Vector-Boson-Fusion at multi-TeV µ Colliders

Antonio Costantini

antonio.costantini@bo.infn.it

VBScan Meeting

26th June 2020

Istituto Nazionale di Fisica Nucleare Sezione di Bologna

based on

arXiv:2005.10289

AC, F. De Lillo, F. Maltoni, L. Mantani, O. Mattelaer, R. Ruiz and X. Zhao

Content

- Introduction
- \blacksquare Physics @ μ Colliders
- 🗯 SM @ μ Collider
 - → EFT @ μ Collider
- ➡ BSM @ µ Collider
 - \blacksquare New Physics Reach @ μ Collider
- Conclusions

Introduction

μ Collider

J. P. Delahaye et al., arXiv:1901.06150

Muon Accelerator Program map.fnal.gov Low EMittance Muon Accelerator web.infn.it/LEMMA

New results on μ cooling by MICE collaboration Nature 508(2020)53

Physics $(0, \mu)$ **Collider**

 $\mu\mu \rightarrow n f f + m V + k S$

This is a $2 \rightarrow (n, m, k)$ process

Different class of processes are relevant at different \sqrt{s}

Different class of processes are relevant at different \sqrt{s}

$$\sqrt{s} \lesssim 1$$
 TeV s-channel

Different class of processes are relevant at different \sqrt{s}

 $\mu \text{ PDF}$

Effective W Approximation

 $f_{W_{\lambda}/\mu}(z,Q^2)$ is the LL likelihood of μ radiating a W with polarization λ and $p_W^z = z E_{\mu}$ and $p_W^T < Q$

$$\sigma(\mu^{+}\mu^{-} \xrightarrow{WW \to X} X) \approx f_{W^{+}/\mu^{+}} \otimes f_{W^{-}/\mu^{-}} \otimes \hat{\sigma}(W^{+}W^{-} \to X)$$
$$= \Sigma_{\lambda,\lambda'} \int dz_{1} dz_{2} f_{W_{\lambda}^{+}/\mu^{+}}(z_{1},\mu_{f}) f_{W_{\lambda}^{-}/\mu^{-}}(z_{2},\mu_{f}) \hat{\sigma}_{\lambda\lambda'}(s_{WW})$$

Dawson('84);Kane,Repko,Rolnick('84);Altarelli,Mele,Pirolli('86);Kunszt,Soper('87);+...

 μ PDF

$$f_{V_T}(z, Q_f^2, \lambda = \pm) = \frac{C}{16\pi^2} \frac{(g_V \mp g_A)^2 + (g_V \pm g_A)^2 (1-z)^2}{z} \log\left(\frac{Q_f^2}{M_V^2}\right)$$
$$f_{V_L}(z, Q_f^2) = \frac{C}{4\pi^2} (g_V^2 + g_A^2) \left(\frac{1-z}{z}\right)$$

 μ PDF

$$f_{V_T}(z, Q_f^2, \lambda = \pm) = \frac{C}{16\pi^2} \frac{(g_V \mp g_A)^2 + (g_V \pm g_A)^2 (1-z)^2}{z} \log\left(\frac{Q_f^2}{M_V^2}\right)$$
$$f_{V_L}(z, Q_f^2) = \frac{C}{4\pi^2} (g_V^2 + g_A^2) \left(\frac{1-z}{z}\right)$$

$$\Phi_{W^+W^-}(\tau, Q_f, \lambda_1, \lambda_2) \equiv \int_{\tau}^{1} \frac{d\xi}{\xi} f_{W^-/\mu^-}(\xi, Q_f^2, \lambda_1) f_{W^+/\mu^+}(\frac{\tau}{\xi}, Q_f^2, \lambda_2)$$

