
ジェットの深層学習の決定過程の 
解析と物理応用 

(ミンコフキー汎関数を中心にして） 

KEK 野尻美保子



ジェットの深層学習

• Jet のsubstructure からHeavy 粒子の選別　今後の高輝度化、高エ
ネルギー化→ high pT のHiggs 粒子　top 粒子の選別, mass drop 

tagger など摂動的にも良くわかった量から出発 

• BDT (機械学習)から深層学習 

• 様々なアルゴリズムの提案　高次の量の利用→低次の量(Jet image 

など）　MC レベルではよりよい結果を示す。例えば top Higgs vs 

QCD ジェットなど



CNN とTOP TAGGING

• CNN, ResNeXT, Particle 
Net… は大体同じパフォー
マンス　(右の図は同等の精
度のinput で比べていないの
で注意）
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Practical Example with CNN: Image Recognition Techniques with Jet Image
L. Oliveira, M. Kagan, L. Mackey, B. Nachman, A. Schwartzman, (1511.05190)32- -
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 
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Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Basic building unit: 2D convolutional layer
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Reduce number of free parameters by weight and bias sharing.
Specialized in understanding local spatial correlations
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Neural Network Crash Course: What is an Artificial Neural Network?

The artificial neural network is a biology inspired framework of modelling a
function.

Basic architectural unit: neuron
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This kind of feed-forward network’s output ŷ(x1, · · · , xn) could
approximate an output of a function y(x1, · · · , xn) if proper weights and
biases are assigned.
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Figure 5: ROC curves for all algorithms evaluated on the same test sample, shown as the
AUC ensemble median of multiple trainings. More precise numbers as well as uncertainty
bands given by the ensemble analysis are given in Tab. 1.

Instead of extracting these performance measures from single models we can use ensembles.
For this purpose we train nine models for each tagger and define 84 ensemble taggers, each time
combining six of them. They allow us to evaluate the spread of the ensemble taggers and define
mean-of-ensemble and median-of-ensemble results. We find that ensembles leads to a 5 ... 15%
improvement in performance, depending on the algorithm. For the uncertainty estimate of the
background rejection we remove the outliers. In Tab. 1 we see that the background rejection
varies from around 1/600 to better than 1/1000. For the ensemble tagger the ParticleNet,
ResNeXt, TreeNiN, and PFN approaches again lead to the best results. Phrased in terms
of the improvement in the signal-to-background ratio they give factors ✏S/✏B > 300, vastly
exceeding the current top tagging performance in ATLAS and CMS.

Altogether, in Fig. 5 and Tab. 1 we see that some of the physics-motivated setups remain
competitive with the technically much more advanced ResNeXt and ParticleNet networks.
This suggests that even for a straightforward task like top tagging in fat jets we can develop
e�cient physics-specific tools. While their performance does not quite match the state-of-
the-art standard networks, it is close enough to test both approaches on key requirements in
particle physics, like treatment of uncertainties, stability with respect to detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. At this point we have checked that including full or partial information on
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IRC SAFETY

安心できる量と不安な量

• IRC safe object: soft or collinear emission に対して安定な量, subjet  

• Soft collinear に対して不安定な量　number of tracks, particles 　
MC modeling に大きな差 (いつまで立っても収束しないPythia と
Hewig 実験データなど）  

• →Jet Image　の利用: 　両者の間の区別が不明確　系統誤差の評価
に問題はないか。実データで補正はやや楽観的ではないか。 

• 理論研究：ジェットの構造の中でresummation でうまく記述できる
部分を切りだす。



深層学習によるジェット分類の中で、 
IRC SENSTIVE な部分がどのように働いているか。

• 典型的なジェットイメージで分類に 

• Higgs ハードな部分が複数ある(mass drop)  vs QCD: あ
まりない 

• W, H, Z  粒子束が独立する傾向 vs QCD 撒き散らし。カ
ラーコヒーレンスは以前からみたい量。 

• クオーク (どちらかと言うと）芯がある vs グルーオン 
より広い 

• 注意　underlying event とかmultiple scattering とかあ
るのでLHC の環境では難しい量. Soft の部分を切り捨て
て、摂動計算と比較できる物理をやりたいという流れも
ある。　 

• 今のトーク　ソフトな粒子の分布に注目したい。

Higgs top QCD 
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<latexit sha1_base64="UFRFZ2FO6+uhZA6MMWbcsS8/T6Y=">AAAB73icdVDLSgMxFM34rPVVdekmWIS6GZJa2i4LunBZwT6kHUomTdvQJDMmGaEM/QoXblTc+jku/RvTh6CiBy4czrmXe+8JY8GNRejDW1ldW9/YzGxlt3d29/ZzB4dNEyWasgaNRKTbITFMcMUallvB2rFmRIaCtcLxxcxv3TNteKRu7CRmgSRDxQecEuuk20La1RJeTs96uTzyURlhjCHyS5XzYgU5gotOKkPsoznyYIl6L/fe7Uc0kUxZKogxHYxiG6REW04Fm2a7iWExoWMyZB1HFZHMBOn84Ck8dUofDiLtSlk4V79PpEQaM5Gh65TEjsxvbyb+5XUSO6gGKVdxYpmii0WDREAbwdn3sM81o1ZMHCFUc3crpCOiCbUuI5fB16Pwf9Is+tgFc13K16rLNDLgGJyAAsCgAmrgCtRBA1AgwQN4As/enffovXivi9YVbzlzBH7Ae/sEiHSP0g==</latexit><latexit sha1_base64="UFRFZ2FO6+uhZA6MMWbcsS8/T6Y=">AAAB73icdVDLSgMxFM34rPVVdekmWIS6GZJa2i4LunBZwT6kHUomTdvQJDMmGaEM/QoXblTc+jku/RvTh6CiBy4czrmXe+8JY8GNRejDW1ldW9/YzGxlt3d29/ZzB4dNEyWasgaNRKTbITFMcMUallvB2rFmRIaCtcLxxcxv3TNteKRu7CRmgSRDxQecEuuk20La1RJeTs96uTzyURlhjCHyS5XzYgU5gotOKkPsoznyYIl6L/fe7Uc0kUxZKogxHYxiG6REW04Fm2a7iWExoWMyZB1HFZHMBOn84Ck8dUofDiLtSlk4V79PpEQaM5Gh65TEjsxvbyb+5XUSO6gGKVdxYpmii0WDREAbwdn3sM81o1ZMHCFUc3crpCOiCbUuI5fB16Pwf9Is+tgFc13K16rLNDLgGJyAAsCgAmrgCtRBA1AgwQN4As/enffovXivi9YVbzlzBH7Ae/sEiHSP0g==</latexit><latexit sha1_base64="UFRFZ2FO6+uhZA6MMWbcsS8/T6Y=">AAAB73icdVDLSgMxFM34rPVVdekmWIS6GZJa2i4LunBZwT6kHUomTdvQJDMmGaEM/QoXblTc+jku/RvTh6CiBy4czrmXe+8JY8GNRejDW1ldW9/YzGxlt3d29/ZzB4dNEyWasgaNRKTbITFMcMUallvB2rFmRIaCtcLxxcxv3TNteKRu7CRmgSRDxQecEuuk20La1RJeTs96uTzyURlhjCHyS5XzYgU5gotOKkPsoznyYIl6L/fe7Uc0kUxZKogxHYxiG6REW04Fm2a7iWExoWMyZB1HFZHMBOn84Ck8dUofDiLtSlk4V79PpEQaM5Gh65TEjsxvbyb+5XUSO6gGKVdxYpmii0WDREAbwdn3sM81o1ZMHCFUc3crpCOiCbUuI5fB16Pwf9Is+tgFc13K16rLNDLgGJyAAsCgAmrgCtRBA1AgwQN4As/enffovXivi9YVbzlzBH7Ae/sEiHSP0g==</latexit><latexit sha1_base64="UFRFZ2FO6+uhZA6MMWbcsS8/T6Y=">AAAB73icdVDLSgMxFM34rPVVdekmWIS6GZJa2i4LunBZwT6kHUomTdvQJDMmGaEM/QoXblTc+jku/RvTh6CiBy4czrmXe+8JY8GNRejDW1ldW9/YzGxlt3d29/ZzB4dNEyWasgaNRKTbITFMcMUallvB2rFmRIaCtcLxxcxv3TNteKRu7CRmgSRDxQecEuuk20La1RJeTs96uTzyURlhjCHyS5XzYgU5gotOKkPsoznyYIl6L/fe7Uc0kUxZKogxHYxiG6REW04Fm2a7iWExoWMyZB1HFZHMBOn84Ck8dUofDiLtSlk4V79PpEQaM5Gh65TEjsxvbyb+5XUSO6gGKVdxYpmii0WDREAbwdn3sM81o1ZMHCFUc3crpCOiCbUuI5fB16Pwf9Is+tgFc13K16rLNDLgGJyAAsCgAmrgCtRBA1AgwQN4As/enffovXivi9YVbzlzBH7Ae/sEiHSP0g==</latexit>

