

6th Edition of ASP

African School of

Fundamental Physics and Applications

Relativistic Heavy Ion Physics

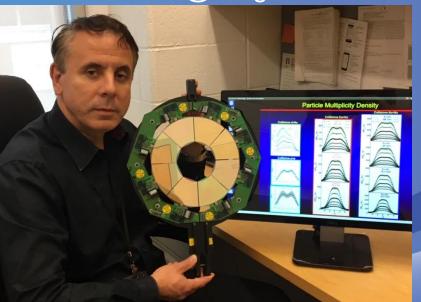
Lecture 1:

Introduction to Relativistic Heavy Ion Physics and Detectors Technology

Lecture 2:

QGP Discovery at RHIC (Signatures)

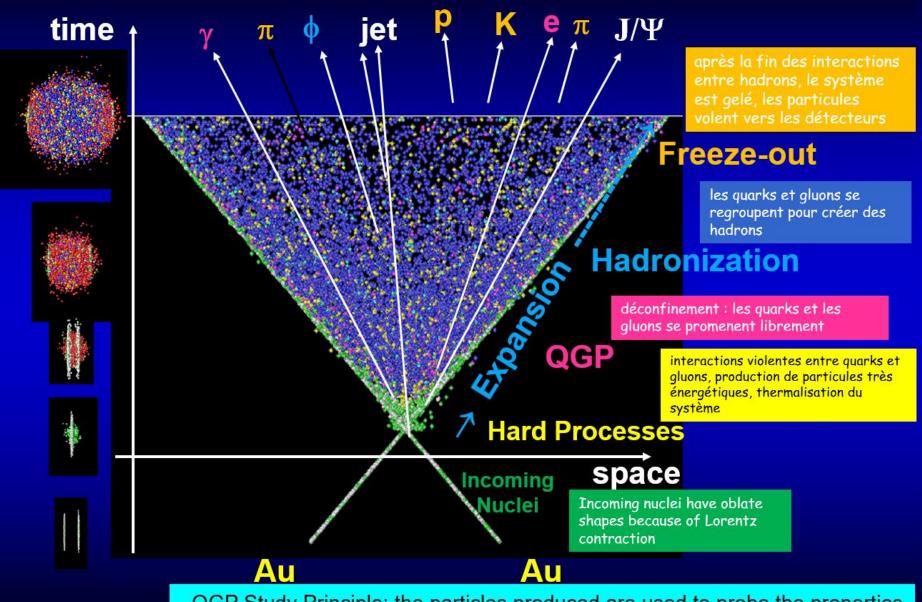
Future Projects and Opportunities


Relativistic Heavy Ion Physics

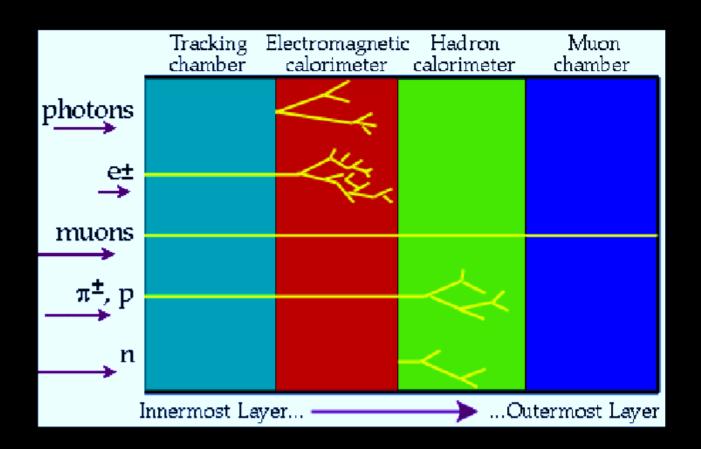
Lecture 2:

QGP Discovery at RHIC (Signatures) Future Projects and Opportunities

Rachid Nouicer


Brookhaven National Laboratory, New York rachid.nouicer@bnl.gov

a passion for discovery



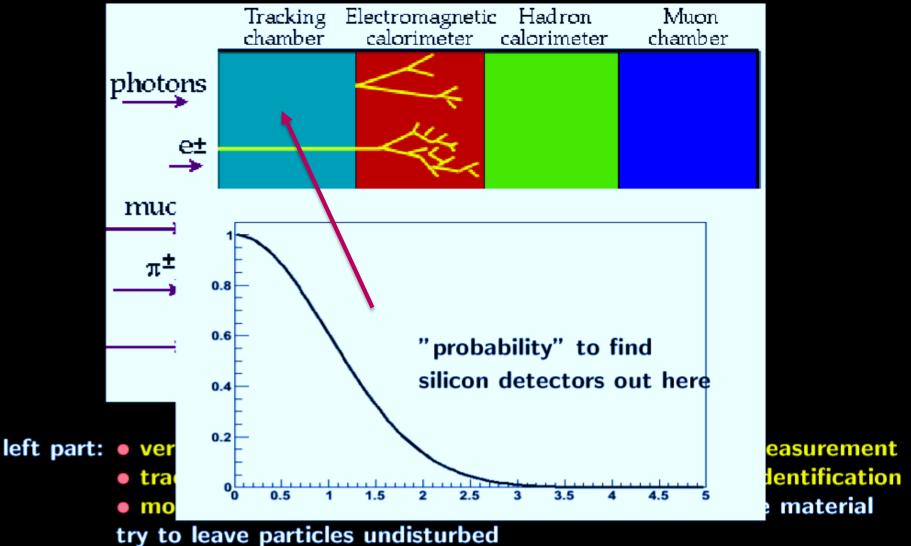
African School of Funda

- QGP Study Principle: the particles produced are used to probe the properties of the system formed during the collision