Ws PDF: μ vs q

$$\begin{split} \Phi_{VV'}(\tau, Q_f) &= \frac{1}{1 + \delta_{VV'}} \int_{\tau}^{1} \frac{d\xi}{\xi} \int_{\tau/\xi}^{1} \frac{dz_1}{z_1} \int_{\tau/\xi/z_1}^{1} \frac{dz_2}{z_2} \sum_{q,q'} \\ (f_{V/q}(z_2) f_{V'/q'}(z_1) f_{q/p}(\xi) f_{q'/p}(\frac{\tau}{\xi z_1 z_2}) + f_{V/q}(z_2) f_{V'/q'}(z_1) f_{q/p}(\frac{\tau}{\xi z_1 z_2}) f_{q'/p}(\xi)) \\ \Phi_{W^+W^-}(\tau, Q_f, \lambda_1, \lambda_2) &\equiv \int_{\tau}^{1} \frac{d\xi}{\xi} f_{W^-/\mu^-}(\xi, Q_f^2, \lambda_1) f_{W^+/\mu^+}(\frac{\tau}{\xi}, Q_f^2, \lambda_2) \end{split}$$

μ Collider vs. p Collider

Given a muon collider cross section σ_{μ} the equivalent proton energy is defined by

$$\sigma_p = \sigma_\mu$$

μ Collider vs. *p* Collider

Given a muon collider cross section σ_{μ} the equivalent proton energy is defined by

$$\sigma_p = \sigma_\mu$$

Parton Luminosity

$$\sigma(pp \to X) = \int_{\tau_0}^1 d\tau \sum_{ij} \Phi_{ij}(\tau, Q_f) \,\hat{\sigma}(ij \to X)$$

$$\Phi_{ij}(\tau, Q_f) \equiv \frac{1}{1 + \delta_{ij}} \int_{\tau}^{1} \frac{d\xi}{\xi} \left(f_{i/p}(\xi, Q_f^2) f_{j/p}\left(\frac{\tau}{\xi}, Q_f^2\right) + (i \leftrightarrow j) \right)$$

μ Collider vs. p Collider: single production

Resonance with mass M

$$\sigma_{p}(s_{p}) = \int_{\tau_{0}}^{1} d\tau \sum_{ij} \Phi_{ij}(\tau, Q_{f})[\hat{\sigma}]_{p} \delta\left(\tau - \frac{M^{2}}{s_{p}}\right)$$
$$\sigma_{\mu}(s_{\mu}) = [\hat{\sigma}]_{\mu}$$

with $s_{\mu} = M^2$

μ Collider vs. p Collider: single production

Resonance with mass M

$$\sigma_{p}(s_{p}) = \int_{\tau_{0}}^{1} d\tau \sum_{ij} \Phi_{ij}(\tau, Q_{f})[\hat{\sigma}]_{p} \delta\left(\tau - \frac{M^{2}}{s_{p}}\right)$$
$$\sigma_{\mu}(s_{\mu}) = [\hat{\sigma}]_{\mu}$$

with $s_{\mu} = M^2$

$$\sigma_{p} = \sigma_{\mu} \quad \Rightarrow \quad \sum_{ij} \Phi_{ij} \left(\frac{s_{\mu}}{s_{\rho}}, \frac{\sqrt{s_{\mu}}}{2} \right) = \frac{[\hat{\sigma}]_{\mu}}{[\hat{\sigma}]_{\rho}} \equiv \frac{1}{\beta}$$

μ Collider vs. *p* Collider: single production

 μ Collider vs. p Collider: pair production

Pair Production

$$egin{aligned} &\sigma_{p}(s_{p})=rac{1}{s_{p}}\int_{ au_{0}}^{1}d\, aurac{1}{ au}\sum_{ij}\Phi_{ij}(au,Q_{f})[\hat{\sigma}\hat{s}]_{p}\ &\sigma_{\mu}(s_{\mu})=rac{1}{s_{\mu}}[\hat{\sigma}\hat{s}]_{\mu} \end{aligned}$$