Rg
<latexit sha1_base64="xO489AHCmHspyMWUIxLrzGPuyIk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF4/1ox/QhrLZbtKlm03YnQgl9Cd48KLi1V/k0X/jts1Bqw8GHu/NMDMvSKUw6LpfTmltfWNzq7xd2dnd2z+oHh51TJJpxtsskYnuBdRwKRRvo0DJe6nmNA4k7waT67nffeTaiEQ94DTlfkwjJULBKFrp/m4YDas1t+4uQP4SryA1KNAaVj8Ho4RlMVfIJDWm77kp+jnVKJjks8ogMzylbEIj3rdU0ZgbP1+cOiNnVhmRMNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/DsOHnQqUZcsWWi8JMEkzI/G8yEpozlFNLKNPC3krYmGrK0KZjM/BWP/5LOhd1z617t5e1ZqNIowwncArn4MEVNOEGWtAGBhE8wQu8OhPn2Xlz3petJaeYOYZfcD6+AZ0bjZY=</latexit><latexit sha1_base64="xO489AHCmHspyMWUIxLrzGPuyIk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF4/1ox/QhrLZbtKlm03YnQgl9Cd48KLi1V/k0X/jts1Bqw8GHu/NMDMvSKUw6LpfTmltfWNzq7xd2dnd2z+oHh51TJJpxtsskYnuBdRwKRRvo0DJe6nmNA4k7waT67nffeTaiEQ94DTlfkwjJULBKFrp/m4YDas1t+4uQP4SryA1KNAaVj8Ho4RlMVfIJDWm77kp+jnVKJjks8ogMzylbEIj3rdU0ZgbP1+cOiNnVhmRMNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/DsOHnQqUZcsWWi8JMEkzI/G8yEpozlFNLKNPC3krYmGrK0KZjM/BWP/5LOhd1z617t5e1ZqNIowwncArn4MEVNOEGWtAGBhE8wQu8OhPn2Xlz3petJaeYOYZfcD6+AZ0bjZY=</latexit><latexit sha1_base64="xO489AHCmHspyMWUIxLrzGPuyIk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF4/1ox/QhrLZbtKlm03YnQgl9Cd48KLi1V/k0X/jts1Bqw8GHu/NMDMvSKUw6LpfTmltfWNzq7xd2dnd2z+oHh51TJJpxtsskYnuBdRwKRRvo0DJe6nmNA4k7waT67nffeTaiEQ94DTlfkwjJULBKFrp/m4YDas1t+4uQP4SryA1KNAaVj8Ho4RlMVfIJDWm77kp+jnVKJjks8ogMzylbEIj3rdU0ZgbP1+cOiNnVhmRMNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/DsOHnQqUZcsWWi8JMEkzI/G8yEpozlFNLKNPC3krYmGrK0KZjM/BWP/5LOhd1z617t5e1ZqNIowwncArn4MEVNOEGWtAGBhE8wQu8OhPn2Xlz3petJaeYOYZfcD6+AZ0bjZY=</latexit><latexit sha1_base64="xO489AHCmHspyMWUIxLrzGPuyIk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF4/1ox/QhrLZbtKlm03YnQgl9Cd48KLi1V/k0X/jts1Bqw8GHu/NMDMvSKUw6LpfTmltfWNzq7xd2dnd2z+oHh51TJJpxtsskYnuBdRwKRRvo0DJe6nmNA4k7waT67nffeTaiEQ94DTlfkwjJULBKFrp/m4YDas1t+4uQP4SryA1KNAaVj8Ho4RlMVfIJDWm77kp+jnVKJjks8ogMzylbEIj3rdU0ZgbP1+cOiNnVhmRMNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/DsOHnQqUZcsWWi8JMEkzI/G8yEpozlFNLKNPC3krYmGrK0KZjM/BWP/5LOhd1z617t5e1ZqNIowwncArn4MEVNOEGWtAGBhE8wQu8OhPn2Xlz3petJaeYOYZfcD6+AZ0bjZY=</latexit>

Passes SD condition
<latexit sha1_base64="E5obcAcN86wrv1LJrhIL2JWhKXw=">AAACAnicdVDLSgMxFM34flt1p5tgEVwNGV91dqIuXFa0KrSlZNJbDc1khuSOWIaCC7/FhRsVt/6ES//GtFZQ0QOBwzn33nBOlCppkbF3b2h4ZHRsfGJyanpmdm6+sLB4ZpPMCKiIRCXmIuIWlNRQQYkKLlIDPI4UnEftg55/fg3GykSfYieFeswvtWxJwdFJjcJyDeEG8zK3Fiw9OaQi0U3Z87qNQpH5rFTaDLcp87dYGG4wR1i4s8tCGvisjyIZoNwovNWaichi0CiUO1gNWIr1nBuUQkF3qpZZSLlo80uoOqp5DLae9zN06ZpTmrSVGPc00r76fSPnsbWdOHKTMccr+9vriX951Qxbu/Vc6jRD0OLzo1amKCa0VwhtSgMCVccRLoyLLqi44oYLdLW5Dr6C0v/J2YYfMD843iru7Q/amCArZJWsk4CUyB45ImVSIYLcknvySJ68O+/Be/ZePkeHvMHOEvkB7/UDGAqYHA==</latexit><latexit sha1_base64="E5obcAcN86wrv1LJrhIL2JWhKXw=">AAACAnicdVDLSgMxFM34flt1p5tgEVwNGV91dqIuXFa0KrSlZNJbDc1khuSOWIaCC7/FhRsVt/6ES//GtFZQ0QOBwzn33nBOlCppkbF3b2h4ZHRsfGJyanpmdm6+sLB4ZpPMCKiIRCXmIuIWlNRQQYkKLlIDPI4UnEftg55/fg3GykSfYieFeswvtWxJwdFJjcJyDeEG8zK3Fiw9OaQi0U3Z87qNQpH5rFTaDLcp87dYGG4wR1i4s8tCGvisjyIZoNwovNWaichi0CiUO1gNWIr1nBuUQkF3qpZZSLlo80uoOqp5DLae9zN06ZpTmrSVGPc00r76fSPnsbWdOHKTMccr+9vriX951Qxbu/Vc6jRD0OLzo1amKCa0VwhtSgMCVccRLoyLLqi44oYLdLW5Dr6C0v/J2YYfMD843iru7Q/amCArZJWsk4CUyB45ImVSIYLcknvySJ68O+/Be/ZePkeHvMHOEvkB7/UDGAqYHA==</latexit><latexit sha1_base64="E5obcAcN86wrv1LJrhIL2JWhKXw=">AAACAnicdVDLSgMxFM34flt1p5tgEVwNGV91dqIuXFa0KrSlZNJbDc1khuSOWIaCC7/FhRsVt/6ES//GtFZQ0QOBwzn33nBOlCppkbF3b2h4ZHRsfGJyanpmdm6+sLB4ZpPMCKiIRCXmIuIWlNRQQYkKLlIDPI4UnEftg55/fg3GykSfYieFeswvtWxJwdFJjcJyDeEG8zK3Fiw9OaQi0U3Z87qNQpH5rFTaDLcp87dYGG4wR1i4s8tCGvisjyIZoNwovNWaichi0CiUO1gNWIr1nBuUQkF3qpZZSLlo80uoOqp5DLae9zN06ZpTmrSVGPc00r76fSPnsbWdOHKTMccr+9vriX951Qxbu/Vc6jRD0OLzo1amKCa0VwhtSgMCVccRLoyLLqi44oYLdLW5Dr6C0v/J2YYfMD843iru7Q/amCArZJWsk4CUyB45ImVSIYLcknvySJ68O+/Be/ZePkeHvMHOEvkB7/UDGAqYHA==</latexit><latexit sha1_base64="E5obcAcN86wrv1LJrhIL2JWhKXw=">AAACAnicdVDLSgMxFM34flt1p5tgEVwNGV91dqIuXFa0KrSlZNJbDc1khuSOWIaCC7/FhRsVt/6ES//GtFZQ0QOBwzn33nBOlCppkbF3b2h4ZHRsfGJyanpmdm6+sLB4ZpPMCKiIRCXmIuIWlNRQQYkKLlIDPI4UnEftg55/fg3GykSfYieFeswvtWxJwdFJjcJyDeEG8zK3Fiw9OaQi0U3Z87qNQpH5rFTaDLcp87dYGG4wR1i4s8tCGvisjyIZoNwovNWaichi0CiUO1gNWIr1nBuUQkF3qpZZSLlo80uoOqp5DLae9zN06ZpTmrSVGPc00r76fSPnsbWdOHKTMccr+9vriX951Qxbu/Vc6jRD0OLzo1amKCa0VwhtSgMCVccRLoyLLqi44oYLdLW5Dr6C0v/J2YYfMD843iru7Q/amCArZJWsk4CUyB45ImVSIYLcknvySJ68O+/Be/ZePkeHvMHOEvkB7/UDGAqYHA==</latexit>

