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Goals

Introduce single-particle tracking, symplectic tracking and
SixTrackLibs approach to data-parallelism

Explain & motivate design decisions for SixTrackLib

Provide a minimal API demonstration (Cf. accompanying
jupyter-notebook)

® Give overview about the preliminary performance figures

® Showcase examples of real-world applications
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Hamiltonian Formulation

p Search path connecting q(to) to q(t;)
which makes S along the path extreme ° qg= (X, p) conjugate coordinates
x4 (t) . . .
K e for given start- and end-points in
phase-space q(ty) and q(t1) and
) _rt o
q(ty) q=(z,p) T °* 5= to dt [P X H(X?pa t)],
e find expressions for g so that 6S — 0
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Hamiltonian Formulation

p Search path connecting q(t,) to q(t;) . i
which makes S along the path extreme [} q = (X, p) Con_] ugate COOI’d Inates

X4 (t) . . .
’ e for given start- and end-points in
phase-space q(tp) and q(t;) and

o S:=[dt[p-x—H(x,p,1)],

e find expressions for g so that §S — 0

Hamilton Equations of Motion, Transfer Maps

It can be shown, that if x, p, H, and t obey the equations

(_d_OH o OH
~dt Op’ P=3t = "ox

q((to) q=(z,p) T

(1)

then 65 — 0 indeed is true. In physics, the Hamiltonian H=T + V
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Hamiltonian Formulation

p Search path connecting q(t,) to q(t;) . i
which makes S along the path extreme [} q = (X, p) Con_] ugate COOI’d Inates

X (1) . . .
e for given start- and end-points in
phase-space q(tp) and q(t;) and
PR— t v
© S:= [dt[p-x—H(x,p,t)],
e find expressions for g so that §S — 0

Hamilton Equations of Motion, Transfer Maps
It can be shown, that if x, p, H, and t obey the equations

(_d_OH o OH (1)
~dt Op’ P=3t = "ox

q((to) q=(z,p) T

then 65 — 0 indeed is true. In physics, the Hamiltonian H=T + V

¢ We define a (Transfer) Map as a transformation that has the same
effect as integrating g; from to — t1, i.e. q(t1) = Mgy, (q(t0))
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Symplectic Transformation & Integration

® For 0t — 0, g = (qo, q1), we find qi(to + 0t) = qi(to) + ot - §;

0 1 )
1 O]’ this becomes

q(to + ot) = qi(to) + ot - Qjk - %

® With (1) and Qj = (Q);, = [

t=tp
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Symplectic Transformation & Integration

® For 0t — 0, g = (qo, q1), we find qi(to + 0t) = qi(to) + ot - §;

® With (1) and Qj = (Q);, = [_01 é] this becomes

2
q(to + t) = qi(to) + ot - Qi - %

t=tp
o Jacoblaan of ;che Transformation
i(to+ot
Jj = 250 = 05+ 0t Qi goge | A=t
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Symplectic Transformation & Integration
® For 0t — 0, g = (qo, q1), we find g;i(to + 0t) = qi(to) + ot - §;
® With (1) and Qj = (Q);, = [_01 (1)] this becomes

2
q(to +0t) = qi(to) + 0t - Q- % .
® Jacobian of the Transformation

0q;(to+9
Jj = 29t — 5y +6t-Q

= J=1+6t-Q-H

=ty

ik " 6q qu

Definition: Symplectic Transformation

J is a symplectic transformation <= J'QJ =Q
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Symplectic Transformation & Integration
® For 0t — 0, g = (qo, q1), we find g;i(to + 0t) = qi(to) + ot - §;
® With (1) and Qj = (Q);, = [_01 (1)] this becomes

2
q(to +0t) = qi(to) + 0t - Q- % .
® Jacobian of the Transformation

0q;(to+ot)
Jj = PGy = 0+ 0t Quc gode|

= J=1+6t-Q-H

=ty

Definition: Symplectic Transformation

J is a symplectic transformation <= J'QJ =Q

e J as derived via (1) fulfills symplectivity condition

® Thus Jiystgt26t = J(t0+6t)H(t0+26t) 0 Jtgsto+ot also symplectic
® M, .+, constructed from a composition of symplectic J is also
symplectic (i.e. M is a symplectic Map)
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Consequences (Hamiltonian EoM, Symplectic Maps)

e Jis symplectic = det(J) = £+1
Preservation of phase space volume (Liouville Theorem)
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Consequences (Hamiltonian EoM, Symplectic Maps)

e Jis symplectic = det(J) = £1
Preservation of phase space volume (Liouville Theorem)

® Hamiltonian formalism allows algebraic transformation of independent
variable from t — s (i.e. distance from start of turn)

e —> Allows to approximate the effect of "beam-elements” located at
spatial position s with sequence of symplectic maps

® Composition of beam-element maps — symplectic one-turn-map

® Cyclic Motion

L i Assume System of ODEs
= f(u,v)
0= g(u,v)

u-v space with solution
curves (~vector field)
— Cyclic, Periodic Solutions
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Consequences (Hamiltonian EoM, Symplectic Maps)

e Jis symplectic = det(J) = £1
Preservation of phase space volume (Liouville Theorem)

® Hamiltonian formalism allows algebraic transformation of independent
variable from t — s (i.e. distance from start of turn)
e —> Allows to approximate the effect of "beam-elements” located at

spatial position s with sequence of symplectic maps

® Composition of beam-element maps — symplectic one-turn-map

Cyclic Motion

,:analytical
“solution for
initial condition
Yo = (uo. vo)
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Consequences (Hamiltonian EoM, Symplectic Maps)

e Jis symplectic = det(J) = £1
Preservation of phase space volume (Liouville Theorem)

Hamiltonian formalism allows algebraic transformation of independent
variable from t — s (i.e. distance from start of turn)

= Allows to approximate the effect of "beam-elements” located at
spatial position s with sequence of symplectic maps