with μ collider at threshold

 μ Collider vs. p Collider: pair production

Pair Production

$$\begin{split} \sigma_{p}(s_{p}) &= \frac{1}{s_{p}} \int_{\tau_{0}}^{1} d\tau \frac{1}{\tau} \sum_{ij} \Phi_{ij}(\tau, Q_{f}) [\hat{\sigma}\hat{s}]_{p} \\ \sigma_{\mu}(s_{\mu}) &= \frac{1}{s_{\mu}} [\hat{\sigma}\hat{s}]_{\mu} \end{split}$$

with μ collider at threshold

$$\sigma_{p} = \sigma_{\mu} \quad \Rightarrow \quad \frac{s_{\mu}}{s_{p}} \int_{\frac{s_{\mu}}{s_{p}}}^{1} d\tau \frac{1}{\tau} \sum_{ij} \Phi_{ij} \left(\tau, \frac{\sqrt{s_{\mu}}}{2}\right) = \frac{[\hat{\sigma}\hat{s}]_{\mu}}{[\hat{\sigma}\hat{s}]_{p}} \equiv \frac{1}{\beta}$$

μ Collider vs. *p* Collider: pair production

SM (a) μ Collider

μ Collider: SM Processes

[f]_]	$\sqrt{s} = 1$ TeV		$\sqrt{s} = 3 \text{ TeV}$		$\sqrt{s} = 14 \text{ TeV}$		$\sqrt{s} = 30 \text{ TeV}$	
0 [10]	VBF	s-ch.	VBF	s-ch.	VBF	s-ch.	VBF	s-ch
tī	4.3·10 ⁻¹	1.7·10 ²	5.1·10 ⁰	$1.9 \cdot 10^{1}$	2.1.10 ¹	$8.8 \cdot 10^{-1}$	3.1.10 ¹	$1.9 \cdot 10^{-1}$
ttΖ	1.6·10 ⁻³	4.6·10 ⁰	$1.1 \cdot 10^{-1}$	1.6·10 ⁰	1.3·10 ⁰	$1.8 \cdot 10^{-1}$	2.8·10 ⁰	$5.4 \cdot 10^{-2}$
tīH	2.0.10-4	2.0·10 ⁰	1.3·10 ⁻²	$4.1 \cdot 10^{-1}$	$1.5 \cdot 10^{-1}$	$3.0 \cdot 10^{-2}$	$3.1 \cdot 10^{-1}$	$7.9 \cdot 10^{-3}$
tŧWW	4.8·10 ⁻⁶	$1.4 \cdot 10^{-1}$	2.8·10 ⁻³	$3.4 \cdot 10^{-1}$	$1.1 \cdot 10^{-1}$	1.3·10 ⁻¹	$3.0 \cdot 10^{-1}$	$5.8 \cdot 10^{-2}$
tīZZ	2.3·10 ⁻⁶	$3.8 \cdot 10^{-2}$	1.4·10 ⁻³	$5.1 \cdot 10^{-2}$	$5.8 \cdot 10^{-2}$	1.3·10 ⁻²	$1.7 \cdot 10^{-1}$	$5.4 \cdot 10^{-3}$
tīHZ	7.1·10 ⁻⁷	$3.6 \cdot 10^{-2}$	3.5·10 ⁻⁴	$3.0 \cdot 10^{-2}$	$1.0.10^{-2}$	5.3·10 ⁻³	$2.7 \cdot 10^{-2}$	$1.9 \cdot 10^{-3}$