Fails SD condition
<latexit sha1_base64="1oAMhm43vPPHLd4Gmlh59lzvm9M=">AAACAXicdVBNSwMxFMz6WevXqifxEiyCpyVri9WbqIjHilaFdinZNNXQbHZJ3oplKR78LR68qHj1V3j035htK6jowINh5j0eM2EihQFCPpyx8YnJqenCTHF2bn5h0V1aPjdxqhmvs1jG+jKkhkuheB0ESH6ZaE6jUPKLsHuQ+xc3XBsRqzPoJTyI6JUSHcEoWKnlrjaB30J2RIU0+PQQs1i1RW71W26JeNUy8YmPiUeqxN/ezUl5p1ypYN8jA5TQCLWW+95sxyyNuAImqTENnyQQZFSDYJL3i83U8ISyLr3iDUsVjbgJskGEPt6wSht3Ym1HAR6o3y8yGhnTi0K7GVG4Nr+9XPzLa6TQ2QkyoZIUuGLDR51UYohx3gduC80ZyJ4llGkbnWF2TTVlYFuzHXwFxf+T8y3PJ55/Uint7Y/aKKA1tI42kY+qaA8doxqqI4bu0AN6Qs/OvfPovDivw9UxZ3Szgn7AefsE+caXdA==</latexit><latexit sha1_base64="1oAMhm43vPPHLd4Gmlh59lzvm9M=">AAACAXicdVBNSwMxFMz6WevXqifxEiyCpyVri9WbqIjHilaFdinZNNXQbHZJ3oplKR78LR68qHj1V3j035htK6jowINh5j0eM2EihQFCPpyx8YnJqenCTHF2bn5h0V1aPjdxqhmvs1jG+jKkhkuheB0ESH6ZaE6jUPKLsHuQ+xc3XBsRqzPoJTyI6JUSHcEoWKnlrjaB30J2RIU0+PQQs1i1RW71W26JeNUy8YmPiUeqxN/ezUl5p1ypYN8jA5TQCLWW+95sxyyNuAImqTENnyQQZFSDYJL3i83U8ISyLr3iDUsVjbgJskGEPt6wSht3Ym1HAR6o3y8yGhnTi0K7GVG4Nr+9XPzLa6TQ2QkyoZIUuGLDR51UYohx3gduC80ZyJ4llGkbnWF2TTVlYFuzHXwFxf+T8y3PJ55/Uint7Y/aKKA1tI42kY+qaA8doxqqI4bu0AN6Qs/OvfPovDivw9UxZ3Szgn7AefsE+caXdA==</latexit><latexit sha1_base64="1oAMhm43vPPHLd4Gmlh59lzvm9M=">AAACAXicdVBNSwMxFMz6WevXqifxEiyCpyVri9WbqIjHilaFdinZNNXQbHZJ3oplKR78LR68qHj1V3j035htK6jowINh5j0eM2EihQFCPpyx8YnJqenCTHF2bn5h0V1aPjdxqhmvs1jG+jKkhkuheB0ESH6ZaE6jUPKLsHuQ+xc3XBsRqzPoJTyI6JUSHcEoWKnlrjaB30J2RIU0+PQQs1i1RW71W26JeNUy8YmPiUeqxN/ezUl5p1ypYN8jA5TQCLWW+95sxyyNuAImqTENnyQQZFSDYJL3i83U8ISyLr3iDUsVjbgJskGEPt6wSht3Ym1HAR6o3y8yGhnTi0K7GVG4Nr+9XPzLa6TQ2QkyoZIUuGLDR51UYohx3gduC80ZyJ4llGkbnWF2TTVlYFuzHXwFxf+T8y3PJ55/Uint7Y/aKKA1tI42kY+qaA8doxqqI4bu0AN6Qs/OvfPovDivw9UxZ3Szgn7AefsE+caXdA==</latexit><latexit sha1_base64="1oAMhm43vPPHLd4Gmlh59lzvm9M=">AAACAXicdVBNSwMxFMz6WevXqifxEiyCpyVri9WbqIjHilaFdinZNNXQbHZJ3oplKR78LR68qHj1V3j035htK6jowINh5j0eM2EihQFCPpyx8YnJqenCTHF2bn5h0V1aPjdxqhmvs1jG+jKkhkuheB0ESH6ZaE6jUPKLsHuQ+xc3XBsRqzPoJTyI6JUSHcEoWKnlrjaB30J2RIU0+PQQs1i1RW71W26JeNUy8YmPiUeqxN/ezUl5p1ypYN8jA5TQCLWW+95sxyyNuAImqTENnyQQZFSDYJL3i83U8ISyLr3iDUsVjbgJskGEPt6wSht3Ym1HAR6o3y8yGhnTi0K7GVG4Nr+9XPzLa6TQ2QkyoZIUuGLDR51UYohx3gduC80ZyJ4llGkbnWF2TTVlYFuzHXwFxf+T8y3PJ55/Uint7Y/aKKA1tI42kY+qaA8doxqqI4bu0AN6Qs/OvfPovDivw9UxZ3Szgn7AefsE+caXdA==</latexit>

Figure 2. Illustration of the (iterated) soft drop grooming algorithm. Branches along the most
energetic branch (black) are tested against the soft drop condition, starting from the left. The reg-
ular soft drop algorithm terminates when the first branch, here (B), passes the soft drop condition,
which defines the soft drop groomed radius Rg. Instead, iterated soft drop continues testing all
branches at smaller angular scales, here (C), (D), where (C) is also groomed away in this example.
The dotted lines correspond to branchings that are not tested against the soft drop condition in
either case.

original soft drop algorithm in section 3. The factorization and resummation of �E involve

the groomed jet radius Rg, which is the geometric distance between the two branches that

satisfy the soft drop criterion, Rg ⌘ �R12. For convenience, we often use the normalized

groomed jet radius ✓g ⌘ Rg/R.