Composition of beam-element maps — symplectic one-turn-map

Cyclic Motion

v non-symplectic
e integration from initial
i condition ¥p

,fanalytical
“solution for
initial condition
Yo = (uo. vo)

~ "explicit" u ~ "implicit" u
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Consequences (Hamiltonian EoM, Symplectic Maps)

e Jis symplectic = det(J) = £1
Preservation of phase space volume (Liouville Theorem)

® Hamiltonian formalism allows algebraic transformation of independent
variable from t — s (i.e. distance from start of turn)

e —> Allows to approximate the effect of "beam-elements” located at
spatial position s with sequence of symplectic maps

® Composition of beam-element maps — symplectic one-turn-map

® Cyclic Motion — Closed Orbit

" analytical
“solution for
initial condition
o = (UU:’UU) ; symplectic

&g ~ integration from
g initial condition ¥/q

non-symplectic U u
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Consequences (Hamiltonian EoM, Symplectic Maps)

e Jis symplectic = det(J) = £+1
Preservation of phase space volume (Liouville Theorem)

® Hamiltonian formalism allows algebraic transformation of independent
variable from t — s (i.e. distance from start of turn)

o — Allows to approximate the effect of "beam-elements” located at
spatial position s with sequence of symplectic maps

® Composition of beam-element maps — symplectic one-turn-map

® Cyclic Motion — Closed Orbit

(approximations/truncations — deviations; but: orbit still closed!)

" analytical
solution for
initial condition

Yo = (w0, vo)

non-symplectic U ‘ symplectic
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Single Particle Tracking, Parallelism

® Accelerator ~ sequence of discrete beam-elements (" lattice”)
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Single Particle Tracking, Parallelism
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® Tracking a single particle over a lattice = sequential operation

rorn 1 CEEOCEET =+ CIE

rurn 0 LIOACICICIET =~ 1
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® Accelerator ~ sequence of discrete beam-elements (" lattice”)

® Tracking a single particle over a lattice = sequential operation

rorn 1 CEEOCEET =+ CIE

rurn 0 LIOACICICIET =1

® Tracking a particle over N > 10%...108 turns — numerically
expensive & challenging (non-linear, on-setting chaos,...)

* If any two particles P; and P; i # j € [0, Np) do not interact —
"single-particle tracking”
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Single Particle Tracking, Parallelism

® Accelerator ~ sequence of discrete beam-elements (" lattice”)

® Tracking a single particle over a lattice = sequential operation

Turn 1 DDDDDDD".. ED. S

rurn o EEOOET ]

e Tracking a particle over N > 10*...108 turns — numerically
expensive & challenging (non-linear, on-setting chaos,...)

® If any two particles P; and P; i # j € [0, Np) do not interact —
"single-particle tracking”

® Single-Particle Tracking + Np >>1 —
"embarrassingly parallel problem” (data-parallelism)

rurn v COECOCCE - DI
-—
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Bringing It All Together: SixTrackLib

SixTrackLib is a
@ Parallel
® Single-Particle
© Symplectic Tracking
O Library
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Bringing It All Together: SixTrackLib

SixTrackLib is a
@ Parallel
® Single-Particle
© Symplectic Tracking
O Library
® Re-implementation of the
core functionality of

SixTrack, focusing only on
tracking

® Under development for > 2
years

® https://github.com/
SixTrack/sixtracklib
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Bringing It All Together: SixTrackLib

SixTrackLib is a Requirements:
@ Parallel ® Numerical accuracy, stability
@ Single-Particle & reproducibility
© Symplectic Tracking
O Library

® Re-implementation of the
core functionality of
SixTrack, focusing only on
tracking

e Under development for > 2
years

® https://github.com/
SixTrack/sixtracklib
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Bringing It All Together: SixTrackLib

SixTrackLib is a Requirements:
@ Parallel ® Numerical accuracy, stability
@® Single-Particle & reproducibility
© Symplectic Tracking ¢ \I:Vi((ije range of SI|J[.)p|orted e
. araware — multiple paralle
O Library backends PP

® Re-implementation of the
core functionality of
SixTrack, focusing only on

® Good scalability towards
Np >> 1 (parallel
processors, GPUs)

trackin
& ® High code efficiency for
® Under development for > 2 Np ~ 1 (CPU)
years
® https://github.com/
SixTrack/sixtracklib
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Bringing It All Together: SixTrackLib

SixTrackLib is a
@ Parallel
® Single-Particle
© Symplectic Tracking
O Library
® Re-implementation of the
core functionality of

SixTrack, focusing only on
tracking

® Under development for > 2
years

® https://github.com/
SixTrack/sixtracklib

Requirements:

Martin Schwinzerl SixTrackLib

Numerical accuracy, stability
& reproducibility

Wide range of supported
hardware — multiple parallel
backends

Good scalability towards
Np >> 1 (parallel
processors, GPUs)

High code efficiency for
Np ~ 1 (CPU)

Strict separation between
"physics” and " business
logic" code

Single code base, bindings

to multiple languages
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Implementation, Design & Basic Usage
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Modelling the State Of The Particles

reference particle trajectory

X
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Modelling the State Of The Particles

Qlw,y,s,t) | 4(s)

particle trajectory

reference particle trajectory

X
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Modelling the State Of The Particles

Q(,{, y!s!t) 3;’('5)

particle trajectory 6 Maln Degrees Of Fl’eedom

fZP=h_] .X'y[m]
/ ® px = Px/Po, py = Py/Po [rad]

reference particle trajectory

X
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Modelling the State Of The Particles

particle trajectory 6 Maln Degrees Of Fl’eedom
L ® x, y [m]

® p = PX/Po, Py = Py/Po [rad]
*¢=p-(s/Po—c-t)[m]
L= (P— Po)/PO

X
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Modelling the State Of The Particles

Qr.y.s.t) i)

H) partice trajectory 6 Main Degrees Of Freedom
T
TR Ph s pm ke ® x, y [m]

px = Px/Po, py = P, /Py [rad]
¢=p-(s/Bo—c-t)[m]
5= (P—Po)/Po

reference particle trajectory

X

4 Logical Coordinates

® particle_id
® at_element
® at_turn

* state
(0 == lost, 1 == active)

v
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Modelling the State Of The Particles

Qlwy,s,) | ils) .