tīHH	7.2.10 ⁻⁸	$1.4 \cdot 10^{-2}$	3.4·10 ⁻⁵	6.1·10 ⁻³	$6.4 \cdot 10^{-4}$	5.4·10 ⁻⁴	1.6·10 ⁻³	$1.5 \cdot 10^{-4}$
tītīt (i)	5.1·10 ⁻⁸	$5.4 \cdot 10^{-4}$	6.8·10 ⁻⁵	$6.7 \cdot 10^{-3}$	1.1.10 ⁻³	2.5·10 ^{−3}	2.1·10 ⁻³	$1.0.10^{-3}$
Н	2.1.10 ²	-	5.0·10 ²	-	9.4.10 ²	-	1.2·10 ³	-
НН	7.4.10 ⁻²	-	$8.2 \cdot 10^{-1}$	-	4.4.10 ⁰	-	7.4·10 ⁰	-
ННН	3.7.10-6	-	3.0·10 ⁻⁴	-	7.1·10 ⁻³	-	$1.9 \cdot 10^{-2}$	-
ΗZ	1.2·10 ⁰	1.3.10 ¹	9.8·10 ⁰	1.4·10 ⁰	4.5·10 ¹	$6.3 \cdot 10^{-2}$	7.4·10 ¹	$1.4 \cdot 10^{-2}$
HHZ	1.5.10-4	$1.2 \cdot 10^{-1}$	9.4·10 ⁻³	3.3·10 ⁻²	$1.4.10^{-1}$	3.7·10 ⁻³	$3.3 \cdot 10^{-1}$	1.1·10 ⁻³
HHHZ	1.5·10 ⁻⁸	$4.1 \cdot 10^{-4}$	$4.7 \cdot 10^{-6}$	$1.6 \cdot 10^{-4}$	$1.9 \cdot 10^{-4}$	$1.6 \cdot 10^{-5}$	$5.1 \cdot 10^{-4}$	$5.4 \cdot 10^{-6}$
HWW	8.9·10 ⁻³	3.8·10 ⁰	$3.0 \cdot 10^{-1}$	1.1·10 ⁰	3.4·10 ⁰	$1.3 \cdot 10^{-1}$	7.6·10 ⁰	$4.1 \cdot 10^{-2}$
HHWW	7.2·10 ⁻⁷	1.3·10 ⁻²	2.3·10 ⁻⁴	$1.1 \cdot 10^{-2}$	9.1·10 ⁻³	2.8·10 ⁻³	$2.9 \cdot 10^{-2}$	1.2·10 ⁻³
HZZ	2.7·10 ⁻³	$3.2 \cdot 10^{-1}$	$1.2 \cdot 10^{-1}$	$8.2 \cdot 10^{-2}$	1.6·10 ⁰	8.8·10 ⁻³	3.7·10 ⁰	$2.5 \cdot 10^{-3}$
HHZZ	2.4.10 ⁻⁷	$1.5 \cdot 10^{-3}$	9.1·10 ⁻⁵	9.8·10 ⁻⁴	3.9·10 ⁻³	$2.5 \cdot 10^{-4}$	1.2·10 ⁻²	9.5·10 ⁻⁵
WW	1.6·10 ¹	2.7·10 ³	1.2·10 ²	4.7.10 ²	5.3·10 ²	3.2·10 ¹	8.5·10 ²	8.3·10 ⁰
ZZ	6.4·10 ⁰	$1.5 \cdot 10^{2}$	$5.6 \cdot 10^{1}$	$2.6 \cdot 10^{1}$	2.6·10 ²	1.8·10 ⁰	4.2·10 ²	$4.6 \cdot 10^{-1}$
WWZ	$1.1 \cdot 10^{-1}$	$5.9 \cdot 10^{1}$	4.1·10 ⁰	3.3·10 ¹	$5.0.10^{1}$	6.3·10 ⁰	1.0.10 ²	2.3·10 ⁰
ZZZ	2.3.10 ⁻²	$9.3 \cdot 10^{-1}$	$9.6 \cdot 10^{-1}$	$3.5 \cdot 10^{-1}$	1.2·10 ¹	$5.4 \cdot 10^{-2}$	2.7·10 ¹	$1.9 \cdot 10^{-2}$