In this section we consider �E for the iterated soft drop (ISD) algorithm [8]. This

di↵ers from the original soft drop by continuing with the grooming procedure, following

the more energetic branch after the soft drop condition is satisfied2. This continues until

only one particle is left and, thus, the entire jet is declustered. The groomed jet is then

given by all particles that are contained in branches that satisfy the soft drop condition

along the way. In the remainder of this section, we present a calculation of the cross section

di↵erential in �E for this grooming algorithm. See fig. 2 for an illustration of regular and

iterated soft drop.

2.3 Fixed-order results

When the jet energy drop �E and the grooming parameter zcut are not parametrically

small, i.e. �E , zcut are both order one, a fixed-order calculation of the relevant jet function

�GISD

i
is su�cient, which we present here. In sec. 2.4, we will consider the case where

they are parametrically small and lead to large logarithms in the jet function, requiring

resummation.

To calculate the jet function �GISD

i
, we can use the squared matrix element and the

2Alternatively, both branches can be followed, which is known as recursive soft drop [9], and will not be

considered in this paper.
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Trimming, soft  drop, Iterated soft drop 



粒子分布を定量化する

•  N1/N0 is sensitive to how pixel clustered
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Integral Geometry of Soft Emission

One may borrow idea from integral geometry to analyze the

geometry of soft emission. Consider a Minkowski sum of jet images

and square and count number of pixels of the sum. 

3x3 square

See also: 

   Minkowski Functionals for cosmology: arXiv: astro-ph/9508154

   Hadwiger’s theorem

ジェットイメージ 3x3 のマスク N(1) … N(n) 

N0 =Npixel=3 N1=25
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Geometry and Number of Pixels
Example: isolated activity

Example: four isolated activities

Example: square with side length 2

Example: square with side length 3

The ratio is smaller than 9, and encodes useful information, such as cluster size.
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The ratio is smaller than 9, and encodes useful information, such as cluster size.

N1/N0=16/9=1.78 
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Geometry and Number of Pixels
Example: isolated activity

Example: four isolated activities

Example: square with side length 2

Example: square with side length 3

The ratio is smaller than 9, and encodes useful information, such as cluster size.

more clustered

if all pixel appear in 3x3 

• ソフトなトラックの数だけではなくて、ソフトな粒子の相互の近接度を「定量的」に評価した
い　　→キャリブレーションやMC turning に便利なように



• 凸体の測度（大きさに関する定理）n次元では、この性質を満たす関数は n+1 しかない
(ハドビガーの定理） これをミンコフスキー汎関数(MF) という。2次元であればこれ
は　1. Surface Area (A), 2. Length of the boundary(L)  3. Euler characteristic (χ)　

背景にある数学 INTEGRAL GEOMETRY

The definition of N
(i) is also described as area. Define P(i) as the surface of the pixels whose

center is at v 2 Vi, and A
(i) is the area of P(i),

A
(i) = (�R)2 ⇥ N

i (3.8)

Therefore, our N
i (i = 0, 1, ...) essentially works as A(r).

According to Hadwiger’s theorem, there are only d + 1 functionals ! R, M
(i)(i=1,...d+1), in

d dimension, that satisfies the feature associated with rigid body,

• Motion invariance: M(gB) = M(B) where g is element of the group of rigid motion G,
and B convex ring R of all finite unions of convex bodies in R

n.

• Additivity M(B1
S

B2) = M(B1) + M(B2) � M(B1
T

B2) for any B1 and B2 2 R

• Conditional continuity M(Ki) ! M(K) as K1 ! K for K, Ki 2 R,

and they are called Minkowski functional. For K(r) they are is length of boundary (L(r)) and Euler
characteristic �(r) in addition to the area A(r). For digitalized version, P(i) we can also define the
boundary length L

i and Eular characteristic of �
(i). If P(i) is the sum of the su�ciently isolated �

convex, N
(1) = N

(0) + 4L
(0) + 4�. Therefore, N

1 might be sensitive to the number of isolated soft
clusters.

(Mihoko: up to here)

Note that the quantity has been applied in astrophysics to quantity the distribution of astro-
physical objects. In [38, 39], Minkowski function is used to identify the topologically nontrivial void
structure of the astrophysical objects. In more recent papers, persistent topology turns out to be
useful tool to identify the topology and scale of the seeming random distribution of the points by
identifying the value of r where Eular characteristic change its value. refer everybody Figure
..(4) shows an example that non-trivial change of the topology occurs by increasing i. In this case,
Eular characteristic and L

(i) behaves as

�
(i) = (6, 0, 0, 1, · · · )

L
(i)

/(0.1) = (24, 55, 52, 54, · · · ). (3.9)

We can see the change of Eular characteristic, together with non-trivial decrease of L
(i) Utilizing

such topological information might be interesting additional information to classify jets, but it is
outside the scope of this paper. Figure... shows example of Pi (i = 0, 1, 2, 3, 4) of a top and QCD
jets. Each jet has di↵erent sequence of A

(i), L
(i) and �

(i), however, as we will see in the next section,
N

(0) and N
(1) turns out to be su�cient information to describe contribution of soft structure to

the top-QCD jet classification using CNN.

4 Implementation of top tagger

(Network inputs)

In this section, we discuss the setup of classifiers using the inputs discussed in the previous
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Therefore, our N
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(i)(i=1,...d+1), in

d dimension, that satisfies the feature associated with rigid body,
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並進 
 加法 

連続性

A

R

凸体の測度（大きさ）の満たすべき性質

点-> 点を中心に半径R の円を追加→ A(R), L(R),Χ(R ) が点分布を記述 　

Object の相対的な位置を定量化する理論



MF の他の物理応用

• 天文: 星の分布の定量化、 銀河分
布、シミュレーション結果の定量
化、non-Gaussinaity of CMB, 

weak lensing..  

Additivity, Convexity, and Beyond 113

Fig. 1. Porous media (left) can be described by overlapping grains (spheres, discs)
distributed in space. If the density of grains (white) decreases below a threshold, an
infinite cluster of connected pores (black area) is spanning through the whole system.
This cluster of pores enables the transport of fluids, for instance. The knowledge of
the dependence of the so-called percolation threshold on the shape and distribution
of the grains is essential for many applications. Inhomogeneous domains of thermo-
dynamic stable phases of complex fluids may also be described by overlapping grains
[9,35,38,39,43]. Such configurations resemble, for instance, the structure of microemul-
sions (figure in the middle) or an ensemble of hard colloidal particles (black points
in the figure on the right) surrounded by a fluid wetting layer (white). The interac-
tions between these colloids, as well as the free energy of the homogeneous oil phase
in a microemulsion are given by a bulk term (volume energy), a surface term (surface
tension), and curvature terms (bending energies) of the white region covered by the
overlapping shapes. Thus, the spatial structure of the phases, i.e., the morphology of
the white regions determines the configurational energy which determines itself the
spatial structure due to the Boltzmann factor in the partition function of a canonical
ensemble. A main feature of complex fluids is the occurrence of different length scales:
the clusters of the particles, i.e., the connected white regions are much larger than the
‘microscopic’ radius of the discs and the typical nearest neighbor distance within a
cluster.

tions, the scientist faces the problem of reducing the information to a limited
number of relevant quantities. So far powerful methods have been developed
in Fourier space, namely structure functions and more recently wavelet anal-
ysis. But techniques to analyze spatial information directly in real space may
be very useful for physicists in order to get more relevant spatial information
out of their data which may be complement to structure functions measured
by scattering techniques in Fourier space. Such techniques and measures have
been developed in spatial statistics and the interested reader is referred to the
papers by D. Stoyan and W. Nagel in this volume. To this world also belong
the additive Minkowski functionals which may offer robust morphological mea-
sures as powerful tools which is illustrated by three examples: they can be used
as order parameters characterizing pattern transitions in dissipative systems, as
dynamical quantities characterizing spinodal decomposition, or as generalized
molecular distribution functions characterizing the atomic structure of simple
fluids. The additivity of the Minkowski functionals seems to be the relevant

