1 use SixTrackLib’s track line API to advance particles through parts
of accelerator lattice

2 expose particle coordinates on GPU via SixTrackLib’s
get particle addresses interface to apply kick in PyHEADTAIL

=⇒ alternating single- and multi-particle physics while remaining on GPU
device memory!

Martin Schwinzerl SixTrackLib June 19th 2020 39 / 45

4 Integrating SixTrackLib with PyHEADTAIL

Share particle memory between SixTrackLib and PyHEADTAIL:

1 use SixTrackLib’s track line API to advance particles through parts
of accelerator lattice

2 expose particle coordinates on GPU via SixTrackLib’s
get particle addresses interface to apply kick in PyHEADTAIL

=⇒ alternating single- and multi-particle physics while remaining on GPU
device memory!

PyHEADTAIL

PyHEADTAIL

PyHEADTAIL
PyHEADTAIL

SixTrackLib
SixTrackLib

SixTrackLib

SixTrackLib

track_line()

Martin Schwinzerl SixTrackLib June 19th 2020 39 / 45

SideBar: How Does Address Sharing Work?

Martin Schwinzerl SixTrackLib June 19th 2020 40 / 45

SideBar: How Does Address Sharing Work?

Martin Schwinzerl SixTrackLib June 19th 2020 40 / 45

SideBar: How Does Address Sharing Work?

Martin Schwinzerl SixTrackLib June 19th 2020 40 / 45

SideBar: How Does Address Sharing Work?

• CUDA: Memory is managed via raw pointers → works
• But: Resource Management, Lifetime Management, Context &

Device Selection → very difficile
• OpenCL: memory is managed via cl mem Objects → more challenging
• Idea: Use OpenCL 2.x feature SVM → pointers again
• We are working on a proof of concept implementation for OpenCL

Martin Schwinzerl SixTrackLib June 19th 2020 40 / 45

SideBar: How Does Address Sharing Work?

• CUDA: Memory is managed via raw pointers → works
• But: Resource Management, Lifetime Management, Context &

Device Selection → very difficile
• OpenCL: memory is managed via cl mem Objects → more challenging
• Idea: Use OpenCL 2.x feature SVM → pointers again
• We are working on a proof of concept implementation for OpenCL

Martin Schwinzerl SixTrackLib June 19th 2020 40 / 45

SideBar: How Does Address Sharing Work?

• CUDA: Memory is managed via raw pointers → works
• But: Resource Management, Lifetime Management, Context &

Device Selection → very difficile
• OpenCL: memory is managed via cl mem Objects → more challenging
• Idea: Use OpenCL 2.x feature SVM → pointers again
• We are working on a proof of concept implementation for OpenCL

Martin Schwinzerl SixTrackLib June 19th 2020 40 / 45

SideBar: How Does Address Sharing Work?

• CUDA: Memory is managed via raw pointers → works
• But: Resource Management, Lifetime Management, Context &

Device Selection → very difficile
• OpenCL: memory is managed via cl mem Objects → more challenging
• Idea: Use OpenCL 2.x feature SVM → pointers again
• We are working on a proof of concept implementation for OpenCL

Martin Schwinzerl SixTrackLib June 19th 2020 40 / 45

4 Integrating SixTrackLib with PyHEADTAIL

Space Charge Model Benchmarking

Comparison between realistic (computationally demanding) PIC and
approximative frozen (fast) space charge models for half-integer stop-band:

18.56 18.58 18.60 18.62 18.64 18.66 18.68 18.70
Qy

0

1

2

3

4

Ve
rti

ca
l e

m
itt

an
ce

 g
ro

wt
h

y/
y0

200 turns at Qx = 18.86: STL+PyHT models

Space Charge Models:
self-consistent PIC
matched frozen
fixed frozen
adaptive frozen

0 25 50 75 100 125 150 175 200
Turns

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Ve
rti

ca
l e

m
itt

an
ce

 g
ro

wt
h

y/
y0

Qx = 18.86, Qy = 18.6

Space Charge Models:
self-consistent PIC
matched frozen
fixed frozen
adaptive frozen