;(?) A partce trajectory 6 Main Degrees Of Freedom

KA o1 * x y [m]

® p = P«/Po, Py:Py/PO [rad]
* (=pB(s/fo—c-t)[m]
L (P— Po)/P()
4 Logical Coordinates 6 Auxiliary Attributes

® particle_id ° s [m]
Ps = (E — Eo)/(Bo - Po - c)

I'op = PO/P: vy :ﬂ/50
® state ® charge ratio = q/qo

(0 == lost, 1 == active) ) x = (g/q0)/(m/mg)

® at_element

® at_turn
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Modelling the State Of The Particles Il

e Additionally, we have

5 Attributes Describing The Reference Particle " 0"
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Modelling the State Of The Particles Il

e Additionally, we have

5 Attributes Describing The Reference Particle " 0"

® charge qo ([qo] = 1 proton charge)
® mass mg ([mg] = 1eV/c?

® fo=w/c

7 =(1-4)""?

poc = (Py - ¢) [pOc] = eV
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e Additionally, we have

5 Attributes Describing The Reference Particle " 0"

® charge qo ([qo] = 1 proton charge)
® mass mg ([mg] = 1eV/c?

® fo=w/c

7 =(1-4)""?

poc = (Py - ¢) [pOc] = eV
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Modelling the State Of The Particles Il

e Additionally, we have

5 Attributes Describing The Reference Particle " 0"

® charge qo ([qo] = 1 proton charge)

® mass mg ([mg] = 1eV/c?
® Bo=w/c

* yo=(1-5)"

® pOc = (Py - ¢) [pOc] = eV

® In total: 21 attributes (~ 168 Bytes/particle)
® Store N, particles in one structure: struct-of-arrays
® — replicate qo, mo, So, Yo, pOc for all N, particles! Why?
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Modelling the State Of The Particles Il

e Additionally, we have

5 Attributes Describing The Reference Particle " 0"

® charge qo ([qo] = 1 proton charge)

® mass mg ([mg] = 1eV/c?
® Bo=w/c

7 =(1-4)""?

poc = (Py - ¢) [pOc] = eV

In total: 21 attributes (~ 168 Bytes/particle)

Store N, particles in one structure: struct-of-arrays
® — replicate qo, mo, So, Yo, pOc for all N, particles! Why?

@ Consistency: tracking is asynchronous and can update ref.
@® Performance: vectorisation, burstable loads
© Flexibility: allow different ref. parameters per particle
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Lattice & Beam Elements

In General: Similar to SixTrack

Drift, DriftExact

Multipole (incl. Dipoles, Quadrupoles, Sextupoles, etc.)
Cavity

RFMultipole

XYShift: transversal shift

SRotation: rotation in the transversal plane
DipoleEdge

BeamMonitor: programmable dump of particle state
BeamBeam4D, BeamBeam6D

SpaceChargeCoasting, SpaceChargeBunched1
LimitRect, LimitEllipse, LimitRectEllipse: aperture checks

1
’

SpaceChargeBunched — SpaceCharge(Gaussian

Martin Schwinzerl SixTrackLib June 19th 2020
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Lattice & Beam Elements Il

There are different approaches to build a new or import an existing lattice
for SixTrackLib:

@ Build manually, element by element

® Import from pysixtrack

© Import from MAD-X (via pysixtrack and cpymad)

O Import from SixTrack (via pysixtrack and sixtracktools)

® Load from binary dump

Related Python-Centric Projects Under the SixTrack Umbrella:
® pysixtrack: https://github.com/SixTrack/pysixtrack
® sixtracktools: https://github.com/SixTrack/sixtracktools
® cobjects: https://github.com/SixTrack/cobjects

Cf. accompanying jupyter notebook + data samples!
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Example: Simple Tracking Example

import sixtracklib as st
import numpy as np

# Create an initial particle distribution:

beam = st.ParticlesSet()

p = beam.Particles(num_particles=10, p@c=6.5e12)
p.x[:] = np.linspace(-le-6, +le-6, p.num_particles)

# Load the lattice containing all the beam-elements in sequence from a prepared file
lattice = st.Elements().fromfile("./lhc_no_bb lattice.bin")

# Most users will only interact with the so called "Track Job"
# Setup an instance:
job = st.TrackJob( lattice, beam )

# Track *until* all active particles arrive in turn 108
job.track until( 100 )

# Actively mark a specific particle as lost
p.state[0] = @ # @ == lost, 1 == active

# Track *until* all active particles arrive in turn 200
job.track until( 200 )

# Print the result to verifiy the success of the operation

if p.num_particles <= 16:
print( f"at element after tracking for 200 turns: {p.at element}" )
print( f"at_turn after tracking for 200 turns: {p.at_turn}" )
print( f"state after tracking for 200 turns: {p.state}" )
print( f"x after tracking for 200 turns: {p.x}" )

at_element after tracking for 200 turns: [8 8 0 0 0
at_turn after tracking for 200 turns: [100 200 2
state after tracking for 200 turns: [0 1111
X after tracking for 200 turns: [-9.99845051e-07 -7.77491911e-07 -5.55303462e-07 -3.33123094e-07
-1.10949224e-07 1.11219787e-07 3.33385573e-07 5.55549726e-07
7.77713872e-07 9.99879665e-07]

o000
00 200 200 200 200 200 200 200]
1111

oo
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Modes & Logistics Of Tracking

@ track_until Mode:

rara o (IEECT {008

® track elem by_elem Mode:

Turn 0

©® track_line Mode:

Turn 0 | |

——

Martin Schwinzerl

- O0Od

SixTrackLib

Track all active particles
until they reach at_turn N
job.track_until( N )

Like track_until(), but dump

(i.e. copy) the particle state

to an external buffer before
each beam-element
job.track_elem_by_elem( N )

Track over subset of lattice
[begin, end)
job.track_line( begin, end,

end_turn=False )

June 19th 2020
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Using SixTrackLib On A GPU
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(Simplified) Workflow Of A GPU Accelerated Program

Device Memory

Host Memory ]

Icons: https://openclipart.org - License: Public Domain
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(Simplified) Workflow Of A GPU Accelerated Program

Host Memory j | ! [Device Memory
— =

OO000000000
0000000000

Particles  Lattice
(Host) (Host)

Icons: https://openclipart.org - License: Public Domain
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(Simplified) Workflow Of A GPU Accelerated Program

Host Memory ] I i Device Memory

allocate memory
on device

Y Y

[ [ [ [ [ | [
0000000000

Particles Lattice Particles  Lattice
(Host) (Host) (Device) (Device)

Icons: https:/fopenclipart.org - License: Public Domain
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(Simplified) Workflow Of A GPU Accelerated Program

Host Memory Device Memory

-
Copy Data From Host To

L Device ("push_*")

DDDDDDDDDH
OO00O00000

Particles Lattice Particles  Lattice
(Host) (Host) (Device) (Device)

Icons: https:/fopenclipart.org - License: Public Domain
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(Simplified) Workflow Of A GPU Accelerated Program

[ [ [ [ [ [ [ [
OOO0O00O00000

Particles Lattice
(Host) (Host)

Icons: https:/fopenclipart.org - License: Public Domain

Execute Progam ("Kernel")
track_until( N )

Particles
(Device)

Martin Schwinzerl SixTrackLib

Lattice
(Device)
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(Simplified) Workflow Of A GPU Accelerated Program

[ Host Memory ] [ Device Memory ]

-
Copy Data From Dervice to
L Host ("collect_*") =
/ IF NEEDED!!
[m[m]
(uu]
og
[m(m]
oo
oo
oo
[m[m]
oo
oo
Particles Lattice Particles  Lattice
(Host) (Host) (Device) (Device)

Icons: https:/fopenclipart.org - License: Public Domain
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Example: Tracking Code Working On CPUs & GPUs
(With Minimal Changes)

beam = st.ParticlesSet()

p = beam.Particles(num particles=18, pBc=6.5el2)

p.x[:1 = np.linspace(-1le-6, +le-6, p.num particles)
lattice = st.Elements().fromfile("./lhc_no _bb lattice.bin")

#device=None # Or:
device="opencl:0.8" #for GPU

job = st.TrackJob( lattice, beam, device=device )
print( f"Architecture of the track job: {job.arch_ str}")

job.track_until{ 1@ )
job.collect_particles()

p.statel@] = @ # Mark particle @ explicitly as lost
job.push_particles()

job.track_until( 208 )
job.collect_particles()

if p.num_particles <= 16:
print( f'at_element after 200 turns : {p.at_element}" )
print( f'at_turn after 280 turns : {p.at_turn}" )
print( f"state after 200 turns : {p.state}" )

Architecture of the track job: opencl

at_element after 200 turns : [A @A G 80006 0]

at_turn after 200 turns : [100 200 200 200 200 200 200 200 200 200]
state after 200 turns : [#111111111]
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Quantifying Parallel Performance
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Performance CPU TrackJob)

LHC Lattice incl. Imperfections but without 6D/4D Beam-Beam, SC Elements
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Limiting Factors For Parallel Performance

(Remember: single-particle tracking, "embarrassingly” parallel program)
® Sequential portion of the run-time tg
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Limiting Factors For Parallel Performance

(Remember: single-particle tracking, "embarrassingly” parallel program)
e Sequential portion of the run-time t
® Data-dependent branching in kernels (SPMD/SIMD) — renders
data-dependent code-paths sequential
® Limited bandwidth and finite latency in collect_* and push_x calls
® Latency in starting kernels / waiting until kernel execution is finished
® Individual threads can not be scheduled on GPUs - code execution in
multiples of warp / wavefront sizes (32/64 threads)

e Limited Available Resources (Registers, Shared Memory, etc.) —
number of threads that can be executed / scheduled concurrently is
reduced

® Reduced number of warps/wavefronts in flight — less opportunity to
mitigate 1/O blocks and other latency issues by switching from a
stalled to a warp/wavefront that can be executed — again, t
increases
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Performance Parallel Environment (GPUs & CPUs))

o3 LHC Lattice incl. Imperfections but without 6D/4D Beam-Beam, SC Elements
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Performance Parallel Environment (GPUs & CPUs))

10 LHC Lattice incl. Imperfections but without 6D/4D Beam-Beam, SC Elements (LOG-LOG)
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Using and Extending SixTrackLib:
Real-World Scenarios
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Usage & Integration Strategies For SixTrackLib

Sorted in the order "easily accessible” to "complex & invasive”
@ Use track *, collect_x, push_*x APl (C, C++, Python)
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+ use track_line to hand-off/take over from the custom
kernel(Currently only OpenCL, C99; CUDA with NVRTC possible)

O Implement the required functionality (e.g. "beam-elements”) into
SixTrackLib (C99, C++, Python)

© Directly include C99 header-only subset of SixTrackLib into
application kernel or link application against C99 or C++ API of
SixTrackLib (C99 + Most Other Languages)

Martin Schwinzerl SixTrackLib June 19th 2020 25 /45



Usage & Integration Strategies For SixTrackLib

Sorted in the order "easily accessible” to "complex & invasive”
@ Use track *, collect_*, push * APl (C, C++, Python)
® Compile And Launch Custom Kernel via SixTrackLib Infrastructure