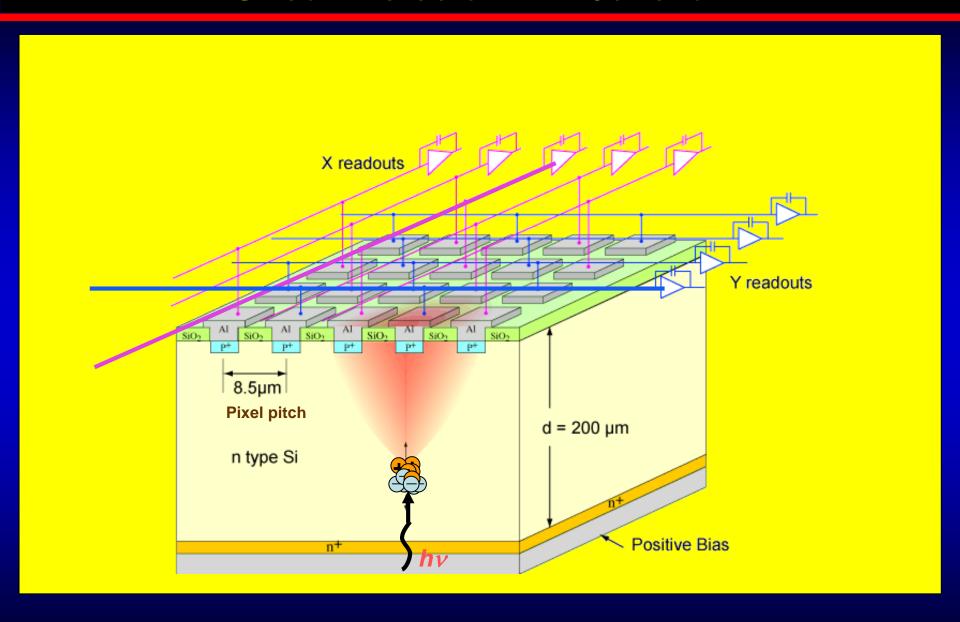
basic detector concepts

left part: • vertices

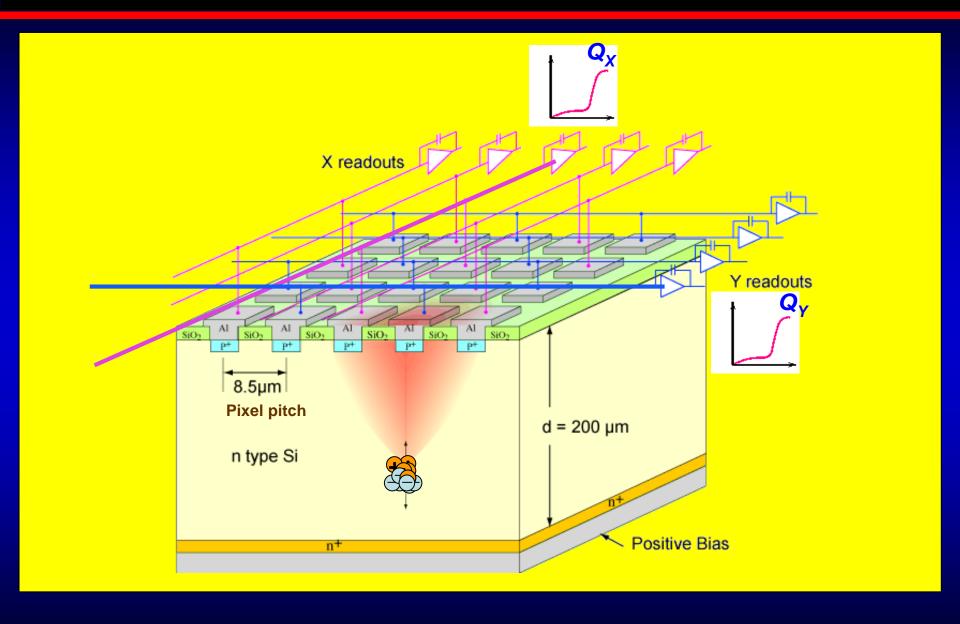
tracks


momenta (magnetic field!)
 try to leave particles undisturbed

right part: • energy measurement

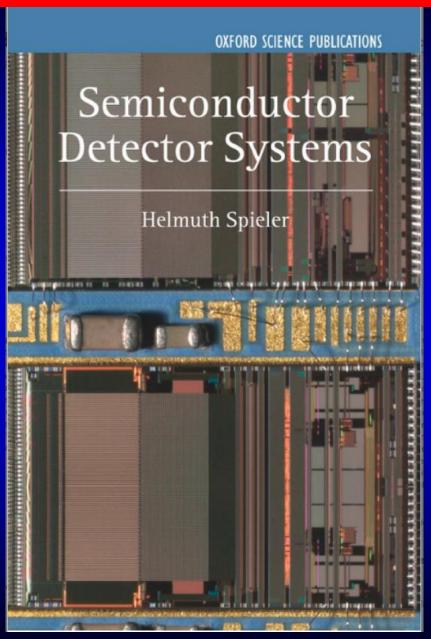

particle identification

use massive material

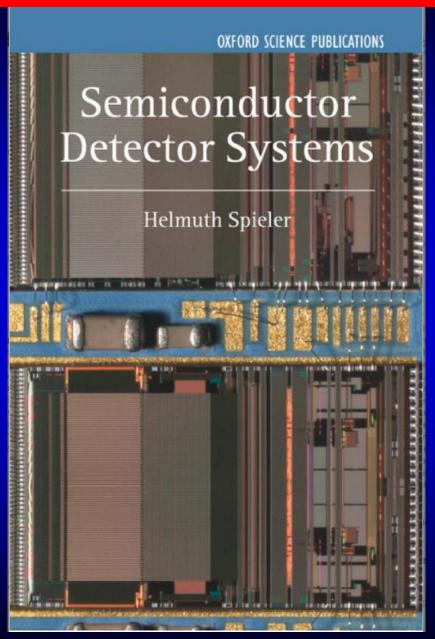

basic detector concepts

Silicon Detector: P-N Junction

Silicon Detector: P-N Junction



CONTENTS


Dot	aatan anatana anannian	,
	Sensor	1
	Preamplifier	3
	Pulse shaper	3
	Puise snaper Digitizer	
	Electro-mechanical integration	6
	Sensor structures I	8
1.0	1.6.1 Basic sensor	8
	1.6.2 Position sensing	9
	1.6.2 Position sensing	11
1.7	21010 2 1101 4011000	12
1.4	Sensor physics 1.7.1 Signal charge	12
	1.7.2 Sensor volume	13
	1.7.3 Charge collection	16
	1.7.4 Energy resolution	19
	1.7.4 Energy resolution 1.7.5 Position resolution	19
1.8	Sensor structures II – monolithic pixel devices	24
1.0	1.8.1 Charge coupled devices	24
	1.8.2 Silicon drift chambers	25
	1.8.3 Monolithic active pixel sensors	26
19	Electronics	20
	Detection limits and resolution	29
	1 10 1 Electronic noise	31
	1.10.2 Amplitude measurements	33
	1.10.3 Timing measurements	35
1.11	Subsystems	36
	1.11.1 Circuit integration and bussing	36
	1.11.2 Detector modules, services, and supports	38
	1.11.3 Data acquisition	40
1.12	Further reading	40
Refe	venos	40
G:	-16	40
	nal formation and acquisition	43
	The signal	43
2.2	Detector sensitivity	48 48
	2.2.1 Low energy quanta $(E \approx E_g)$	48 51
	2.2.2 High energy quanta $(E \gg E_g)$ 2.2.3 Fluctuations in signal charge – the Fano factor	52
9.2	Signal formation	55 55
4.3	2.3.1 Formation of a high-field region	55 55
	z.a. rormadon or a nign-neig region	55

OXFORD SCIENCE PUBLICATIONS Semiconductor Detector Systems Helmuth Spieler

		CONTENTS	xiii
7	Rac	liation effects	277
	7.1	Radiation damage mechanisms	278
		7.1.1 Displacement damage	279
		7.1.2 Ionization damage	282
	7.2	Radiation damage in diodes	283
		7.2.1 Contributions to N_{eff}	286
		7.2.2 Trapping	289
		7.2.3 Ionization effects	292
	7.3	Radiation damage in transistors and integrated circuits	292
		7.3.1 Bipolar transistors	292
		7.3.2 Junction field effect transistors (JFETs)	295
		7.3.3 Metal-oxide-silicon field effect transistors (MOSFETs)	296
		7.3.4 Radiation effects in integrated circuit structures	302
		Dosimetry	303
	7.5	Mitigation techniques	304
		7.5.1 Detectors	304
		7.5.2 Electronics	306
		7.5.3 Summary	309
	Refe	erences	309
8		ector systems	315
_		Conflicts and compromises	315
	8.2	Design considerations	316
		8.2.1 Detector geometry	316
		8.2.2 Efficiency	316
		8.2.3 Event rate	316
		8.2.4 Readout	317
		8.2.5 Support structures, cooling, and cabling	317
		8.2.6 Cost	317
	8.3	Segmentation	318
	8.4	Tracking and vertex detectors at e^+e^- colliders	319
		8.4.1 Layout and detector geometry	319
		8.4.2 Electronics	323
		8.4.3 "Common mode noise"	326
		8.4.4 Noise limits in long strip detectors	327
		8.4.5 CCD detectors at e ⁺ e ⁻ colliders	330
	8.5	Vertex and tracking detectors at hadron colliders	337
	0.0	8.5.1 CDF and DØ	337
	8.6	Silicon trackers at the Large Hadron Collider	342
		8.6.1 Coping with high rates	343
		8.6.2 Radiation damage	344
		8.6.4 Readout electronics	345 348
		8.6.5 Detector modules	348 353
		5.b.5 Detector modules	353