統計物理 
左 多孔質体　 

真ん中: 微乳濁液 

 左 コロイド 

体積の占有状況V, 表面の大きさ(S) 等に依
存して物性が変わる　図は　Mecke and 

Stoyan (2000) 6

-0.124                            -0.009                             0.106                              0.221

FIG. 1: Top left panel: example of a simulated 12-square-degree convergence map in the fiducial cosmology, with intrinsic

ellipticity noise from source galaxies and ✓G = 1 arcmin Gaussian smoothing. A source galaxy density of ngal = 15/arcmin
2

at redshift zs = 2 was assumed. Other three panels: the excursion sets above three di↵erent convergence thresholds , i.e. all
pixels with values above (below) the threshold are black (white). The threshold values are  = 0.0 (top right),  = 0.02 (bottom

left), and  = 0.07 (bottom right). The Minkowski Functionals V0, V1, and V2 measure the area, boundary length, and Euler

characteristic (or genus), respectively, of the black regions as a function of threshold.

find excellent agreement out to ` ⇠ 20, 000 for zs = 1 and
out to ` ⇠ 30, 000 for zs = 1, 5 and 2, corresponding to
our resolution limit. Because of this limitation, we will
employ smoothing scales no smaller than 1 arcmin below.
Comparing Figure 4 to Figure 3 in [33], we notice that
the drop-o↵ in power has been pushed out to higher `,

due to the increased resolution of the density planes.
Our results rely mostly on the cosmology-dependence

of the power spectrum (and MFs), rather than its abso-
lute value. We therefore compare the di↵erences of the
power spectra in various cosmologies from the fiducial
case. The results are shown in Figure 5, which shows
that the agreement is excellent for the dependence of the

Kratochvil  1109.6334   Proving Cosmology  
with Weak Lensing Minkowski Functinal s

点の集まりの意味を定量的に表現する時に使う



CNN はMF(ミンコフスキー汎関数） をみているか

• MF の一意性: 原理的には、ドットイメージとMF はあ
る意味で等価。（情報は落ちてない） 

• MF はCNNとは相性は良さそう。 

• 基準点がないのでジェットアルゴリズムと相性が良
い。そもそも、 Jet Algorithm の Voronoi 領域　
と”The Catchment Area of Jets “(Cacciari & Salam 

2008 )も 同じ系列の数学 

• 深層学習の分類問題との関係：　QCD と t, Z, W の
ジェットイメージのMF が十分に違っていれば、CNN

はMF を学習しているだろう。

0 < Δ12 < R/2

R/2 < Δ12 < R

R < Δ12 < 2R

t

g)

h)
k Cam/Aachen SISCone

c) i)

d)

e)b)

a)

f)

12

12

12

Figure 1: Schematic representation of the passive area of a jet containing one hard particle “1”
and a softer one “2” for various separations between them and different jet algorithms. Different
shadings represent distinct jets.

Let us now consider various cases. If ∆12 < R, (fig. 1a,b) the particles p1 and p2 will eventually
end up in the same jet. The ghost will therefore belong to the jet irrespectively of having been
clustered first with p1 or p2. The area of the jet will then be given by union of two circles of radius
R, one centred on each of the two perturbative particles,

akt,R(∆12) = u

(

∆12

R

)

πR2 , for ∆12 < R , (6)

where

u(x) =
1

π

[

x

√

1 − x2

4
+ 2

(

π − arccos
(x

2

))

]

, (7)

represents the area, divided by π, of the union of two circles of radius one whose centres are separated
by x.

The next case we consider is R < ∆12 < 2R, fig. 1c. In this case p1 and p2 will never be able to
cluster together. Hence, they form different jets, and the ghost will belong to the jet of the closer
of p1 or p2. The two jets will each have area

akt,R(∆12) =
u(∆12/R)

2
πR2 , for R < ∆12 < 2R . (8)

Finally, for ∆12 > 2R the two jets formed by p1 and p2 each have area πR2.
The three cases derived above are summarised in table 1 and illustrated in fig. 2.
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解析:TOP TAGGING の中で 

• CNN （ベースモデル）を　高次量をインプットとするMLP と比較 

• インプットの分割 

• S2 : C correlator( Energy correlator)  f(θ）=Ei Ej δ(θーθij)   ２点関数 

Tkachov (hep-ph 960138) Lim, Nojiri 1807.03312, Chakrabory, Lim Nojiri 
1904.02092    ~ e2βの任意のβの情報を担っている。 

• Top なので、3点がメイン；：Leading subjetの粒子との２点関数
+Leading subject の粒子を除いた2点関数 

• 上記を hard なsubjet 内の粒子に制限したもの　S2trim (groom でも良い。 

• New :IRC sensitive なインプット　(N0, N1, N0(pt> 4GeV), N1(pt> 

4GeV )　 

• 最終的なMLP は  RN (relation network) + global な量(jet pt, mass, trimmed 

jet 情報と　MF で作る
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Figure 3: The S2 and S2,trim distributions of the top jets and the QCD jet in figure 2. The dashed
lines are the characteristic angular scales of the top jets in the parton level.

Figure 4: S2,1c and S2,cc distributions of the top jet in figure 2(a). The intensity of S2,cc is much
smaller than S2 because the subleading pT jets have small transverse momenta. The magnified
distribution of S2,cc is shown in the green histogram. The dashed lines are the characteristic
angular scales at the parton level.

factorizes the identification of a three-prong structure into that of two-prong substructures and its
relative position from the J1. Those S2,ab in parton level are as follows,

S2,11(R) = p
2

T,i1�(R), (2.17)

2 S2,1c(R) = 2pT,i1pT,i2�(R � Ri1i2) + 2pT,i1pT,i3�(R � Ri1i3), (2.18)

S2,cc(R) = (p2

T,i2 + p
2

T,i3)�(R) + 2pT,i2pT,i3�(R � Ri2i3), (2.19)

where ik is the k-th leading pT parton. Figure 4 shows that the two peaks are in S2,1c and the
other two peaks are in S2,cc. Figure 5 is the case where values of Rbq and Rbq̄ are similar. The S2,cc

distribution has a peak at R ⇡ 0.6, and the peak intensity is comparable to that of the peak at
R = 0 because the J \J1 has a two-prong substructure. In addition, the S2,1c distribution suggests
that the high pT constituents of J \ J1 are away from J1 by a distance of 0.5.

– 7 –

(a) (b)

0.0 0.5 1.0 1.5 2.0

R

0.0

0.2

0.4

� b
in

dR
S

2,
a
b
(R

)/
�

dR
S

2
(R

)

QCD jet MG5+PY8+Delphes

S2(R)

S2,trim(R)

(c)

Figure 3: The S2 and S2,trim distributions of the top jets and the QCD jet in figure 2. The dashed
lines are the characteristic angular scales of the top jets in the parton level.

Figure 4: S2,1c and S2,cc distributions of the top jet in figure 2(a). The intensity of S2,cc is much
smaller than S2 because the subleading pT jets have small transverse momenta. The magnified
distribution of S2,cc is shown in the green histogram. The dashed lines are the characteristic
angular scales at the parton level.

factorizes the identification of a three-prong structure into that of two-prong substructures and its
relative position from the J1. Those S2,ab in parton level are as follows,

S2,11(R) = p
2

T,i1�(R), (2.17)

2 S2,1c(R) = 2pT,i1pT,i2�(R � Ri1i2) + 2pT,i1pT,i3�(R � Ri1i3), (2.18)

S2,cc(R) = (p2

T,i2 + p
2

T,i3)�(R) + 2pT,i2pT,i3�(R � Ri2i3), (2.19)

where ik is the k-th leading pT parton. Figure 4 shows that the two peaks are in S2,1c and the
other two peaks are in S2,cc. Figure 5 is the case where values of Rbq and Rbq̄ are similar. The S2,cc

distribution has a peak at R ⇡ 0.6, and the peak intensity is comparable to that of the peak at
R = 0 because the J \J1 has a two-prong substructure. In addition, the S2,1c distribution suggests
that the high pT constituents of J \ J1 are away from J1 by a distance of 0.5.