+ use track_line to hand-off/take over from the custom
kernel(Currently only OpenCL, C99; CUDA with NVRTC possible)

© Share particles state "in-place” with other applications (zero-copy)
together with track_line (Currently only CUDA, C++ or Python)

O Implement the required functionality (e.g. "beam-elements”) into
SixTrackLib (C99, C++, Python)

© Directly include C99 header-only subset of SixTrackLib into
application kernel or link application against C99 or C++ API of
SixTrackLib (C99 + Most Other Languages)
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A Selection Of Usage Examples

@ Dynamic Aperture (DA), Beam-Stability, Resonances
Carlo Emilio Montanari (Universita di Bologna), Massimo Giovannozzi

® Symplectic Kicks From An Electron Cloud
Konstantinos Paraschou (AUTH,CERN), Giovanni ladarola, et al

© Simulating Beam-Beam Interactions & Space-Charge Effects
Hannes Bartosik, Giovanni ladarola, et al

O Integrating SixTrackLib with PyHEADTAIL
Adrian Oeftiger (GSI/FAIR)
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1 Dynamic Aperture (DA), Beam-Stability, Resonances

® Study uses SixTrackLib directly to perform tracking for N turns
® Performs analysis and evaluation between turns on the host

® "Simple” use case - no extension and customisation was required

LHC lattice (no bb interaction). Stable region.

25

-
n
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154

w
n

y [o units]
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w
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Number of stable turns considered
[log1o{Msms1]

~
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20
0 5 10 15 20
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Figure: Sampling stable region via radial scans over Nyyms

Martin Schwinzerl SixTrackLib June 19th 2020 27 /45



1 Dynamic Aperture (DA), Beam-Stability, Resonances

® Visualising 4D space (r,a,©1,0; is challenging - SixTrackLib
helps with creating interactive views by being embeddable into
parameterised visualisations

DA evolution over a for a moving average of 6° elements (total is 333)
This implies 27 DA computations over the given 81, 83 slice.
@ slice considered: (8, = 0.00m, 8; = 0.00m)

28
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26 4 @
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T 2] ang
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Figure: Evolution of r over « for a given ©1,0; slice over Ny s
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1 Dynamic Aperture (DA), Beam-Stability, Resonances

2D binning (128 x 128) over the (81, 82) space of a particle tracked for 10000 turns.

Average radius measured Number of samples 9
a=0.07782n 15.75 a=0.07782n

- 2m ]
15.50 7
15.25 &
5

15.006' 1w
4

14.75

3
14.50 2
125 07 1
o]

Figure: Histogram and average measured r over 1, ©;, plane in dependence of
initial value for
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1 Dynamic Aperture (DA), Beam-Stability, Resonances

2D binning (128 x 128) over the (81, 82) space of a particle tracked for 10000 turns.

Average radius measured 17.8 Number of samples 35
a=0.1853n a=0.1853mn
n 7
30
17.4
25
17.2
20
& 1 1708 1T
15
16.8
10
16.6
5
o 16.4 o
om i 2n

Figure: Histogram and average measured r over 1, ©; plane in dependence of
initial value for «
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1 Dynamic Aperture (DA), Beam-Stability, Resonances

Percentage of empty bins for different intial @ angles. N bins = (32 x 32) =1024, N turns =10000
(Higher percentage implies less “diffusion’)
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2 Symplectic Kicks From An Electron Cloud

. . Example PyECLOUD simulation:
For various reasons and under certain plery

conditions (fulfilled in the LHC),
there exists a complex distribution of
electrons within the vacuum chamber
that interacts with the beam called
“Electron Cloud”.

Distribution strongly depends on x, y
and time! (as bunch passes through
the electron cloud)

0.0 0.2
—ct [m]
Particles with an amplitude of 1 beam-o
oscillate within the black line

Under usual approximations® the interaction can be written as a thin-lens
through the Hamiltonian: . gl 5
X, ¥, T;8) = ———¢(x,y,7)d(s
(x,y,7:5) BoPoc (x,y,7)0(s)
where ¢ is the scalar potential describing the electron cloud.

Osee G. ladarola, CERN-ACC-NOTE-2019-0033.

Martin Schwinzerl SixTrackLib June 19th 2020 32/45



https://cds.cern.ch/record/2684858

2 Symplectic Kicks From An Electron Cloud

PyECLOUD would produce ¢ on a discrete grid (x, y, time)
— ¢ should be interpolated

To study slow effects, interpolation should produce symplectic kicks
— Tricubic Interpolation: ¢(x,y,7) = 21311 ko kX' yiTk
Add custom beam-element TriCub to implement the map

N3 coefficients with typically N ~ (O(102) per TriCub element
= ((10%) MByte of data for each TriCub

But: interpolation data can be shared between many beam-elements
(e.g. All focusing quadrupole magnets have similar Electron Cloud)

Idea: implement infrastructure to store data externally from TriCub
elements and assign & share coefficient data

OO0 OO0 OO0 -+

o v
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2 Symplectic Kicks From An Electron Cloud

® In principle, TriCub element general enough to describe any
interaction whose Hamiltonian can be discretized on a grid of (x,y,7)

® GPUs: large global memory (4-16 GByte), adequate memory
bandwidth — perfect environment for simulations with TriCub
beam-elements.
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3 Beam-Beam Interactions & Space-Charge Effects

® SixTrackLib implements 4D and 6D beam-beam (BB) interactions
using a weak-strong beam formulation?
® Frozen Space-Charge (SC) beam-elements share infrastructure with
the BB implementation
® Coasting SpaceChargeCoasting
® Bunched SpaceChargeQGaussianProfile
® Bunched SpaceChargeInterpolatedProfile using linear and cubic
spline longitudinal interpolation (under development)
® SpaceChargeInterpolatedProfile uses API to assign external
data to a number of beam-elements to share profile samples and
interpolation parameters between SC elements