xiv		CONTENTS	
		Di III	
_		8.6.6 Pixel detectors	$\frac{357}{357}$
	97	8.6.7 ATLAS pixel detector Monolithic active pixel devices	363
\	0.1	8.7.1 CMOS imagers	363
		8.7.2 DEPFET pixel detectors	364
	88	Astronomical imaging	366
		Emerging applications	367
	0.0	8.9.1 Space applications	367
		8.9.2 X-ray imaging and spectroscopy	369
	8.10	Design, assembly and test	372
		8.10.1 Design	372
		8.10.2 Assembly	374
		8.10.3 Testing	375
	8.11	Summary	377
	Refe	pences	378
9	Wh	v things don't work	386
Э		Reflections on transmission lines	386
		Common pickup mechanisms	389
	3.2	9.2.1 Noisy detector bias supplies	389
		9.2.2 Light pickup	389
		9.2.3 Microphonics	390
		9.2.4 RF pickup	391
	9.3	Pickup reduction techniques	392
	0.0	9.3.1 Shielding	392
		9.3.2 "Field line pinning"	394
		9.3.3 "Self-shielding" structures	395
		9.3.4 Inductive coupling	396
		9.3.5 "Self-shielding" cables	397
		9.3.6 Shielding summary	397
	9.4	Shared current paths - grounding and the power of myth	398
		9.4.1 Shared current paths ("ground loops")	398
		9.4.2 Remedial techniques	400
		9.4.3 Potential distribution on ground planes	403
		9.4.4 Connections in multi-stage circuits	405
	9.5	Breaking parasitic current paths	405
		9.5.1 Isolate sensitive loops	406
		9.5.2 Differential signal transmission	406
		9.5.3 Blocking Common Mode Currents	408
		9.5.4 Isolating parasitic ground connections by series resistors	409
		9.5.5 Directing the current flow away from sensitive nodes	410
	0.0	9.5.6 The folded cascode	412
		Capacitors	414
	9.7	System considerations	415

Outline

- ♦ Introduction
 - ♦ Kinematic variables
- Predicted but Totally Unexpected: Quark-Gluon Plasma Behaves as Perfect Liquid
 - ♦ Jet Quenching: created matter is very dense and opaque
 - ♦ High p_T Azimuthal Correlations
 - Elliptic flow: QGP behaves as perfect liquid
- ♦ Surprise: QGP-like Behavior in Small Colliding Systems
 - \diamond Non-zero p,d, 3 He + A $v_n(p_T)$ moments comparable to the A+A ones
- Quarkonia as Probe for Hot and Cold Nuclear Matter (Required Another Lecture)
 - ⇒ J/ψ and Y measurements: centrality, system size and energy Dependence
- ♦ From RHIC to EIC Future Project, and Opportunities

Rapidity

(c = 1, z coordinate along collision axis)

Four-momentum:

$$p^{\mu} = (p^0, p^1, p^2, p^3) = (E, \vec{p}) = (E, \vec{p}_T, p_z = p_{\parallel})$$

Addition of velocities along z:

$$v = v_1 + v_2$$
 (Galileo) $\beta = \frac{\beta_1 + \beta_2}{1 + \beta_1 \beta_2}$ (relativistic)

$$tanh(y_1 + y_2) = \frac{\tanh y_1 + \tanh y_2}{1 + \tanh y_1 \tanh y_2}$$

$$y = \tanh^{-1} \beta = \frac{1}{2} \ln \left(\frac{1+\beta}{1-\beta} \right)$$
 "rapidity"

Rapidity

$$y = \tanh^{-1} \beta = \frac{1}{2} \ln \left(\frac{1+\beta}{1-\beta} \right)$$

in the non-relativistic limit: $y = \beta$

under a Lorentz transformation to a frame moving with velocity β along $z: y \rightarrow y' = y - y_{\beta}$ (rapidities "add-up")

rapidity distributions are boostinvariant (along z): $\frac{dN}{dy'} = \frac{dN}{dy}$

it can be easily shown that:

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

For RHIC Au+Au at Eenergy = 200 GeV/n \rightarrow y_{beam} = 5.37

Transverse Variables

Transverse momentum:

$$\overrightarrow{p_T} = (p_x, p_y) \qquad p_T = \sqrt{p_x^2 + p_y^2}$$

Transverse mass:

$$m_T = \sqrt{m^2 + p_T^2}$$
 $E = \sqrt{m^2 + p^2} = \sqrt{m_T^2 + p_z^2}$

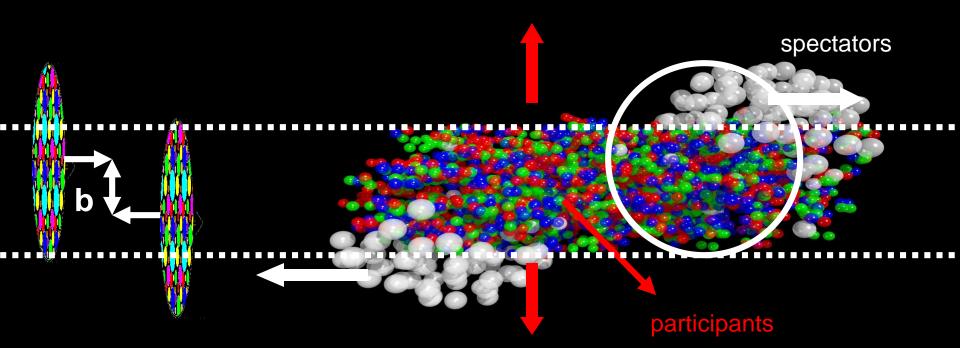
$$p_z = m_T \sinh(y)$$
 $E = m_T \cosh(y)$

Transverse energy:

$$E_T = \sum_i E_i \sin \theta_i$$
 θ_i = angle w.r.t. beam direction

Pseudorapidity

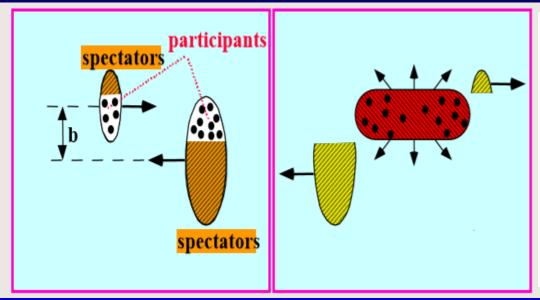
- Sometimes the energy and momentum of a particle are not known, only its angle of emission θ with respect to the beam axis (z) is measured
- For high energy particles, it is possible to approximate the rapidity by the pseudorapidity:

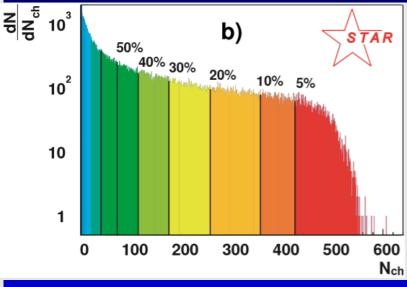

=ln(tan0/2)

$$\eta = -\log \tan(\theta/2) = \frac{1}{2} \log \left(\frac{p + p_z}{p - p_z} \right)$$
 in the ultra-relativistic limit:
$$E \sim p \text{ and } \eta \sim y$$

$$p_z = p_T \sinh(\eta)$$
 $p = p_T \cosh(\eta)$

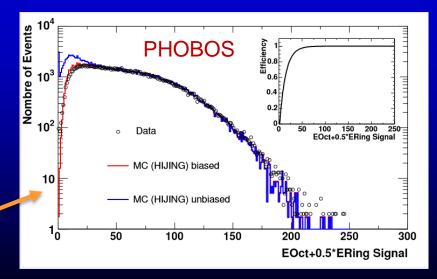
Collision Centrality

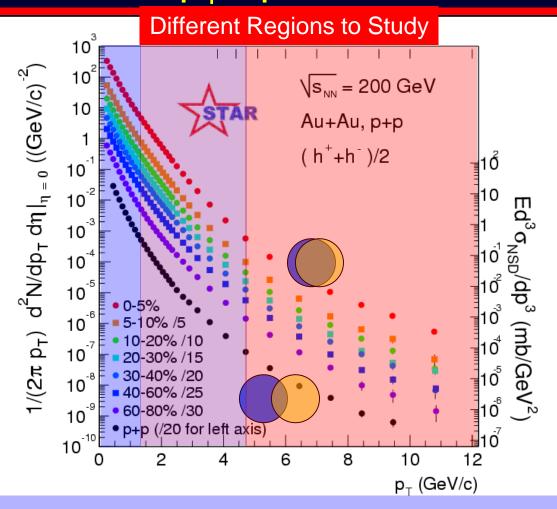

- Very simple illustration for N_{part} and N_{binary}



- Centrality characterized by:
 - N_{part}: number of nucleons which suffered at least one inelastic nucleon-nucleon collision
 - ❖ N_{binary}: number of inelastic nucleon-nucleon collisions