generated with MadGraph5_aMC@NLO

μ Collider: SM Processes

VBF > s-channel

	σ [fb]	\sqrt{s} [TeV]		σ [fb]	\sqrt{s} [TeV]
tī tīZ tīH tīWW	$ \begin{vmatrix} 8.4 \cdot 10^{0} \\ 5.3 \cdot 10^{-1} \\ 7.6 \cdot 10^{-2} \\ 1.2 \cdot 10^{-1} \end{vmatrix} $	4.5 6.9 8.2 15	tītZ tītHZ tītHH tītīt	$ \begin{vmatrix} 2.2 \cdot 10^{-2} \\ 7.0 \cdot 10^{-3} \\ 5.9 \cdot 10^{-4} \\ 1.6 \cdot 10^{-3} \end{vmatrix} $	8.4 11 13 22
HZ HHZ HHHZ HWW	$ \begin{vmatrix} 4.3 \cdot 10^{0} \\ 2.1 \cdot 10^{-2} \\ 4.7 \cdot 10^{-5} \\ 6.6 \cdot 10^{-1} \end{vmatrix} $	1.7 4.2 6.9 4.5	HHWW HZZ HHZZ	$\begin{vmatrix} 4.3 \cdot 10^{-3} \\ 9.4 \cdot 10^{-2} \\ 5.9 \cdot 10^{-4} \end{vmatrix}$	9.2 2.7 5.7
WW ZZ	$\begin{vmatrix} 2.1\cdot 10^2\\ 3.9\cdot 10^1 \end{vmatrix}$	4.8 2.4	WWZ ZZZ	$\begin{vmatrix} 1.6 \cdot 10^1 \\ 4.8 \cdot 10^{-1} \end{vmatrix}$	6.2 2.3

μ Collider: SM Processes

VBF > s-channel

	σ [fb]	\sqrt{s} [TeV]		σ [fb]	\sqrt{s} [TeV]
tī tīZ tīH tīWW	$ \begin{vmatrix} 8.4 \cdot 10^{0} \\ 5.3 \cdot 10^{-1} \\ 7.6 \cdot 10^{-2} \\ 1.2 \cdot 10^{-1} \end{vmatrix} $	4.5 6.9 8.2 15	tīZZ tīHZ tīHH tītī	$ \begin{vmatrix} 2.2 \cdot 10^{-2} \\ 7.0 \cdot 10^{-3} \\ 5.9 \cdot 10^{-4} \\ 1.6 \cdot 10^{-3} \end{vmatrix} $	8.4 11 13 22
HZ HHZ HHHZ HWW	$ \begin{vmatrix} 4.3 \cdot 10^{0} \\ 2.1 \cdot 10^{-2} \\ 4.7 \cdot 10^{-5} \\ 6.6 \cdot 10^{-1} \end{vmatrix} $	1.7 4.2 6.9 4.5	HHWW HZZ HHZZ	$\begin{vmatrix} 4.3 \cdot 10^{-3} \\ 9.4 \cdot 10^{-2} \\ 5.9 \cdot 10^{-4} \end{vmatrix}$	9.2 2.7 5.7
WW ZZ	$\begin{vmatrix} 2.1\cdot 10^2\\ 3.9\cdot 10^1 \end{vmatrix}$	4.8 2.4	WWZ ZZZ	$\begin{vmatrix} 1.6 \cdot 10^1 \\ 4.8 \cdot 10^{-1} \end{vmatrix}$	6.2 2.3

A μ collider with $\sqrt{s} \sim$ few TeV is essentially a **W-Boson** collider!