– 7 –

Chakraborty, Lim,  Nojiri, Takeuchi  2003.11787



ROCはCNN と等価
• IRC insensitive な量だけ使った青い線と

CNN は非常に差が大きい。 

• Top jet vs QCD問題では、hit のあるカ
ロリメータの数(N0) 、その周りのエリ
ア数を加えるとCNN と完全に同じにな
る　 

• Top ジェットの場合、カラーを持つ粒子
のせいか、機械学習は　ΔR= 0.1より遠
距離のソフトな相関を学んでいない。 

• Top がカラーを持っている。QCD 生成
など
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Figure 9: The ROC curves of the networks trained on PY8 samples.

closed-form expression of the CNN is as follows,

himage = CNNimage(ximage;✓CNN) (4.15)

u0 = MLPlogit(himage,xkin;✓MLP), (4.16)

where ximage is the pT map of the jet image. The module CNNimage consists of 6 two-dimensional
convolutional layers with 3 ⇥ 3 filters and ELU activations. We insert two 2 ⇥ 2 max-pooling layers
after the third and sixth convolutional layers. The himage are the flattened outputs of the CNNimage.
The model outputs u0 are from an MLP analyzing himage together with the kinematic information
xkin. The detailed implementation of this CNN can be found in appendix C.2. The training setups
are the same, but we check batch numbers 100, 200, and 500 instead because of the limitation of
GPU memory.

4.2 Classification results

Figure 9 shows the ROC curves of the networks trained on PY8 samples. The AUC, which is the
upper area of each curve, of RNS2 , RNS2,N(0) , RNS2,N(0),N(1) , and CNN are 0.8990, 0.9352, 0.9442,
and 0.9465, respectively. There is a large gap between the ROC curves of RNS2 and CNN. This gap
is partially filled by including an additional input N

(0), as shown in the ROC curve of RNS2,N(0) .
Surprisingly, when we consider all the geometric inputs xgeometry, the ROC curve of RNS2,N(0),N(1)

is almost equal to that of the CNN. Therefore, the inputs xtrim, xJ1 , xkin, and xgeometry can be
considered as useful middle-level variables for modeling the top jet classifier.

The reason for a big gap between the ROC curves of RNS2 and CNN is the di↵erence in N
(0)

distributions between top jet samples and QCD jet samples. The QCD jets in this paper are leading
pT jets of pp ! jj so that they are mostly gluon jets, which have a large N

(0) than a jet from a
color triplet parton. In addition, PY8 predicts significantly higher N

(0) of gluon jets than HW7, as in

– 15 –



過去の同様なアプローチ

Figure 1: Z boson jet e�ciency vs. QCD jet rejection rate plot as generated by the deep neural

network. Details of the event simulation, jet finding, and machine learning are described in

Sec. 3. The di↵erent curves correspond to the mass plus collections of observables that uniquely

define M -body phase space. Discrimination power is seen to saturate when 4-body phase space

is resolved.

use the N -subjettiness observables. In this section, we also prove that the set of observables

is complete and minimal. In Sec. 3, we discuss our event simulation and machine learning

implementation. We present the results of our study, and compare discrimination power from

the M -body phase space observables to standard observables as a benchmark. We conclude in

Sec. 4. Additional details are in the appendices.

2 Observable Basis

In this section, we specify the basis of IRC safe observables that we use to identify structure in

the jet. For simplicity, we will exclusively use the N -subjettiness observables [24–26], however

this choice is not special. One could equivalently use the originally-defined N -point energy

correlation functions [27], or their generalization to di↵erent angular dependence [28]. Our

choice of using the N -subjettiness observbles in this analysis is mostly practical: the evaluation

time for the N -subjettiness observables is significantly less than for the energy correlation

functions. We also emphasize that the particular choice of observables below is to just ensure

that they actually span the phase space for emissions in a jet. There may be a more optimal

choice of a basis of observables, but optimization of the basis is beyond this paper.

The N -subjettiness observable ⌧
(�)
N is a measure of the radiation about N axes in the jet,

specified by an angular exponent � > 0:

⌧
(�)
N =

1

pTJ

X

i2Jet
pT i min

n
R

�
1i, R

�
2i, . . . , R

�
Ni

o
. (2.1)

In this expression, pTJ is the transverse momentum of the jet of interest, pT i is the transverse

momentum of particle i in the jet, and RKi, for K = 1, 2, . . . , N , is the angle in pseudorapidity

– 3 –

In the next section, we will study the information contained in this basis and use it to

identify the features that are exploited in the discrimination of hadronically decaying Z boson

jets from QCD jets.

3 Deep Learning Implementation

In this section, we describe our event simulation and implementation of machine learning to the

N -subjettiness basis of observables introduced in the previous section. We generate pp ! Z+

jet and pp ! ZZ events at the 13 TeV LHC with MadGraph5 v2.5.4 [35]. The Z boson in

pp ! Z+ jet events is decayed to neutrinos, while one Z boson in pp ! ZZ events is decayed

to neutrinos, while the other is decayed to quarks. These tree-level events are then showered

in Pythia v8.223 [36, 37] with default settings. In App. B, we will show results showered with

Herwig v7.0.4 [38, 39], however with one-tenth the number of events as the Pythia samples.

Ignoring the neutrinos in the showered and hadronized events, we use FastJet v3.2.1 [40, 41]

to cluster the jets. On the clustered anti-kT [42] jets with radius R = 0.8 and minimum pT

of 500 GeV, we then measure the basis of N -subjettiness observables using the code provided

in FastJet contrib v1.026. We emphasize that observables are measured on the particles as a

proof of concept; we do not apply any detector simulation.

The precise set of observables we measure on the jet that we use for discrimination are the

following. We measure the jet mass and the collection of N -subjettiness observables su�cient

to completely determine up through 6-body phase space. That is, we measure the collection

of N -subjettiness observables defined with kT axes:
n

⌧
(0.5)
1 , ⌧

(1)
1 , ⌧

(2)
1 , ⌧

(0.5)
2 , ⌧

(1)
2 , ⌧

(2)
2 , ⌧

(0.5)
3 , ⌧

(1)
3 , ⌧

(2)
3 , ⌧

(0.5)
4 , ⌧

(1)
4 , ⌧

(2)
4 , ⌧

(1)
5 , ⌧

(2)
5

o
. (3.1)

We will see that this collection of N -subjettiness observables is more than su�cient to de-

scribe all of the information useful for discrimination in the jet. Additionally, for comparison,

we will measure a collection of standard observables that have been defined for discrimina-

tion of boosted, hadronic decays of Z bosons from jets initiated by QCD. We measure the

N -subjettiness ratios ⌧
(1)
2,1 and ⌧

(2)
2,1 with one-pass winner-take-all (WTA) axes [32–34], and

(generalized) energy correlation function ratios D
(1)
2 and D

(2)
2 [43] and N

(1)
2 and N

(2)
2 [28].

The discrimination power of these observables will provide a benchmark for the information

extracted in the machine learning of the collection of N -subjettiness observables.

All deep learning analysis was carried out on the NVIDIA DIGITS DevBox, with four

GeForce GTX TitanX GPUs, built on the 28 nm Maxwell architecture. The specifications of

the GPU are listed in Table 1. Only one GPU was used during training and testing.