Collision Centrality

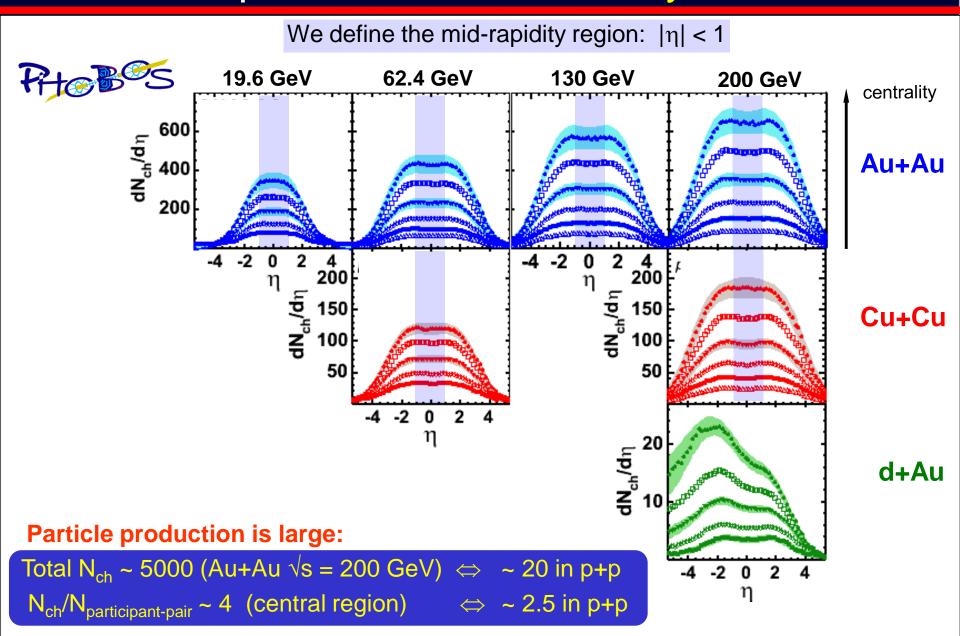

How far do the centers of the two colliding nuclei pass each other?



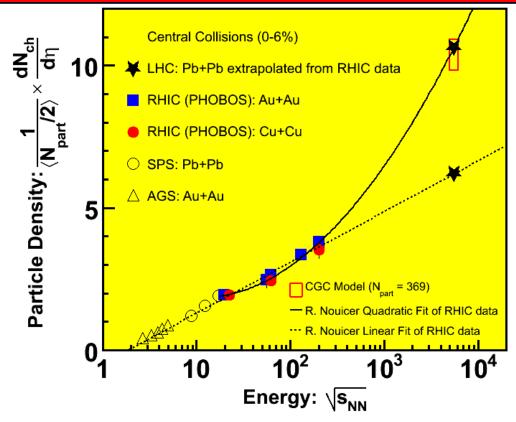
- Usually expressed in terms of:
 - b (impact parameter)
 - Number of participants N_{part}(b)

Using models like HIJING model for Au+Au

Hadron p_T Spectra in Au+Au



Low p_T: Measure Bulk/Global Properties (99% of particles)


High p_T: Small cross section, short wavelength

"Intermediate" p_T: soft/hard interplay, surprises?

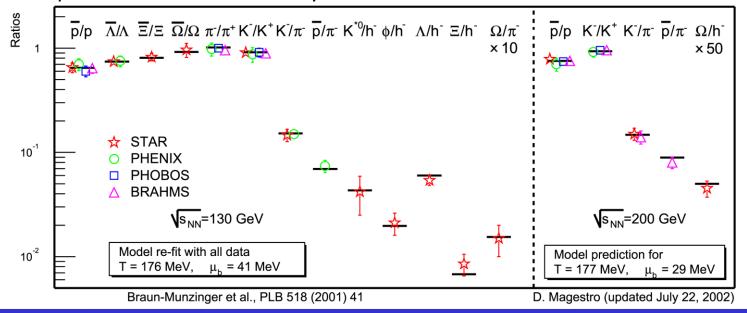
Global Properties: Particle Density Distributions

Global Properties: Bjorken Energy Density

- Relativistic hydrodynamics in Bjorken model (boost invariance $\Rightarrow \eta \sim 0)$:

$$\varepsilon = \frac{1}{\pi R^2 \tau} \frac{dE_T}{dy} \approx \frac{1}{\pi R^2 \tau} \langle p_T \rangle \frac{3}{2} \frac{dN_{ch}}{d\eta} \qquad (R \sim A^{1/3}, \tau = 1 \text{ fm/c})$$

Under these simplifying assumptions, ε ~ 5 GeV/fm³ ⇒ well above critical energy density ~1 GeV/fm³ from LQCD


Global Properties: Particle Yields

Grand-canonical ensemble of particles in local equilibrium

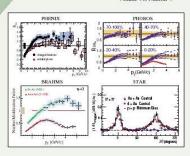
- Assume all distributions described by one temperature T and one (baryon) chemical potential μ : $dn \sim e^{-(E-\mu)/T} d^3 p$
- One ratio (e.g., p̄ / p) determines μ / T:
- A second ratio (e.g., K / p) provides T → μ

Then predict all other hadronic yields and ratios:

$$\frac{\overline{p}}{p} = \frac{e^{-(E+\mu)/\mathsf{T}}}{e^{-(E-\mu)/\mathsf{T}}} = e^{-2\mu/\mathsf{T}}$$

Hadrons yields:

⇒ chemical equilibration across u, d and s quark sectors


What's next?

- We measured thousands of particles...
 What do we want to see?
 - Macroscopic behavior
- QGP is thermodynamic in nature
 - Gas or Fluid?
- Look for collective flow...

RHIC Discoveries in the Press

PHYSICAL REVIEW ETTERS

Articles published week ending 15 AUGUST 2003

Hunting the Quark Gluon Plasma

RESULTS FROM THE FIRST 3 YEARS AT RHIC

ASSESSMENTS BY THE EXPERIMENTAL COLLABORATIONS

April 18, 2005

Member Subscription Copy Jozary or Other Institutional Use Prohibited Until 2001

BNL -73847-2005

Published by The American Physical Society

The Collaboration of the four experiments: PHENIX, BRAHMS, PHOBOS and STAR at RHIC

CONCLUDED that strongly-interacting matter

has been created in most central Au+Au collisions at 200 GeV

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

Monday, April 18, 2005

TAMPA, FL -- The four detector groups conducting research at the Relativistic Heavy Ion Collider (RHIC) -- a giant atom smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory -- say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In peer-reviewed papers summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a liquid.

"Once again, the physics research sponsored by the Department of Energy is producing historic results," said Secretary of Energy Samuel Bodman, a trained chemical engineer. "The DOE is the principal federal funder of basic research in the physical sciences, including nuclear and high-energy physics. With today's announcement we see that investment paying off."

"The truly stunning finding at RHIC that the new state of matter created in the collisions of gold ions is more like a liquid than a gas gives us a profound insight into the earliest moments of the universe." said Dr. Raymond L. Orbach, Director of the DOF Office of Science

Also of great interest to many following progress at RHIC is the emerging connection between the collider's results and calculations using the methods of string theory, an approach that attempts to explain fundamental properties of the universe using 10 dimensions instead of the usual three spatial dimensions plus

Sign in Forgotten your password? Sign up

Science Da Your source for the latest research news

Science News

... from universities, journals REGISTER NOW

International Journal of High-Energy Physics

Latest Issue Archive Jobs Links Buyer's guide White papers Events Contact us

RHIC Scientists Serve Up 'Perfect' Liquid: New State Remarkable Than Predicted

Apr. 25, 2005 — TAMPA, FL -- The four detector groups conducting research at the Relativistic Heavy Ion Collider (RHIC) -- a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory -- say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had

These images co. and collective mo . Meeting the predicted gas (Figure A. see mr. that has been ob-RHIC (Figure B, s "force lines" and animated version what is now being liquid. (Courtesy c

Laboratory)

Register as a member of cerncourier.com and get full access to all features of the site. Registration is free.