Figure: ICFA Beam Dynamics Newsletter #79, SIS100 contribution

=⇒ choose from variety of space charge models for identical lattice

Martin Schwinzerl SixTrackLib June 19th 2020 41 / 45

Applications of SixTrackLib + PyHEADTAIL

90 deg stop-band

Interplay of coherent vs. incoherent
resonances driven by space charge

Figure: running 3D PIC in FODO

FAIR synchrotron SIS100

Beam loss studies with space charge
and nonlinear magnet imperfections

Figure: frozen SC in SIS100 lattice

Martin Schwinzerl SixTrackLib June 19th 2020 42 / 45

Applications of SixTrackLib + PyHEADTAIL

90 deg stop-band

Interplay of coherent vs. incoherent
resonances driven by space charge

Figure: running 3D PIC in FODO

FAIR synchrotron SIS100

Beam loss studies with space charge
and nonlinear magnet imperfections

Figure: frozen SC in SIS100 lattice

run time

1 million macro-particles,
5’000 cells: < 20min on

NVIDIA V100 (high-end GPU)

run time

1000 macro-particles,
20’000 turns: < 3min on

NVIDIA V100 (high-end GPU)

Martin Schwinzerl SixTrackLib June 19th 2020 43 / 45

Applications of SixTrackLib + PyHEADTAIL

90 deg stop-band

Interplay of coherent vs. incoherent
resonances driven by space charge

Figure: running 3D PIC in FODO

FAIR synchrotron SIS100

Beam loss studies with space charge
and nonlinear magnet imperfections

Figure: frozen SC in SIS100 lattice

run time

1 million macro-particles,
5’000 cells: < 20min on

NVIDIA V100 (high-end GPU)

run time

1000 macro-particles,
20’000 turns: < 3min on

NVIDIA V100 (high-end GPU)

Martin Schwinzerl SixTrackLib June 19th 2020 43 / 45

Summary & Outlook

• Delivering scalable single-particle tracking on massively parallel
systems to users without GPU programming Know-How is possible :-)

• Retaining symplectivity is crucial for studying effects over N >> 1
turns

• SixTrackLib is still under heavy development but already useful in
controlled settings with early adopters

• Still a lot of work to do, especially concerning optimisation and
numerical stability & reproducibility

Martin Schwinzerl SixTrackLib June 19th 2020 44 / 45

Summary & Outlook

• Delivering scalable single-particle tracking on massively parallel
systems to users without GPU programming Know-How is possible :-)

• Retaining symplectivity is crucial for studying effects over N >> 1
turns

• SixTrackLib is still under heavy development but already useful in
controlled settings with early adopters

• Still a lot of work to do, especially concerning optimisation and
numerical stability & reproducibility

Martin Schwinzerl SixTrackLib June 19th 2020 44 / 45

Summary & Outlook

• Delivering scalable single-particle tracking on massively parallel
systems to users without GPU programming Know-How is possible :-)

• Retaining symplectivity is crucial for studying effects over N >> 1
turns

• SixTrackLib is still under heavy development but already useful in
controlled settings with early adopters

• Still a lot of work to do, especially concerning optimisation and
numerical stability & reproducibility

Martin Schwinzerl SixTrackLib June 19th 2020 44 / 45

Summary & Outlook

• Delivering scalable single-particle tracking on massively parallel
systems to users without GPU programming Know-How is possible :-)

• Retaining symplectivity is crucial for studying effects over N >> 1
turns

• SixTrackLib is still under heavy development but already useful in
controlled settings with early adopters

• Still a lot of work to do, especially concerning optimisation and
numerical stability & reproducibility

Martin Schwinzerl SixTrackLib June 19th 2020 44 / 45

Thank You For Your Attention!

Martin Schwinzerl SixTrackLib June 19th 2020 45 / 45

Extra Slides

Martin Schwinzerl SixTrackLib June 19th 2020 1 / 4

2 Symplectic Kicks From An Electron Cloud

Martin Schwinzerl SixTrackLib June 19th 2020 2 / 4

Impact of Kernel Complexity On Parallel Performance))

Martin Schwinzerl SixTrackLib June 19th 2020 3 / 4

Impact of Kernel Complexity On Parallel Performance
• Calculation of field components (according to a Gaussian distribution)

and the complex error function (Faddeeva function) is shared between
BB and SC elements

Martin Schwinzerl SixTrackLib June 19th 2020 4 / 4

	Appendix