CUDA
cores

Base/Boost.
clock (MHz)

Memory size
(GB)

Memory
clock (Gbps)

Interface
width

Memory
Bandwidth
(GB/s)

3072 1000/1075 12 7.0 384-bit 336.5

Table 1: Manufacturer specifications of the GTX TitanX.
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Figure 6: Signal e�ciency versus background rejection rate for jet mass plus the overcomplete

basis of observables that are sensitive to 5-body phase space described in the text, as determined

by the neural network. For comparison, we also include the signal e�ciency versus background

rejection rate for jet mass, jet mass plus minimal 3-body phase space observables, and jet mass

plus the minimal 4-body phase space observables.

following collection of N -subjettiness observables on the jet:
n

⌧
(0.25)
1 , ⌧

(0.5)
1 , ⌧

(1)
1 , ⌧

(2)
1 , ⌧

(4)
1 , ⌧

(0.25)
2 , ⌧

(0.5)
2 , ⌧

(1)
2 , ⌧

(2)
2 , ⌧

(4)
2 , ⌧

(0.25)
3 , ⌧

(0.5)
3 , ⌧

(1)
3 , ⌧

(2)
3 , ⌧

(4)
3 , (3.2)

⌧
(0.25)
4 , ⌧

(0.5)
4 , ⌧

(1)
4 , ⌧

(2)
4 , ⌧

(4)
4

o
.

From our arguments in Sec. 2, this is an overcomplete basis for 5-body phase space and therefore

should not contain any additional information useful for discrimination. This is illustrated in

Fig. 6 where we plot the discrimination power of this overcomplete basis as determined by

the neural network described earlier. For comparison, we also show the discrimination power

of the jet mass, the jet mass plus the 3-body observable basis, and the jet mass plus the 4-

body observable basis as determined by the neural network described earlier. As expected,

no improvement of discrimination power is accomplished when more observables beyond the

minimal set are included. The apparent slight decrease in discrimination power using the

overcomplete basis is likely due to suboptimal training because of the large number of input

observables.

In App. C, we present results for the signal vs. background e�ciency as determined by

a neural network with an additional hidden layer and the result of a boosted decision tree.

These di↵erent classification networks demonstrate the same conclusion, that discrimination

power saturates once enough observables are measured to resolve 4-body phase space. Ad-

ditionally, these results show that the discrimination power of the overcomplete basis is just

marginally better than that accomplished by the 4-body observable basis. This is consistent

with our observation that 4-body phase space is essentially saturating all useful discrimination

information.

– 12 –

SciPost Physics Submission

Sample mass + CNN1 mass + 3-body mass + 5-body
Top pT 2 [350� 400] GeV 0.9626 0.9503 0.9613
Top pT 2 [500� 550] GeV 0.9678 0.9535 0.9658

Top pT 2 [1300� 1400] GeV 0.9698 0.9607 0.9723

Table 2: The area-under-curve (AUC) values for a selection of our ROC curves. Larger values
are better and AUC=1 corresponds to perfect signal and background discrimination.

Figure 4: ROC curves for top quark tagging without mass on the left and with mass on the
right, for pT 2 [350, 400] GeV. Adding mass information improves the performance of the
image networks and the n-subjettiness network.

Figure 5: ROC curves for top quark tagging without mass on the left and with mass on the
right, for pT 2 [500, 550] GeV. In this case the performance after adding mass information is
very similar.
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N-subjettiness 粒子を n 個の軸にうまく 

取り込めるかという問題 
N 個のスポットがあると τN で突然小さくなる 

高次のQCD まで取り込まない 
と計算できないやば目の量 
を入れないと再現しない。

摂動計算の試みあり



PREDICTABILITY 
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FIG. 2. Predictions for the groomed heavy jet mass in perturbation theory. Top: Comparison of

the O(↵3
s ) coe�cients at full fixed order and at leading power in ⇢. Bottom: Predictions at matched

NLO+N2LL and N2LO+N3LL accuracy with zcut = 0.1. The bands represent the uncertainties

due to the variation of the renormalization and collinear-soft scales in the range [1/2,2] times their

respective default scales.

We have demonstrated the highest precision perturbative predictions for groomed jets in

e
+
e
� collisions. These results are su�ciently accurate to enable extraction of ↵s, when com-

9

gloomed jet mass  with NNLO+ N3LL resum  
e+e -> hadrons  (factorization を保証）

modified mass-drop tagger (mMDT) [21, 22] and soft drop [23] algorithms are the best

understood groomers, due to their unique feature of elimination of non-global logarithms

(NGLs) [24] that are the leading correlations between in-jet and out-of-jet scales. Soft

drop was indeed found to reduce the hadronization corrections for event shapes in electron-

positron annihilation [25].

In this Letter, we present theoretical predictions for the mMDT groomed jet mass in

e
+
e
� collisions at N2LO matched with N3LL accuracy in perturbation theory. Resumma-

tion at this accuracy is made possible by the factorization theorem for jet grooming from

Ref. [26] and recent extraction of necessary constants and anomalous dimensions at two-

and three-loop order [27–29]. A demonstration of reduction of scale uncertainties and good

convergence of the perturbation series will be presented here, but we leave a detailed study

of scale variations and inclusion of non-perturbative corrections to groomed jets established

in Ref. [30] for future work.

The modified mass-drop tagger groomer (mMDT) [21], or soft drop with angular exponent

� = 0 [23], proceeds as follows:

1. Divide the final state of an e
+
e
�
! hadrons event into two hemispheres in any infrared

and collinear safe way.

2. Define a clustering metric dij between particles i and j in the same hemisphere. The

metric appropriate for e+e� collisions is

dij = 1� cos ✓ij , (1)

with ✓ij being the angle between the trajectory of the particles.

3. In each hemisphere, apply the Cambridge/Aachen jet algorithm [31, 32] to produce

an angular-ordered pairwise clustering history of particles.

4. Starting with one of the hemispheres (say left) and at widest angle, step through the

Cambridge/Aachen particle branching tree. At each branching in the tree, test if

min[Ei, Ej]

Ei + Ej
> zcut (2)

is satisfied, where i and j are the daughter particles at that branching and zcut is some

fixed numerical value where 0  zcut < 0.5. If the condition (2) is true, then stop

and return all particles that remain in the left hemisphere. If it is false, remove the

3
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Figure 6. The dependence of the N3LO coefficient (in units of the inclusive N3LO coefficient
∆ΓN3LO

H→bb
) on the parameter τ cut3 .

on the choice ycut ∼ 0.1, since a) this is the value for which perturbation theory should

do a good job at describing collider data, and b) this value corresponds to jets that are

somewhat similar to LHC anti-kT jets (assuming transverse momentum scaling of the form

pT ∼
√
ycutm2

H). Before proceeding further we first quantify the residual dependence of

our N3LO predictions on the 3-(sub)jettiness slicing parameter τ cut3 . We present the τ cut3 -

dependence of the N3LO coefficient for ycut = 0.1 in figure 6. We have normalized the

coefficient to the total inclusive correction ∆ΓN3LO
H→bb

at this order. To illustrate the size of

the power corrections we additionally show the function −2.35–0.00289 τ cut3 ln3 (τ cut3 /mH)

in the plot. We observe that the τ cut3 -dependence for this jet clustering is not dramatic,

only changing 10% over the range [0.02–0.3]GeV. The dependence between τ cut3 ∼ 0.02–

0.05GeV is around one percent. Our differential predictions obtained at this order have

MC uncertainties around a few percent (on the N3LO coefficient) and therefore our results

are insensitive to τ cut3 when τ cut3 ≤ 0.03GeV. We predominately use τ cut3 = 0.02GeV

for the subsequent differential predictions in this section (supplemented by additional runs

with τ cut3 = 0.03GeV to improve MC uncertainties in some distributions). The two-jet rate

is around a factor of −2 times the inclusive correction at this order, illustrating that there

is a large cancellation at this order across jet bins and reminding us that, when exclusive

jet quantities are considered, the smallness of an inclusive correction does not necessarily

transfer to all distributions and all regions of phase space.