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum C_i \Theta_i + \dots$$

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum C_i \Theta_i + \dots$$

Relevant operators for the Higgs and top quark EW sector

\mathcal{O}_W	$arepsilon_{IJK} W^I_{\mu u} W^{J, u ho} W^{\kappa,\mu}_{ ho}$	$\mathcal{O}_{t\varphi}$	$\left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)\bar{Q}t\tilde{\varphi} + \text{h.c.}$
$\mathcal{O}_{\varphi W}$	$\left(\varphi^{\dagger} \varphi - rac{v^2}{2} ight) W^{\mu u}_{l} W^{\prime}_{\mu u}$	\mathcal{O}_{tW}	$i(\bar{Q}\sigma^{\mu\nu}\tau_{I}t)\tilde{\varphi}W^{I}_{\mu\nu}$ + h.c.
$\mathcal{O}_{\varphi B}$	$\left(arphi^{\dagger}arphi - rac{arphi^2}{2} ight) B^{\mu u} B_{\mu u}$	\mathcal{O}_{tB}	$i(\bar{Q}\sigma^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu}+\text{h.c.}$
$\mathcal{O}_{\varphi WB}$	$(\varphi^{\dagger} \tau_{I} \varphi) B^{\mu u} W^{I}_{\mu u}$	$\mathcal{O}_{\varphi Q}^{(3)}$	$i(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi)(\bar{Q} \gamma^{\mu} \tau^{I} Q)$
$\mathcal{O}_{\varphi D}$	$(arphi^{\dagger}D^{\mu}arphi)^{\dagger}(arphi^{\dagger}D_{\mu}arphi)$	${\cal O}^{(1)}_{arphi oldsymbol{Q}}$	$i\left(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi ight) \left(\bar{Q} \gamma^{\mu} Q ight)$
$\mathcal{O}_{\varphi\square}$	$(arphi^{\dagger}arphi)\Box(arphi^{\dagger}arphi)$	$\mathcal{O}_{\varphi t}$	$iig(arphi^\dagger \overleftrightarrow{D}_\mu arphiig)ig(ar{t} oldsymbol{\gamma}^\mu tig)$
$\mathcal{O}_{\boldsymbol{\varphi}}$	$\left(\varphi^{\dagger} \varphi - rac{v^2}{2} ight)^3$		

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum C_i \Theta_i + \dots$$

Relevant operators for the Higgs and top quark EW sector

\mathcal{O}_W	$arepsilon_{IJK} W^I_{\mu u} W^{J, u ho} W^{\kappa,\mu}_{ ho}$	$\mathcal{O}_{t\varphi}$	$\left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)\bar{Q}t\tilde{\varphi} + \text{h.c.}$
$\mathcal{O}_{\varphi W}$	$\left(\varphi^{\dagger} \varphi - \frac{v^2}{2} \right) W_l^{\mu \nu} W_{\mu \nu}^{\prime}$	\mathcal{O}_{tW}	$i(\bar{Q}\sigma^{\mu\nu}\tau_{I}t)\tilde{\varphi}W^{I}_{\mu\nu}$ + h.c.
$\mathcal{O}_{\varphi B}$	$\left(\varphi^{\dagger} \varphi - rac{v^2}{2} ight) B^{\mu u} B_{\mu u}$	\mathcal{O}_{tB}	$i(\bar{Q}\sigma^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu}+\text{h.c.}$
$\mathcal{O}_{\varphi WB}$	$(\varphi^{\dagger} \tau_{I} \varphi) B^{\mu u} W^{I}_{\mu u}$	$\mathcal{O}_{\varphi Q}^{(3)}$	$i(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi)(\bar{Q} \gamma^{\mu} \tau^{I} Q)$
$\mathcal{O}_{\varphi D}$	$(arphi^{\dagger}D^{\mu}arphi)^{\dagger}(arphi^{\dagger}D_{\mu}arphi)$	$\mathcal{O}_{arphi oldsymbol{Q}}^{(1)}$	$i ig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu arphi ig) ig(ar{Q} \gamma^\mu Q ig)$
$\mathcal{O}_{\varphi\square}$	$(arphi^{\dagger}arphi)\Box(arphi^{\dagger}arphi)$	$\mathcal{O}_{\varphi t}$	$iig(arphi^\dagger \overleftrightarrow{D}_\mu arphiig)ig(ar{t} oldsymbol{\gamma}^\mu tig)$
$\mathcal{O}_{\boldsymbol{\varphi}}$	$\left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)^3$		

$$R(c_i) \equiv \frac{\sigma}{\sigma_{SM}} = 1 + c_i \frac{\sigma_{Int}^i}{\sigma_{SM}} + c_{i,i}^2 \frac{\sigma_{Sq}^{i,i}}{\sigma_{SM}} = 1 + r_i + r_{i,i}$$