LATEST CERN

- Genetic less electronics
- degree of interact . Neutrinos head off again to Minnesota
 - 2012 Nobel Prize in

CERN COURIER

May 6, 2005

RHIC groups serve up 'perfect' liquid

The four detector groups conducting research at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory have announced results indicating that they have observed a state of hot, dense matter that is more remarkable than had been predicted. In papers summarizing the first three years of RHIC findings, to be published simultaneously by the journal Nuclear Physics A, the four collaborations (BRAHMS, PHENIX, PHOBOS and STAR) say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter

Search Go

DIGITAL

EDITION

CERN Courier is now available as a regular digital edition. Click here to read the digital edition.

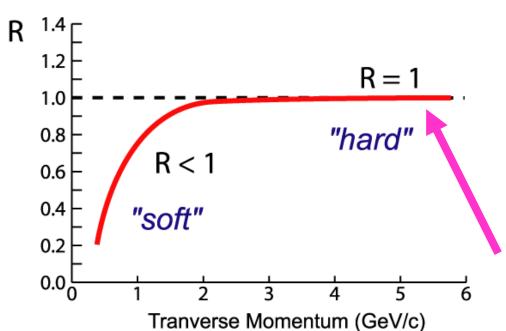
KEY SUPPLIERS

More companies

Relativistic Heavy Ion Collider (RHIC) • Brookhaven National Laboratory, Upton, NY 11974-5000

BROOKHAVEN

COURIER ARTICLES

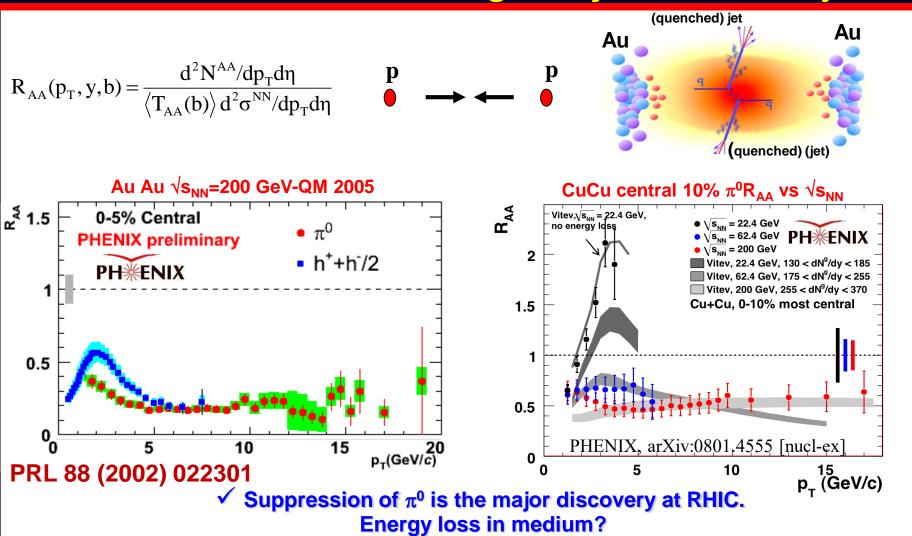

- multiplexing: how to read more with
- · Breaking news: The

Jet Suppression - Nuclear Modification Factor

We define a nuclear modification factor, R_{AA} , in terms of the ratio of the p_t spectra in nucleus-nucleus collisions divided by the p₁ spectra in p+p collisions

$$R_{AA}(p_T) = \frac{d^2N^{AA}/dp_T d\eta}{T_{AA}d^2\sigma^{NN}/dp_T d\eta}$$

$$/\sigma_{inel}^{p+p} \iff \text{(Nuclear Geometry)}$$
If no "effects":

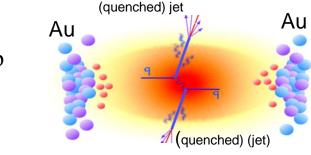

If no "effects":

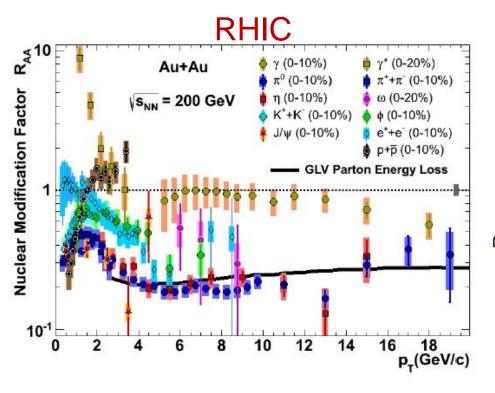
- R < 1 in regime of soft</p> physics
- R = 1 at high- p_T where hard scattering dominates

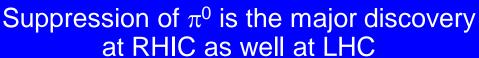
Suppression?

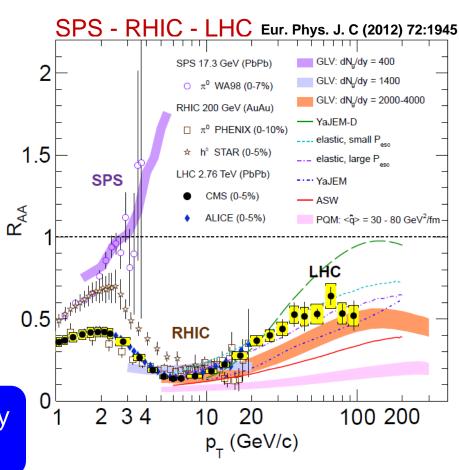
• Is R < 1 at high- p_T ?

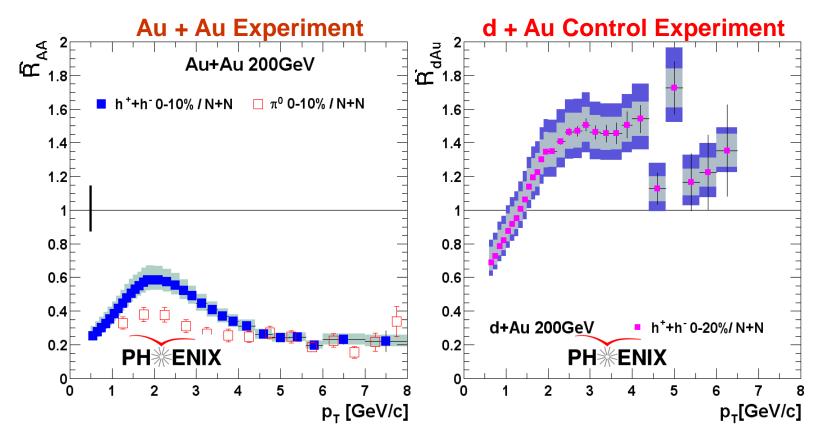
RHIC: Jet Quenching "Major Discovery"


 \rightarrow Suppression is unique at RHIC-different from low $\sqrt{s_{NN}}$ (22.4 < $\sqrt{s_{NN}}$ < 62.4GeV)

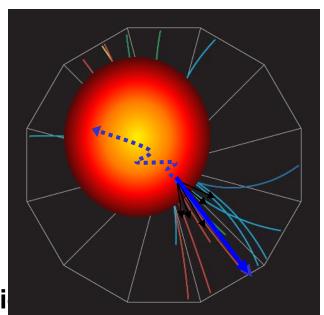

 π^0 suppressed by a factor of 5 compared to point-like scaling for 3< p_T< 20 GeV/c! Non-identified h[±] and π^0 are different for p_T < 6 GeV/c \Rightarrow particle ID is important.