2G. ladarola et al. CERN-ACC-NOTE-2018-0023 "6D beam-beam interaction
step-by-step
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lJJ Observations from CERN SPS experiment

* Benchmark experiment

* Horizontal 3 order resonance at Qx = 20.33 deliberately excited
* Additional resonance observed at Qx = 20.40 (space charge driven)

-

measurements

AQx ~ -0.06
3 sstorage

Ratio (OUT/IN)
Now R o

-

Hetiy

T
—5— emittance H
—& emittance V
—4— intensity

o33

a
20.30 20.32 20.34 2036 20.38 20.40 20.42

Ratio finalfinitial

&

w

N

-

frozen SC simulations

e+ emittance H
== emittance v
o intensity

*~J
~J
*~J

ol L
20.30 20.32

2H. Bartosik, F. Schmidt " Studies on Tune Ripple”,

4th ICFA Mini-Workshop on SpaceCharge 2019,

20.34 2036 20.38 2040 2042

https://indico.cern.ch/event/828559/contributions/3528378
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lj Observations from CERN SPS experiment

* Benchmark experiment
* Horizontal 3 order resonance at Qx = 20.33 deliberately excited
* Additional resonance observed at Qx = 20.40 (space charge driven)

= Simulations with frozen potential far from experiment unless SPS tune ripple from quadrupole
power converters is taken into account

5 measurements frozen SC simulations with tune ripple
T 7
AQx ~ -0.06 —+ emittance H H #—+ emittance H
5| 35 storage —3— emittance V 6l (7 e emittance v
\ o intensity
s 5

—4— intensity f

Ratio (OUT/IN)
Ratio finalfinitial
w

N

| -~

3030 2032 2034 2036 2038 2040 2082 Y2630 2032 2034 2036 2038 2040 042
Ox Qx
With CPU only impl. 4: 5e3 Particles ~ 4 Days  Simulation over 130000 turns

-

With SixTrackLib: 20e3 Particles ~ 4 Hours After each turn: collect, update quadrupoles, push!

2H. Bartosik, F. Schmidt " Studies on Tune Ripple”,
4th ICFA Mini-Workshop on SpaceCharge 2019,
https://indico.cern.ch/event/828559/contributions/3528378
o e S
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4 Integrating SixTrackLib with PyHEADTAIL
Beyond the single-particle treatment within SixTrackLib, model collective
effects as “true” interaction between macro-particles via PyHEADTAILS:

® accelerated on the GPU via (Py)CUDA
¢ self-consistent models for (e.g. 3D PIC/particle-in-cell) space charge

wake fields and feedback systems
& P ]

Figure: wake fields

/ :?Ai&\

e S
&
\K

oy 3

r—ﬂ—fﬁ—ﬂ—ﬂgﬁ
S b bow s .
E, [kV/m]

e

Figure: PIC space charge

*https://github.com/PyCOMPLETE/PyHEADTATL
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4 Integrating SixTrackLib with PyHEADTAIL

Share particle memory between SixTrackLib and PyHEADTAIL:

@ use SixTrackLib's track 1ine API to advance particles through parts
of accelerator lattice

® expose particle coordinates on GPU via SixTrackLib's
get_particle_addresses interface to apply kick in PyHEADTAIL

— alternating single- and multi-particle physics while remaining on GPU
device memory!

\ TPoincare l/
section
Hmm /’ikkk l
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4 Integrating SixTrackLib with PyHEADTAIL

Share particle memory between SixTrackLib and PyHEADTAIL:

@ use SixTrackLib's track 1ine API to advance particles through parts
of accelerator lattice

® expose particle coordinates on GPU via SixTrackLib's
get_particle_addresses interface to apply kick in PyHEADTAIL

— alternating single- and multi-particle physics while remaining on GPU
device memory!

SixTrackLib track_line()

SixTrackLib //" —_——

/’ © pyHEADTAIL C’\/

& PyHEADTAIL 6
TPoincare
SixTrackLib section l/
° I o
PyHEADTAIL ® . o
SixTrackLib PyHEADTAIL
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SideBar: How Does Address Sharing Work?

ot Memory g

Execute Progam ("Kernel")
track_line( begin, end )

B :

L
[
=
[

oo =
[

og g

oo [ul:
Particles Lattice Particles  Lattice
(Host) (Host) (Device) (Device)

Icons: https://openclipart.org - License: Public Domain
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SideBar: How Does Address Sharing Work?

Host Memory

Device Memory

Ve ~

particles ~
-~ struct of arrays
E —x_addr:  Oxabc123 ...
| px_addr: exabci24 ...
f— y_addr: @xabc125 ...
L /
oo oo
g i
oo
oo 10
oo oo
oo og
ag
EE BH
u]a|
oo
Particles  Lattice Particles  Lattice
(Host) (Host) (Device) (Device)

Icons: https://openclipart.org - License: Public Domain
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SideBar: How Does Address Sharing Work?

Host Memory Device Memory

particles ~
struct of arrays

L .\ —X_addr:  @xabc123 ...
| —px_addr: @xabc124 ...
|- y_addr: @xabc12s ...

> PyHEADTAIL

m ]l
00000000

Oooo0ooooon
0000000000

Particles Lattice Particles  Lattice
(Host) (Host) (Device) (Device)

Icons: https://openclipart.org - License: Public Domain
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SideBar: How Does Address Sharing Work?

Host Memory

Device Memory

particles ~
struct of arrays
—x_addr: Oxabc123 ...
| —px_addr: @xabc124 ...
|-y addr: @xabc12s ...

> PyHEADTAIL

[ [ [
IDO000000

g

Particles Lattice Particles  Lattice
(Host) (Host) (Device) (Device)

Icons: https://openclipart.org - License: Public Domain

e CUDA: Memory is managed via raw pointers — works
® But: Resource Management, Lifetime Management, Context &
Device Selection — very difficile
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SideBar: How Does Address Sharing Work?