Bound on the operators

Operators	Limit on C	; TeV ^{−2}	Operators	Limit on C_i TeV ⁻²	
Operators	Individual	Marginalised	Operators	Individual	Marginalised
Θ _{φD}	[-0.021,0.0055]	[-0.45,0.50]	$\mathcal{O}_{t\varphi}$	[-5.3,1.6]	[-60,10]
Ø _{φd}	[-0.78,1.44]	[-1.24,16.2]	\mathcal{O}_{tB}	[-7.09,4.68]	_
$\mathcal{O}_{\varphi B}$	[-0.0033,0.0031]	[-0.13,0.21]	\mathcal{O}_{tW}	[-0.4,0.2]	[-1.8,0.9]
$\mathcal{O}_{\varphi W}$	[-0.0093,0.011]	[-0.50,0.40]	$\mathcal{O}_{arphi Q}^{(1)}$	[-3.10,3.10]	-
$\mathcal{O}_{\varphi WB}$	[-0.0051,0.0020]	[-0.17,0.33]	$\mathcal{O}_{\varphi Q}^{(3)}$	[-0.9,0.6]	[-5.5,5.8]
Øw	[-0.18,0.18]	_	$\mathcal{O}_{\varphi t}$	[-6.4,7.3]	[-13,18]
O_{φ}	_	_			

Buckley et.al.;Butter et.al.;Ellis,Murphy,Sanz,You;Hartland et.al.

VBF hh sensitivity ratios

VBF hhh sensitivity ratios

BSM @ μ Collider

BSM @ High-Energy Lepton Collider

BSM @ High-Energy Lepton Collider

P.Agrawal, M.Mitra, S.Niyogi, S.Shil and M.Spannowsky Phys. Rev. D 98 (2018) no.1, 015024

μ Collider: BSM Processes (neutral scalars)

SM+inert singlet

2HDM

μ Collider: BSM Processes (charged scalars)

Georgi-Machacek model

μ Collider: BSM Processes (sparticles)

MSSM

BSM @ μ Collider: VBF vs s-channel

New Physics Reach (via VBF) @ μ Collider

Luminosity required for 25 events, with assumed zero background

Conclusions

proposed FC are either precision or discovery machines

multi-TeV μ collider $\rightarrow W$ collider

for SM/EFT μ collider is a precision machine

multi-TeV μ collider is suitable for BSM discovery

... needs R & D

Backup Slides

SM + Singlet

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \partial_{\mu} \sigma \partial_{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{\lambda_{\sigma}}{4!} \sigma^{4} - \frac{\kappa_{\sigma}}{2} \sigma^{2} \Phi^{\dagger} \Phi.$$
$$\langle \sigma \rangle = v_{s}$$

$$\lambda_{hhh} = -\frac{3m_h^2}{v v_s} (v_s \cos^3 \theta + v \sin^3 \theta)$$
$$\lambda_{sss} = \frac{3m_s^2}{v v_s} (v \cos^3 \theta - v_s \sin^3 \theta)$$
$$\lambda_{hss} = -\frac{(m_h^2 + 2m_s^2)}{2v v_s} \sin 2\theta (v \cos \theta + v_s \sin \theta)$$
$$\lambda_{hhs} = \frac{(2m_h^2 + m_s^2)}{2v v_s} \sin 2\theta (v_s \cos \theta - v \sin \theta)$$

SM + Singlet: Inert Pair Production vs. Loop Corrections

$$\delta g_h = -\frac{\kappa_\sigma^2 v^2}{16\pi^2 m_h^2} \left(1 - 4m_S^2 \frac{\tan^{-1} \sqrt{\frac{m_h^2}{(4m_S^2 - m_h^2)}}}{\sqrt{m_h^2 (4m_S^2 - m_h^2)}} \right)$$