RHIC: Jet Quenching "Major Discovery"


$$R_{_{AA}}(p_{_{T}},y,b) = \frac{d^2N^{^{AA}}\!/dp_{_{T}}d\eta}{\left\langle T_{_{AA}}(b)\right\rangle d^2\sigma^{pp}\!/dp_{_{T}}d\eta}$$



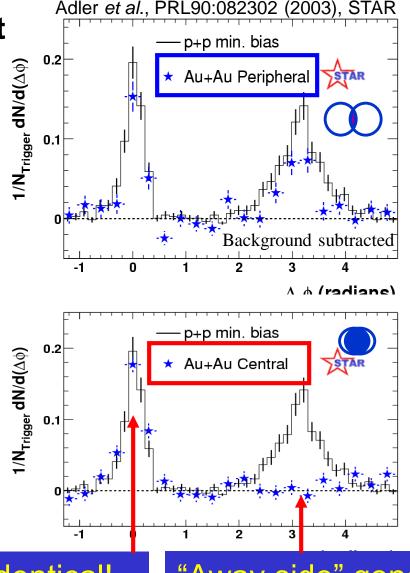
Suppression of Leading Hadrons


The data from p+p, Au+Au and d+Au collisions establish that a new effect (a new state of matter?) is produced in central Au-Au collisions

Suppression in central Au+Au due to final-state effects

High p_T Azimuthal Correlations (2-particle Azimuthal Distributions)

InStarte Mantais play is stoppe event

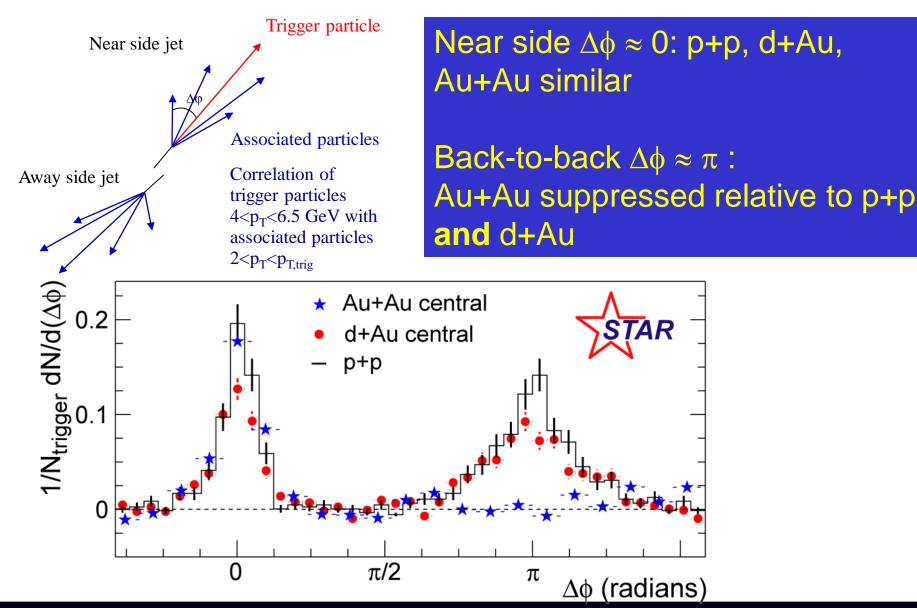


Near-si

• partons fragment outside the medium

Acreasidorrelation of particles

• partons are absorbed by the medium or "Skin" emission

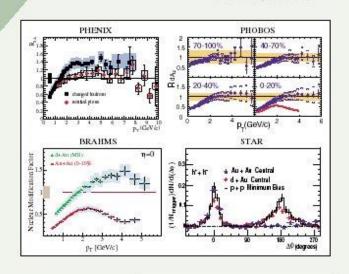


"Near side" jet identical!

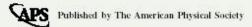
"Away side" gone!

Again, can we get more information?

d+Au versus Au+Au collisions



Au+Au @ 200 GeV (central): Suppression


PHYSICAL REVIEW LETTERS

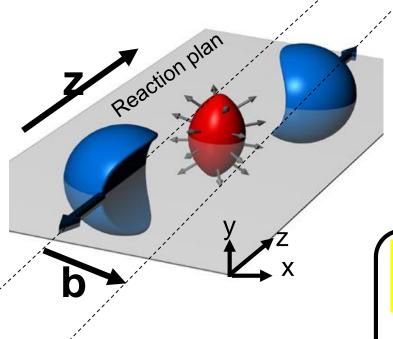
Articles published week ending 15 AUGUST 2003

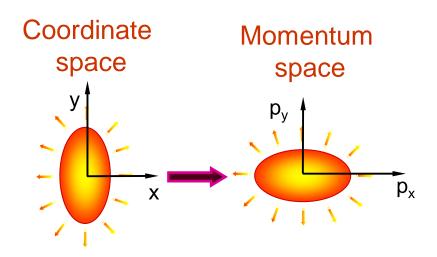
Volume 91, Number 7

Member Subscription Copy Library or Other Institutional Use Prohibited Until 2008

Discovery of

high p_T suppression


(one of most significant results @ RHIC so far)


Suppression in central Au+Au due to final-state effects

Elliptic Flow a Unique Probe!

The reaction plane

 Spanned by the beam direction and the impact parameter b

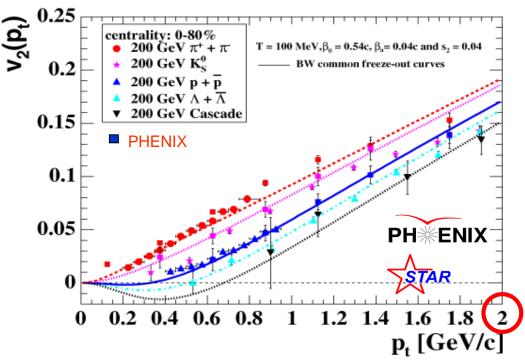
Fourier transformation of the produced particles azimuthal distribution

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_t dp_t dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos\left(n(\varphi - \Psi_r)\right) \right)$$

$$v_2 = \langle \cos 2(\varphi - \Psi_r) \rangle, \quad \varphi = \tan^{-1}(\frac{p_y}{p_x})$$

The almond shape of the created quark gluon plasma in non-central collisions leads to an azimuthal dependence of the observables sensitive to the medium properties

Why is elliptic flow interesting?


Flow correlations provide an important probe

- Provides reliable estimates of pressure & pressure gradients
- Can address questions related to thermalization
- Gives insights on the transverse and longitudinal dynamics of the medium
- Provides access to the properties of the medium
 EOS, viscosity, etc

Elliptic flow => sensitivity to early system

"Elliptic flow"

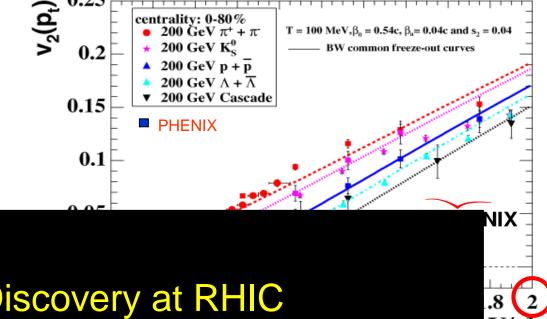
- evidence of collective motion
- self-quenching
- ⇒ sensitive to *early* pressure
- evidence for
 - early thermalization
 - QGP in early stage
- Fluid cells expand with collective velocity v, different mass particles get different Δp

Elliptic flow at RHIC:

Magnitude, mass and p_T dependence are in good agreement with <u>ideal hydrodynamic</u> <u>flow</u>, for the first time in HIC

Ideal hydrodynamics: (QGP equation-of-state)
viscosity/entropy~0.1
⇒ near-perfect fluid!

