ジェットの深層学習の決定過程の解析と物理応用
 （ミンコフキー汎関数を中心にして）

KEK 野尻美保子

ジェットの深層学習

－Jet のsubstructure からHeavy 粒子の選別 今後の高輝度化，高エ ネルギー化 \rightarrow high pT のHiggs 粒子 top 粒子の選別，mass drop tagger など摂動的にも良くわかった量から出発

- BDT（機械学習）から深層学習
- 様々なアルゴリズムの提案 高次の量の利用 \rightarrow 低次の量（Jet image など）MC レベルではよりよい結果を示す。例えば top Higgs vs QCD ジェットなど

CNN とTOP TAGGING

安心できる量と不安な量 IRC SAFETY

- IRC safe object：soft or collinear emission に対して安定な量，subjet
- Soft collinear に対して不安定な量 number of tracks，particles MC modeling に大きな差（いつまで立っても収束しないPythia と Hewig 実験データなど）
－\rightarrow Jet Image の利用：両者の間の区別が不明確 系統誤差の評価 に問題はないか。実データで補正はやや楽観的ではないか。
－理論研究：ジェットの構造の中でresummation でうまく記述できる部分を切りだす。

深層学習によるジェット分類の中で，
 IRC SENSTIVE な部分がどのように働いているか。

- 典型的なジェットイメージで分類に
- Higgs ハードな部分が複数ある（mass drop）vs QCD：あ まりない
－W，H，Z 粒子束が独立する傾向 vs QCD 撒き散らし。カ ラーコヒーレンスは以前からみたい量。
－クオーク（どちらかと言うと）芯がある vs グルーオン より広い
－注意 underlying event とかmultiple scattering とかあ るのでLHC の環境では難しい量．Soft の部分を切り捨て て，摂動計算と比較できる物理をやりたいという流れも ある。
－今のトーク ソフトな粒子の分布に注目したい。

Higgs top
QCD

Color

Singlet

Trimming，soft drop，Iterated soft drop

粒子分布を定量化する

－ソフトなトラックの数だけではなくて，ソフトな粒子の相互の近接度を「定量的」に評価した
い $\quad \rightarrow$ キャリブレーションやMC turning に便利なように

$\begin{array}{lll}\begin{array}{ll}\text { ジェットイメージ } \\ \mathrm{N}_{0}=\mathrm{N}_{\text {pixel }}=3 & 3 \times 3 \text { のマスク }\end{array} & \mathrm{N}(1) & \ldots N(n) \\ & \mathrm{N}_{1}=25 & \end{array}$
－ $\mathrm{N}_{1 /} \mathrm{N}_{0}$ is sensitive to how pixel clustered

$$
N_{1} / N_{0}=16 / 9=1.78
$$

背景にある数学 INTEGRAL GEOMETRY

Object の相対的な位置を定量化する理論
凸体の測度（大きさ）の満たすべき性質

$$
\begin{array}{cl}
\text { 並進 } & M(g B)=M(B) \\
\text { 加法 } & M\left(B_{1} \cup B_{2}\right)=M\left(B_{1}\right)+M\left(B_{2}\right)-M\left(B_{1} \cap B_{2}\right) \\
\text { 連続性 } & M\left(K_{i}\right) \rightarrow M(K) \text { as } K_{1} \rightarrow K \text { for } K, K_{i} \in \mathcal{R}
\end{array}
$$

－凸体の測度（大きさに関する定理）n次元では，この性質を満たす関数は $n+1$ しかない （ハドビガーの定理）これをミンコフスキー汎関数（MF）という。2次元であればこれ は 1．Surface Area（A），2．Length of the boundary（L）3．Euler characteristic（X）点－＞点を中心に半径 R の円を追加 $\rightarrow A(R), L(R), X(R)$ が点分布を記述

MF の他の物理応用

統計物理
左多孔質体
真ん中：微乳濁液
左コロイド
体積の占有状況V，表面の大きさ（ S ）等に依
存して物性が変わる 図は Mecke and
Stoyan（2000）
－天文：星の分布の定量化，銀河分布，シミュレーション結果の定量化，non－Gaussinaity of CMB， weak lensing．．

Kratochvil 1109．6334 Proving Cosmology with Weak Lensing Minkowski Functinal s

CNN はMF（ミンコフスキー汎関数）をみているか

－MF の一意性：原理的には，ドットイメージとMF はあ る意味で等価。（情報は落ちてない）

- MF はCNNとは相性は良さそう。
- 基準点がないのでジェットアルゴリズムと相性が良
 い。そもそも，Jet Algorithm の Voronoi 領域 と＂The Catchment Area of Jets＂（Cacciari \＆Salam 2008 ）も 同じ系列の数学
－深層学習の分類問題との関係：QCD と $\mathrm{t}, \mathrm{Z}, \mathrm{W}$ の ジェットイメージのMF が十分に違っていれば，CNN はMF を学習しているだろう。

解析：TOP TAGGING の中で

Chakraborty，Lim，Nojiri，Takeuchi 2003.11787

- CNN（ベースモデル）を 高次量をインプットとするMLP と比較
- インプットの分割
- S2 ：C correlator（ Energy correlator）$f(\boldsymbol{\theta})=E \mathrm{Ej} \boldsymbol{\delta}(\boldsymbol{\theta}-\boldsymbol{\theta i j}) \quad 2$ 点関数 Tkachov（hep－ph 960138）Lim，Nojiri 1807．03312，Chakrabory，Lim Nojiri 1904.02092 ～ $\mathrm{e}_{2} \beta$ の任意の β の情報を担っている。