Heinemann, Nir, Phys.Usp. 62 (2019) no.9, 920-930

s-channel

37/40

2HDM

$$\begin{split} V &= \mu_1 \Phi_1^{\dagger} \Phi_1 + \mu_2 \Phi_2^{\dagger} \Phi_2 + \left(\mu_3 \Phi_1^{\dagger} \Phi_2 + \text{H.c.}\right) + \lambda_1 \left(\Phi_1^{\dagger} \Phi_1\right)^2 + \lambda_2 \left(\Phi_2^{\dagger} \Phi_2\right)^2 \\ &+ \lambda_3 \left(\Phi_1^{\dagger} \Phi_1\right) \left(\Phi_2^{\dagger} \Phi_2\right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2\right) \left(\Phi_2^{\dagger} \Phi_1\right) + \left(\lambda_5 \left(\Phi_1^{\dagger} \Phi_2\right)^2 + \text{H.c.}\right) \\ &+ \Phi_1^{\dagger} \Phi_1 \left(\lambda_6 \left(\Phi_1^{\dagger} \Phi_2\right) + \text{H.c.}\right) + \Phi_2^{\dagger} \Phi_2 \left(\lambda_7 \left(\Phi_1^{\dagger} \Phi_2\right) + \text{H.c.}\right) \end{split}$$

$$\Phi_1 \equiv \begin{pmatrix} -ih_1^+ \\ \frac{h_1^0 + ia_1 + \nu}{\sqrt{2}} \end{pmatrix} \quad \text{and} \quad \Phi_2 \equiv \begin{pmatrix} h_2^+ \\ \frac{h_2^0 + ia_2}{\sqrt{2}} \end{pmatrix}$$

$$\begin{pmatrix} h_1^0\\ h_2^0 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} h\\ H \end{pmatrix}$$

where *h* is identified as the observed, SM-like Higgs boson with $m_h \approx 125$ GeV and *H* is heavier with $m_H > m_h$

GM Model

$$\Phi = \begin{pmatrix} \varphi^{0*} & \varphi^+ \\ -\varphi^{+*} & \varphi^0 \end{pmatrix} , \quad X = \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ -\chi^{+*} & \xi^0 & \chi^+ \\ \chi^{++*} & -\xi^{+*} & \chi^0 \end{pmatrix}$$

$$V(\Phi, X) = \frac{\mu_2^2}{2} \operatorname{Tr}(\Phi^{\dagger} \Phi) + \frac{\mu_3^2}{2} \operatorname{Tr}(X^{\dagger} X) + \lambda_1 [\operatorname{Tr}(\Phi^{\dagger} \Phi)]^2 + \lambda_2 \operatorname{Tr}(\Phi^{\dagger} \Phi) \operatorname{Tr}(X^{\dagger} X)$$

+ $\lambda_3 \operatorname{Tr}(X^{\dagger} X X^{\dagger} X) + \lambda_4 [\operatorname{Tr}(X^{\dagger} X)]^2 - \lambda_5 \operatorname{Tr}(\Phi^{\dagger} \tau^a \Phi \tau^b) \operatorname{Tr}(X^{\dagger} t^a X t^b)$
- $M_1 \operatorname{Tr}(\Phi^{\dagger} \tau^a \Phi \tau^b) (U X U^{\dagger})_{ab} - M_2 \operatorname{Tr}(X^{\dagger} t^a X t^b) (U X U^{\dagger})_{ab}$

Custodial Limit

$$\langle \chi^0 \rangle = \langle \xi^0 \rangle \equiv v_X$$

 $(\sqrt{2}G_F)^{-1} = v_{\varphi}^2 + 8v_X^2$

 μ Collider: Pros and Cons

 μ vs. e (circular collider)

Pros 🖒

- reduced synchrotron radiation
- \checkmark increased \pounds
- cool physics

- × μ decay
- 🗙 v radiation
- ✗ lots of R&D (is it a real cons)

Cons 🖓