Our final state consists of two jets clustered with the Durham jet algorithm. We

distinguish the two jets based upon which has the largest energy component (and refer

to them as the max and min jets hereafter). As discussed previously, the dynamics of

the rest-frame observables is somewhat limited, since physically-relevant distributions such

as the energy of the jet and the mass of the jet are delta functions at LO. Therefore,

higher-order corrections factorize onto corrections to LO observables OLO which contain

contributions from every phase-space region and to observables O $= OLO which contain (at

most) corrections from one order lower and lack of the two-body phase space. This restricts

the ability to study the delicate cancellations that must occur at N3LO. To overcome this,

we reintroduce the fictitious collision axis of section 3, and assume that the z-direction is
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うまく高次効果を計算できる 
フェーズスペースに特化した量を 

計算する。
Higgs の τ3 カットへの応答を見る 

N3LO 計算 (Mondini et al  1904.08960)

QCD との関係がつくのはいずれにしても 

3 POINT くらいまでで、後は実データ 
ベースで議論することになる。

Kardos et al 2002.00942



LOCAL MINIMUM 問題の改善
• CNN のloss function の最小化で、「真のminimum にたどり着くことはあ
まりない。ROC は安定しているが、個々のイベントに対して、違うseed 

で使ったclassifier は違う結果を出す。RN + MF は input が少ないので
event ごとの結果も遙かに安定　(900-> 85)
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ŷ 0
,
d
i�

er
en

t
se

ed

Top jet

0

P
D

F
[a

rb
.

sc
al

e]

0.0 0.2 0.4 0.6 0.8 1.0

ŷ0
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Figure 10. TEST (top) RN (bottom) CNN,

6 About sampling phase space of IRC unsafe variables

In this section, we study the dependence on event generators. In section 2 and 3, we have shown
the results of the Pythia 8(PY8) tt̄ and dijet events. Because event generation involves resummation
and soft physics, the generated events are model dependent. The distribution has been tuned over
the data, however the final distribution of hadrons inside and outside of the jet are quite complex
and it is not trivial to have perfect agreement. As the result, the existing event distributions of
di↵erent generators such are quite di↵erent, and sometimes neither of them agree with experimental
data. The question is how precisely these MC event distributions should agree with the data. For
the analysis which depends only on high pT objects, the e↵ect of the soft particles are small. On
the other hand, for the jet classification using models built with ML and jet image, IRC unsafe
quantities contribute to the classification significantly. If agreement between the data and MCs were
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6 About sampling phase space of IRC unsafe variables

In this section, we study the dependence on event generators. In section 2 and 3, we have shown
the results of the Pythia 8(PY8) tt̄ and dijet events. Because event generation involves resummation
and soft physics, the generated events are model dependent. The distribution has been tuned over
the data, however the final distribution of hadrons inside and outside of the jet are quite complex
and it is not trivial to have perfect agreement. As the result, the existing event distributions of
di↵erent generators such are quite di↵erent, and sometimes neither of them agree with experimental
data. The question is how precisely these MC event distributions should agree with the data. For
the analysis which depends only on high pT objects, the e↵ect of the soft particles are small. On
the other hand, for the jet classification using models built with ML and jet image, IRC unsafe
quantities contribute to the classification significantly. If agreement between the data and MCs were
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Figure 8: Correlation plots for top quark tagging without mass on the left and with mass on
the right, for pT 2 [500, 550] GeV.

Figure 9: Correlation plots for top quark tagging without mass on the left and with mass on the
right, for pT 2 [1300, 1400] GeV. The weak correlation corresponds to the poor performance
of the image networks in the ROC curves in Figure 6
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N-subjettiness の場合 1807.04769



DARK JET の場合

• Dark Jet 　pp →Z’ → qD qD→ dark Parton shower → ρdiag→qq 

• カラーシングレットなシャワー:粒子がたくさんあるが、いくつかの
カラーシングレットなクラスターがある状態
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Dark QCD jet is from a (SM) color neutral parton, so that the energy deposits are con@ned 
within a small area.

We may use neural network in order to fully utilize relevant features of 
Minkowski functionals in the Dark QCD jet tagging.

Average plots

Lim, Nojiri   in preparation

mρ=20GeV



CNN の学習結果
• mρ＝20GeV, 300GeV<pT<400GeV CNN のイベント選択は、

MF(n>3) でカットをかけに行っていた。　
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Dark QCD jet is from a (SM) color neutral parton, so that the energy deposits are con@ned 
within a small area.

We may use neural network in order to fully utilize relevant features of 
Minkowski functionals in the Dark QCD jet tagging.

Average plots

元のピクセル数 
分布に目立った差はない。

５番目の外周

何もない空間に注目 
している。



MC TURNING とかCALIBRATION とか

• Top jet vs QCD ジェットは event generator が違うと
結構違う結果になる。 

• 一番差にきいているのがQCDジェットの粒子数と広が
り。結構違う、しかも実験データとも違う。 

• [MC を実データで補正] MF の値が同じになるように、
イベントにウエイトをつけると、一致がよくなる。

(a) (b)

Figure 14: (N (0)
, N

(0)(4 GeV)) distributions for (a) PY8 and (b) HW7
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Figure 15: (N (0)
, N

(1)
/N

(0)) distributions for (a) PY8 and (b) HW7

The separation of the top jets and QCD jets is worse for HW7 compared with PY8 discussed in
previous sections. The AUC of the top jet vs. QCD jet classification predicted by HW7 is smaller than
that predicted by PY8. In figure 16, we show the ROC curves of each classifier trained on HW7 events.
The performance of the RNS2 is similar to that trained on PY8 events. Once N

(0) is additionally
considered in the classification, the performance is improved. However, the improvement from
adding N

(0) is significantly small in HW7, because the N
(0) distributions of top jets and QCD jets
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Figure 18: The ŷ
0 distributions of PY8 and HW7 test samples for the model trained on the

PY8 events. The neural networks used in the plots are (a) RNS2 , (b) RNS2,N(0),N(0)(4 GeV), (c)
RNS2,N(0),N(1) , and (d) CNN.

and the reweighting is then e↵ective for transforming the PY8 samples to HW7 samples. The opposite
is not true because there are QCD jets which are not in HW7 generated samples. The reweighting is
not exact because we have only a small number of events in some phase space region, and we see
some deviation in ŷ distribution, as shown in figure 18(b). If one wishes to describe real data by
assigning an appropriate weight for each simulated events, it is better to use a generator setup that
covers wider phase space so that we can correct the event distribution by using experimental data
afterwords.
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Phythia で　training した classifier で　 

Herwig のQCD jet を分類

N0 分布を補正した後



教訓とやれそうなこと

• CNN などのジェットイメージを使った訓練はインフラの物理の違い
を使って分類を強化している。 

• pixel wise な情報じゃなくて、MF のような「まとめ指標」の方が
キャリブレーションにも便利かもしれない。 

• MF: カラー構造の違う粒子の性質を効率的に捉えているように見え
る。 

• N-subjettiness などの従来の指標ともコンシステント



おまけ　NN のシステム

S2
S2 

to/without  
1st subejt

KIN

MINKOWSKI 
INFO  

N0 N1 
MLP

MLP

MLP

Adding N1 fill  the gap between CNN and our approach. 

process  
pp →tt vs pp→2j 
500GeV<pT<600GeV   
150GeV<mj<200GeV 

case 1  
   modulation for two point correlation  
   two point correlation + Kin→5 outputs  
   correlation to/without leading jet  
              → 5  outputs 
          →ROC  

case2   + N0( number of active pixel)                    
→ROC  

case 3 + N0,N1→ROC  
  

OUTPUT 

LOSS FUNCTION 

5 outputs 5 outputs

30 input 25 inputs

4 inputs 

6 inputs