Host Memory Device Memory
i particles ~ B

struct of arrays
—x_addr: Oxabc123 ...

| —px_addr: @xabc124 ...
|- y_addr:  oOxabc12s ...
> PyHEADTAIL
oo
og
BH
oo
og
BH
Particles Lattice Particles  Lattice
(Host) (Host) (Device) (Device)

Icons: https://openclipart.org - License: Public Domain

e CUDA: Memory is managed via raw pointers — works

® But: Resource Management, Lifetime Management, Context &
Device Selection — very difficile

® OpenCL: memory is managed via c1_mem Objects — more challenging
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SideBar: How Does Address Sharing Work?

Host Memory Device Memory
i particles ~ h

struct of arrays
—x_addr: Oxabc123 ...
| —px_addr: @xabc124 ...
|-y addr: @xabc12s ...

> PyHEADTAIL

oo

og

BH

oo

og

BH
Particles Lattice Particles  Lattice
(Host) (Host) (Device) (Device)

Icons: https://openclipart.org - License: Public Domain

e CUDA: Memory is managed via raw pointers — works

But: Resource Management, Lifetime Management, Context &
Device Selection — very difficile

OpenCL: memory is managed via c1_mem Objects — more challenging
Idea: Use OpenCL 2.x feature SVM — pointers again
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SideBar: How Does Address Sharing Work?

Host Memory Device Memory
( particles ~ .

struct of arrays
—x_addr: Oxabc123 ...
| —px_addr: @xabc124 ...
|-y addr: @xabc12s ...

> PyHEADTAIL

oo

og

BH

oo

og

BH
Particles Lattice Particles  Lattice
(Host) (Host) (Device) (Device)

Icons: https://openclipart.org - License: Public Domain

® CUDA: Memory is managed via raw pointers — works

But: Resource Management, Lifetime Management, Context &

Device Selection — very difficile
® OpenCL: memory is managed via c1_mem Objects — more challenging
® |dea: Use OpenCL 2.x feature SVM — pointers again
® \We are working on a proof of concept implementation for OpenCL
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4 Integrating SixTrackLib with PyHEADTAIL

Space Charge Model Benchmarking

Comparison between realistic (computationally demanding) PIC and
approximative frozen (fast) space charge models for half-integer stop-band:

200 turns at Qx = 18.86: STL+PyHT models

Space Charge Models:
—— self-consistent PIC
—— matched frozen
—— fixed frozen

—— adaptive frozen

N w >

Vertical emittance growth Ae,/eyo
-

(=)

1856 18.58 18.60 18.62 18.64 18.66 18.68 18.70
y

Figure: ICFA Beam Dynamics Newsletter #79, SIS100 contribution

= choose from variety of space charge models for identical lattice

Vertical emittance growth &,/

N
u
=]

1.75r

I
N
%

-
=3
=]

Qx=18.86, Qy=18.6

Space Charge Models:
—— self-consistent PIC
—— matched frozen
—— fixed frozen

—— adaptive frozen

0 25 50 75 100 125 150 175 200
Turns
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Applications of SixTrackLib + PyHEADTAIL

90 deg stop-band

Interplay of coherent vs. incoherent
resonances driven by space charge

30000

Mgtion of 1 particle for 5000 cells
25000
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S
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-4 5000

-0.5 0.0 0.5 1.0 15
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Figure: running 3D PIC in FODO

v
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FAIR synchrotron SIS100

Beam loss studies with space charge
and nonlinear magnet imperfections

SIS100, all field errors, 20'000 turns 20
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Figure: frozen SC in SIS100 lattice
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Applications of SixTrackLib + PyHEADTAIL

90 deg stop-band

Interplay of coherent vs. incoherent
resonances driven by space charge
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Figure: running 3D PIC in FODO
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FAIR synchrotron SIS100

Beam loss studies with space charge
and nonlinear magnet imperfections

SIS100, all field errors, 20'000 turns
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Figure: frozen SC in SIS100 lattice
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Applications of SixTrackLib + PyHEADTAIL

90 deg stop-band FAIR synchrotron SIS100

Interplay of coherent vs. incoherent
resonances driven by space charge

Mgtion of 1 particle for 5000 cells

¥, ,

1 million macro-particles,
5'000 cells: < 20min on
NVIDIA V100 (high-end GPU)

-4 v b 5000
Rl
Fut
0

-1.5 -1.0 =05 0.0 0.5 1.0 15
x [mm]

Figure: running 3D PIC in FODO
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Beam loss studies with space charge
and nonlinear magnet imperfections

SIS100, all field errors, 20'000 turns 20

run time

1000 macro-particles,
20’000 turns: < 3min on
NVIDIA V100 (high-end GPU)
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Figure: frozen SC in SIS100 lattice

v

June 19th 2020 43 /45



Summary & Outlook

® Delivering scalable single-particle tracking on massively parallel
systems to users without GPU programming Know-How is possible :-)
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Summary & Outlook

® Delivering scalable single-particle tracking on massively parallel
systems to users without GPU programming Know-How is possible :-)

® Retaining symplectivity is crucial for studying effects over N >> 1
turns

® SixTrackLib is still under heavy development but already useful in
controlled settings with early adopters

® Still a lot of work to do, especially concerning optimisation and
numerical stability & reproducibility
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Thank You For Your Attention!
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Extra Slides
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2 Symplectic Kicks From An Electron Cloud

/% Erom be_tricub/be_tricub.h /* From be_tricub/track.h */

typedef struct NS(TriCub) 56 SIXTRL_INLINE NS(track_status_t) NS(Track_particle_tricub)(
v{ SDXTRL PARTICLE ARGPTR DEC WS(Particles)t SIXTRL RESTRICT particles,