Elliptic flow => sensitivity to early system


"Elliptic flow"

- evidence of collective motion
- self-quenching

e١

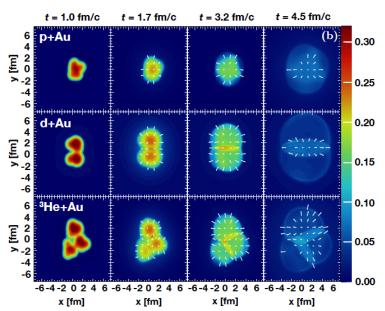
FI

⇒ sensitive to *early* pressure

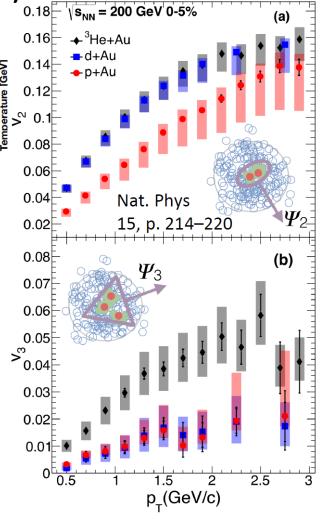
Major Discovery at RHIC

Velocity v, uniterent mass particles get different ∆p

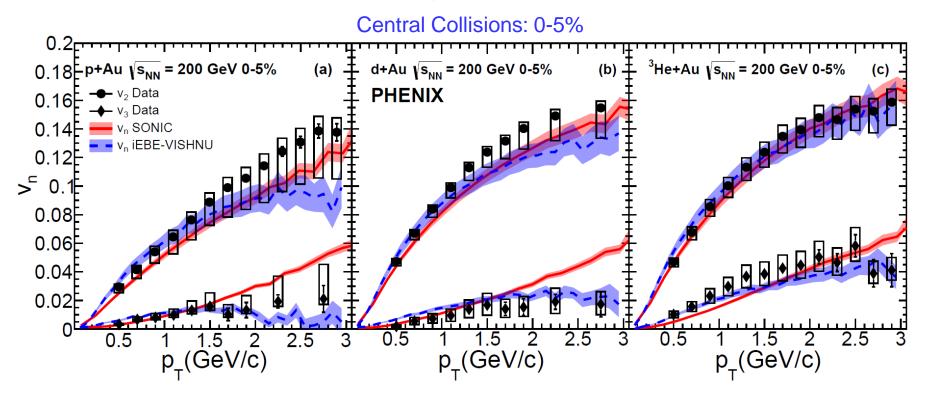

iviagrillude, mass and p_T dependence are in good agreement with ideal hydrodynamic flow, for the first time in HIC


Ideal hydrodynamics: (QGP equation-of-state) viscosity/entropy~0.1 \Rightarrow near-perfect fluid!

Results in Small Systems: Flow


Evidence of QGP Droplets in Small Systems

Nature Physics 15, pages 214–220 (2019)


Lower v₂ in p+Au
Higher v₃ in ³He+Au
Importance of initial
state geometry

Results in Small Systems: Flow

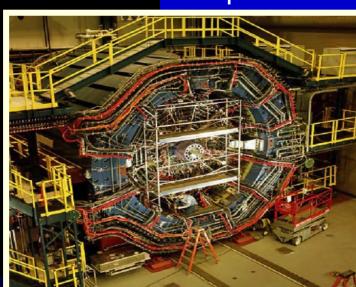
Evidence of QGP Droplets in Small Systems

Nature Physics 15, pages214–220 (2019)

Excellent agreement between data and hydrodynamic predictions

Only hydrodynamic models reproduce the data

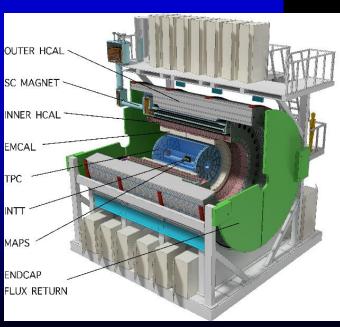
Models indicate the temperatures achieved in small systems sufficient

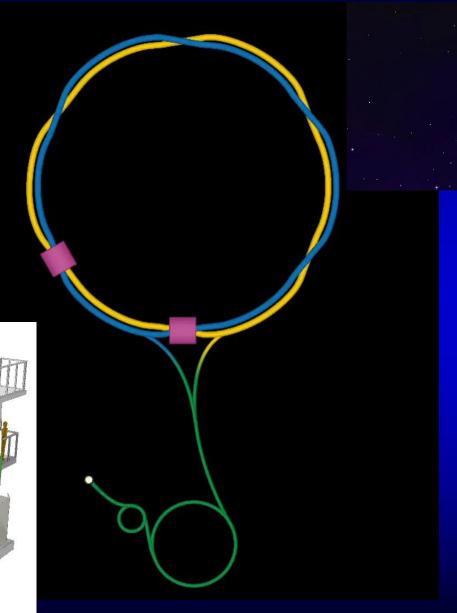

for QGP formation: QGP Droplets!

From RHIC to EIC Future Project, and Opportunities

RHIC-I

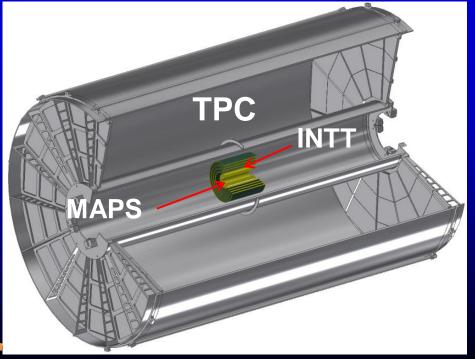
STAR 2000to present




New Detector at RHIC-II

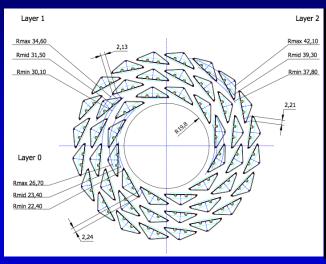
SPHENIX

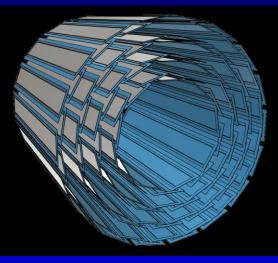
2016-2023 construction

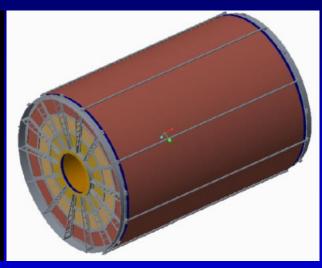

2023 – 2029 (when EIC start)

sPHENIX: Importance of Tracking

Physics Goal	Detector Requirement	
Fragmentation Functions	Excellent Momentum Resolution: dp/p ~ 0.2%p to > 40 GeV/c	
Jet Substructure	Excellent track pattern recognition	
Distinguish Upsilon States	Mass resolution: σ _M < 100 MeV/c ²	
HF jet tagging	Precise DCA resolution σ_{DCA} < 100 μm	
High Statistics Au+Au 200 GeV	Handle multiplicity and full RHIC luminosity	




sPHENIX: Tracking Subsystems


MAPS

INTT

TPC

- 3 layers Si sensors
- Based on ALICE ITS upgrade
- DCA $_{xv}$ < 70 μ m
- $-|z_{vtx}| < 10$ cm

- 4 layers Si strips
- Use PHENIX-FVTX electronics
- Pattern recognition,
 DCA, connect
 tracking systems,
 reject pile-up
- Trigger

- Radius 20-78 cm
- ~ 250 μm effective hit resolution
- Continuous (non-gated) readout
- Pattern recognition,
 momentum resolution,
 p_T 0.2-40 GeV/c

Electron-Ion Collider (EIC) News

RHIC collider at BNL has a bright future -> Electron-lon Collider (EIC)

© ENERGY.GOV

SCIENCE & INNOVATION

ENERGY ECONOMY

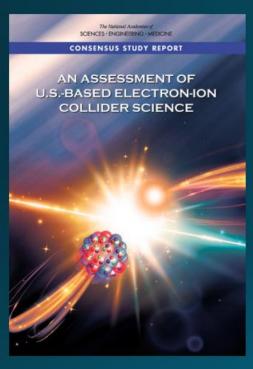
SECURITY & SAFETY

SAVE ENERGY, SAVE MONEY

Department of Energy

U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility

JANUARY 9, 2020


Home » U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility

WASHINGTON, D.C. – Today, the **U.S. Department of Energy (DOE)** announced the selection of Brookhaven National Laboratory in Upton, NY, as the site for a planned major new nuclear physics research facility.