－Top なので， 3 点がメイン；：Leading subjetの粒子との 2 点関数 ＋Leading subject の粒子を除いた2点関数
－上記を hard なsubjet 内の粒子に制限したもの S2trim（groom でも良い。
－New ：IRC sensitive なインプット（N0，N1，NO（pt＞4GeV），N1（pt＞ 4 GeV ）

－最終的なMLP は RN（relation network）＋global な量（jet pt，mass，trimmed
jet 情報と MF で作る

ROCはCNN と等価

－IRC insensitive な量だけ使った青い線と CNN は非常に差が大きい。
－Top jet vs QCD問題では，hit のあるカ ロリメータの数（NO），その周りのエリ ア数を加えるとCNN と完全に同じにな る
－Top ジェットの場合，カラーを持つ粒子 のせいか，機械学習は $\Delta R=0.1$ より遠距離のソフトな相関を学んでいない。
－Top がカラーを持っている。 QCD 生成
 など

過去の同様なアプローチ

N －subjettiness
粒子を n 個の軸にうまく
取り込めるかという問題

$$
\tau_{N}^{(\beta)}=\frac{1}{p_{T J}} \sum_{i \in \mathrm{Jet}} p_{T i} \min \left\{R_{1 i}^{\beta}, R_{2 i}^{\beta}, \ldots, R_{N i}^{\beta}\right\}
$$

N 個のスポットがあると TN で突然小さくなる
摂動計算の試みあり
$\left\{\tau_{1}^{(0.5)}, \tau_{1}^{(1)}, \tau_{1}^{(2)}, \tau_{2}^{(0.5)}, \tau_{2}^{(1)}, \tau_{2}^{(2)}, \tau_{3}^{(0.5)}, \tau_{3}^{(1)}, \tau_{3}^{(2)}, \tau_{4}^{(0.5)}, \tau_{4}^{(1)}, \tau_{4}^{(2)}, \tau_{5}^{(1)}, \tau_{5}^{(2)}\right\}$

高次のOCD まで取り込まない と計算できないやば目の量 を入れないと再現しない。
arXiv 1704．08249 Datta Larkoski

CNN との比較 Liam Moore et al 1807．04769

PREDICTABILITY

gloomed jet mass with NNLO＋N3LL resum e＋e－＞hadrons（factorizationを保証）

$$
\frac{\min \left[E_{i}, E_{j}\right]}{E_{i}+E_{j}}>z_{\mathrm{cut}}
$$

うまく高次効果を計算できる
フェーズスペースに特化した量を計算する。

Kardos et al 2002.00942

QCD との関係がつくのはいずれにしても
3 POINT くらいまでで，後は実データ
ベースで議錀することになる。

LOCAL MINIMUM 問題の改善

－CNN のloss function の最小化で，「真のminimum にたどり着くことはあ まりない。ROC は安定しているが，個々のイベントに対して，違うseed で使ったclassifier は違う結果を出す。RN＋MF は input が少ないので event ごとの結果も遙かに安定（900－＞85）

N－subjettiness の場合 1807.04769

DARK JET の場合

Lim，Nojiri in preparation

－Dark Jet $p p \rightarrow Z^{\prime} \rightarrow q D q D \rightarrow$ dark Parton shower $\rightarrow \rho$ diag $\rightarrow q q$
－カラーシングレットなシャワー：粒子がたくさんあるが，いくつかの カラーシングレットなクラスターがある状態

$\mathrm{m} \rho=20 \mathrm{GeV}$

CNN の学習結果

－$m \rho=20 \mathrm{GeV}, 300 \mathrm{GeV}<\mathrm{pT}<400 \mathrm{GeV}$ CNN のイベント選択は， $M F(n>3)$ でカットをかけに行っていた。

CNN でカット

MC TURNING とかCALIBRATION とか

－Top jet vs QCD ジェットは event generator が違うと結構違う結果になる。
－一番差にきいているのがOCDジェットの粒子数と広が り。結構違う，しかも実験データとも違う。
－［MC を実データで補正］MF の値が同じになるように，
 イベントにウエイトをつけると，一致がよくなる。

Phythia で training した classifier で Herwig のOCD jet を分類 NO 分布を補正した後

教訓とやれそうなこと

－CNN などのジェットイメージを使った訓練はインフラの物理の違い を使って分類を強化している。
－pixel wise な情報じゃなくて，MF のような「まとめ指標」の方が キャリブレーションにも便利かもしれない。
－MF：カラー構造の違う粒子の性質を効率的に捉えているように見え る。
－ N －subjettiness などの従来の指標ともコンシステント

おまけ NN のシステム
process
$\mathrm{pp} \rightarrow \mathrm{tt}$ vs $\mathrm{pp} \rightarrow 2 \mathrm{j}$

$500 \mathrm{GeV}<\mathrm{pT}<600 \mathrm{GeV}$
$150 \mathrm{GeV}<\mathrm{mj}<200 \mathrm{GeV}$

```
case 1
        modulation for two point correlation
        two point correlation + Kin }->5\mathrm{ outputs
        correlation to/without leading jet
            \rightarrow 5 \text { outputs}
            \rightarrow \mathrm { ROC }
    case2 + NO( number of active pixel)
    \rightarrow \mathrm { ROC }
    case 3 + N0,N1->ROC
\[
\begin{aligned}
& \text { case } 2+\mathrm{NO} \text { ( number of active pixel) } \\
& \rightarrow \mathrm{ROC} \\
& \text { case } 3+\mathrm{NO}, \mathrm{~N} 1 \rightarrow \mathrm{ROC}
\end{aligned}
\]
```

LOSS FUNCTION
output Adding N_{1} fill the gap between CNN and our approach．