NS(be_tricub_real_t)  x_shift SIXTRL_ALIGN( 8 ); 5 NS(particle_num_elements_t) const ii,
NS(be_tricub_real _t) y_shift SIXTRL_ALIGN( 8 ) 59 SIXTRL_BE_ARGPTR_DEC const struct NS(TFlCub) *const SIXTRL_RESTRICT tricub )
NS(be_tricub_real_t) tau_shift SIXTRL_ALIGN( 8 ) 60 v {
NS(be_tricub_real t)  dipolar_kick_px  SIXTRL_ALIGN( & ) 6 typedef NS(be_tricub_real_t) real t;
NS(be_tricub_real_t)  dipolar_kick_py ~ SIXTRL_ALIGN( 8 ) typedef NS(be_tricub_int_t) int_t;
Nsm tricub_real t)  dipolar_kick_ptau SIXTRL_ALIGN( & ) §3
iS(be tricub real t)  length SIXTRL ALIGN( 8 [ SIXTRL_BUFFER_DATAPTR_DEC NS(TriCubData) const* tricub_data
NSAbufwadur,t) data_addr. SIXTRL_ALIGN( & ) 15 NS(TriCub_const_data)( tricub );
T - Ny o
NS(Tricub); "Pointer" to external TriCubData 67 real _t const length = NS(TriCub_length)( tricub );
L——=s——— real_t const x_shift = NS(TriCub_x_shift)( tricub );
L realt const y_shift = NS(TriCub_y_shift)( tricub )}
L = real t const z_shift = NS(TriCub_tau_shift)( tricub );
3 // method = 1 -> Finite Differences for derivatives (Do not use)
74 /7 method = 2 -> Exact derivatives
33 typedef struct NS(TriCubData) 75 7/ method 3 -> Exact derivatives and mirrored in X, Y
34 vy 6
35 NS(be_tricub_real_t) x0 SIXTRL_ALIGN( & ); 77 real_t const inv_dx = 1./( NS(TriCubData_dx)( tricub_data ) );
NS(be_tricub_real t)  dx SIXTRLZALIGN( & ); real_t const inv_dy = 1./( NS(TriCubbata_dy)( tricub_data ) ):
NS(be_tricub_int ) nx SIXTRL_ALIGN( & ); 7 eal t const inv_dz = 1./( NS(TriCubData_dz)( tricub data ) )i

NS(be_tricub_real t)  y0 SIXTRL_ALIGN( & ):ﬁ real_t const x0 = NS(TriCubData_x0)( tricub_data );
NS(be_tricub_real t)  dy STXTRLALIGN 8 ) 2 real t const yo = NS(TriCubData_y0)( tricub_data ):

Ns(be_tricub_int_t)  ny STXTRL_ALIGN( & P real_t const z0 = Ns(TriCubbata_z0)( tricub_data )
NS(be_tricub_real t) 20 STXTRL_ALTGN( 8 ):6‘ 85 real t const zeta = Ns(Particles_get_zeta_value)( particles, ii );
NS(be_tricub_real_t)  dz SIXTRLALIGN( 8 ); real_t const rvv Ns(Particles_get_rvv_value)( particles, ii );
Ns(be_tricub_int_t) nz SIXTRL_ALIGNC 8 ); 7 real_t const betad = NS(Particles_get_beta0_value)( particles, ii );
NS(be_tricub_int t)  mirror_x SIXTRL_ALIGN( 8 ); :

NS(be_tricub_int_t) mirror_y SIXTRL_ALIGN( & );

NS(be_tricub_int_t) mirror_z SIXTRL_ALIGN( 8 );

* Implemented in external branch kparasch_master

—_— Loplenoor TS SR | https://github.com/martinschwinzerl/sixtracklib/tree/kparasch_master
= wsaricwoata);  "Pointer" managed by CObjects Buffer
- - tricubic coefficients stored in ® To be merged into SixTrack/sixtracklib:master (PR#123)

linear array
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Impact of Kernel Complexity On Parallel Performance))

LHC Lattice incl. Imperfections but without 6D/4D Beam-Beam, SC Elements (LOG-LOG)

103

104

107

s
107 Y . AMD Threadripper 2970wx CPU

—&— AMD Threadripper 1950x CPU
== NVIDIA Titan v

—+ NVIDIA Titan V (Disabled Beam-Fields)
-~ AMD Radeon Vil

—+— AMD Radeon VIl (Disabled Beam-Fields)

Tracking Duration / turn / particle (LOG!) [s]

1077
10° 10t 10? 10* 10" 10° 10°
Numbers of Particles Np (log)

Martin Schwinzerl SixTrackLib



Impact of Kernel Complexity On Parallel Performance

¢ Calculation of field components (according to a Gaussian distribution)

and the complex error function (Faddeeva function) is shared between
BB and SC elements

amfields/fa
SIXTRL INLIRE void (Errf( SIXTRL REAL _T in_real, SIXTRL_REAL_T in_imag,
SIKTRL_ARGPTR_DEC SIXTRL_REAL_T* SIKTRL_RESTRICT out_re

SIXTRL_ARGPTR_DEC SIXTRL_REAL_T* SIXTRL_RESTRICT out_imag )

{

Large amount of
thread-local data required

SIXTRL_REAL_T yLis

SIXTRL_REAL_T h, Sx, Sy, Tn, Tx, Ty, Wx, Wy, xh, x1, x, yh, y; | Effects EX?CUtlon of )

SIXTRL_REAL_T R: [ ]

SRR MY !(ernel even if the function
is not actually called!

x = fabs(in_real);

y = fabs(in_inag);

if (y < ylin 8& x < xLin){ <
= (.0-y/ yL)m) * sqrt( 0 - (x / xLim) * (x / xLim))
7.0

S G (30 |—Data—Dependent
ow(h (SIXTRL REAL_T) (1 - nc)); .
’7 Branching

x<

y
Tn = THTx + TyTy;

RX[H 1= *Tx / Tn;
y[n-11 = 0.5 * Ty / Tn;
}
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