The Electron Ion Collider (EIC), to be designed and constructed over ten years at an estimated cost between \$1.6 and \$2.6 billion will smash electrons into protons and heavier atomic nuclei in an effort to penetrate the mysteries of the "strong force" that binds the atomic nucleus together.

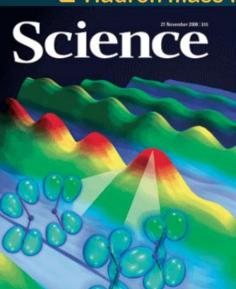
Glimpse on EIC Physics

EIC Science Assessment by NAS

Finding 1:

An EIC can uniquely address three profound questions about nucleons—neutrons and protons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?

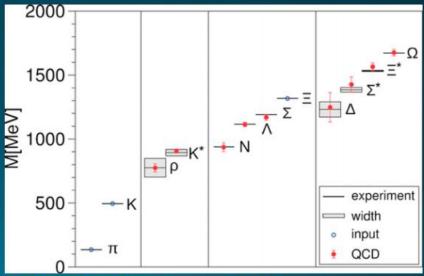

Glimpse on EIC Physics

How does QCD generate the nucleon mass?

"... The vast majority of the nucleon's mass is due to quantum fluctuations of quarkantiquark pairs, the gluons, and the energy associated with quarks moving around at close to the speed of light. ..."

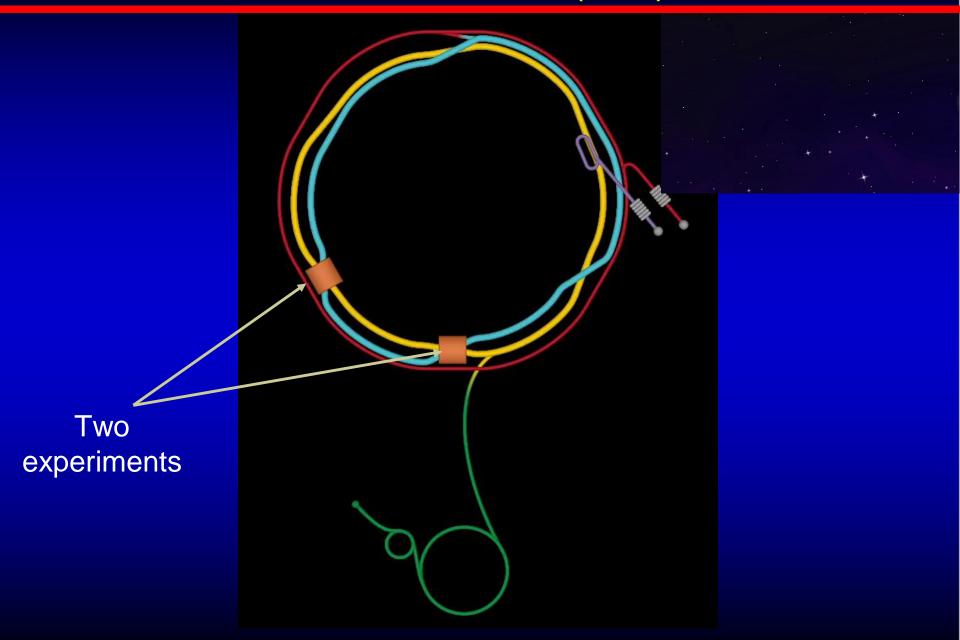
The 2015 Long Range Plan for Nuclear Science

☐ Hadron mass from Lattice QCD calculation:

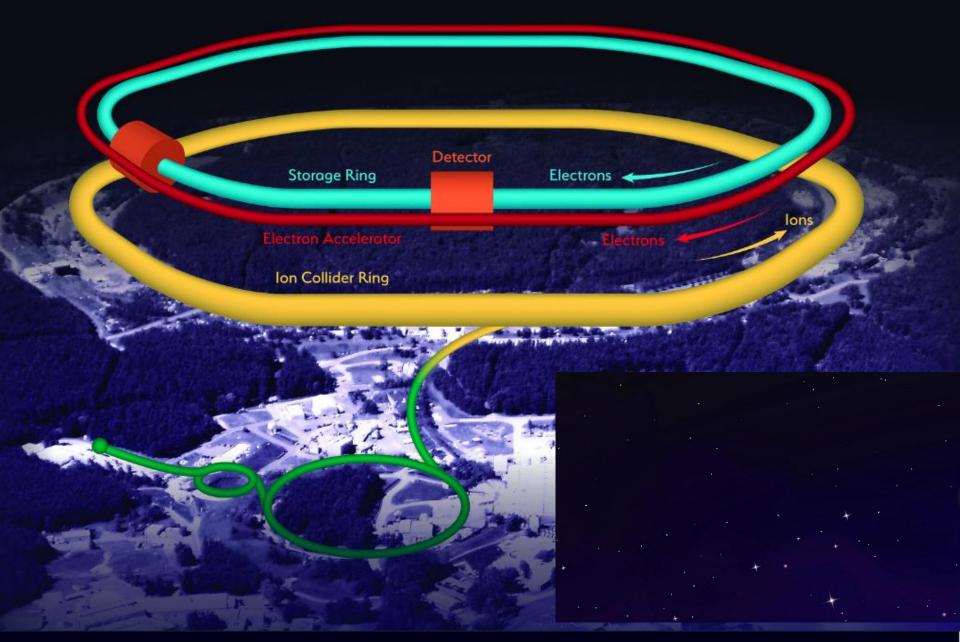


Ab Initio Determination of Light Hadron Masses

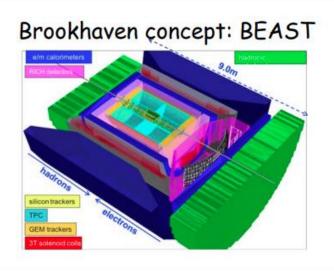
S. Dürr, Z. Fodor, C. Hoelbling, R. Hoffmann, S.D. Katz, S. Krieg, T. Kuth, L. Lellouch, T. Lippert, K.K. Szabo and G. Vulvert

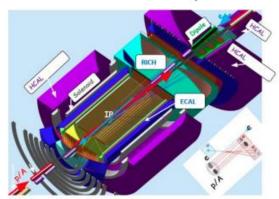

2008 Science 322 (5905), 1224-1227 DOI: 10.1126/science.1163233

568 citations

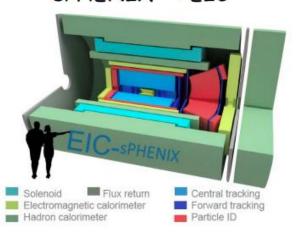


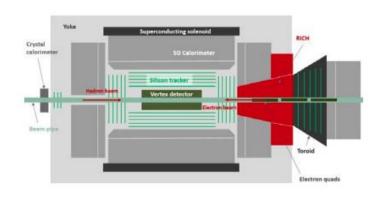
How does QCD generate this? The role of quarks and of gluons?


Electron-Ion Collider (EIC) News


EIC Concept

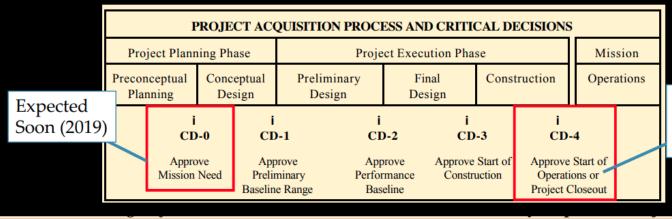
Current EIC General Purpose Detector Concepts





Courtesy of Abhay Deshpande

sPHENIX → EIC



Argonne concept: TOPSIDE

Critical Decision Process DOE

Courtesy of Abhay Deshpande

Technical feasibility (~2029)

CD-0	CD-1	CD-2	CD-3	CD-4
Actions Authorized by Critical Decision Approval				
 Proceed with conceptual design using program funds Request PED funding 	Allow expenditure of PED funds for design	 Establish baseline budget for construction Continue design Request construction funding 	Approve expenditure of funds for construction	Allow start of operations or project closeout

January 11th, 2019

PED: Project Engineering & Design

The US Electron Ion Collider Project: Abhay Deshpande

Thank You End of Lecture 2