CUORE

Oltre il modello standard, verso la conferma dell'ipotesi di

Majorana sulla natura del neutrino

Irene Nutini e Stefano Pozzi

Seminari di Gruppo II @ UniMiB 4 Febbraio 2020

Decadimento doppio beta

Il decadimento doppio beta è un processo nucleare molto raro: (N,Z) \rightarrow (N-2, Z+2)

- Decadimento doppio beta con emissione di neutrini **2vββ**
- Processo del 2° ordine consentito dal Modello Standard

• Osservato un vari nuclei:
$$T^{1/2}_{0VBB} \sim 10^{18-24}$$
 yr

- Decadimento doppio beta senza emissione di neutrini $\mathbf{0v}\mathbf{\beta}\mathbf{\beta}$
- Processo che viola il numero leptonico $(\Delta L = 2)$

• Non ancora osservato
$$T^{1/2}_{0VBB} > 10^{24-26}$$
 yr

Decadimento 0vßß e massa del neutrino

L'osservazione del decadimento Ovßß implicherebbe:

- Violazione del numero leptonico
- Indicazioni sull'origine dell'asimmetria materia/antimateria
- Presenza di un termine di Majorana per la massa del neutrino
- Vincoli sulla gerarchia e sulla scala di massa del neutrino

Sensibilità sperimentale per il decadimento 0vßß

$$S_{0
u} \propto \eta \cdot \epsilon \cdot \sqrt{\frac{M \cdot T}{\Delta \cdot B}}$$

Nuclei candidati per decadimento $\beta\beta$:

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd,

¹³⁰Te,¹²⁸Te,¹³⁶Xe...

Scelta dell'isotopo

- Alta abbondanza isotopica naturale o arricchimento

- Alto Q-valore, $Q_{\beta\beta}$

Tecnologia del rivelatore

- Alta efficienza: sorgente ββ integrata nell'assorbitore
- Risoluzione energetica eccellente

Esposizione

- Rivelatori di grande massa (M)
- Alto live-time

Calorimetri	Sorgente esterna
+ Massa (~10kg \rightarrow tons) + Efficienza (ϵ ~1) + Risoluzione energetica ($\Delta E \sim 0.015\%$ with Ge-diodes, bolometers) + Basso background - Limitazioni nel tipo di rivelatori - Particle Id: nessuna/parziale	 + Particle Id e ricostruzione topologia degli eventi + Numerosi candidati ββ studiabili con lo stesso rivelatore - Piccole masse di isotopo sorgente (< kg) - Limitata efficienza e risoluzione energetica

Tecniche sperimentali per la ricerca dello 0vββ

KamLAND-ZEN 400 kg of enriched Xe (136Xe) gas dissolved in KAMLAND liquid scintillator

NEMO-3 Tracking detector for $2\nu\beta\beta$ and $0\nu\beta\beta$ 10 kg of enriched material in foils (several ββ isotopes)

EXO-200 TPC of 200 kg enriched liquid Xenon (136Xe)

GERDA Array of enriched Ge (76Ge) diodes operated in liquid argon First phase: 18 kg Second phase: 40 kg

at ~10 mK

AA

SNO+ SNO detector filled with 130Te-loaded liquid scintillator

6

L'esperimento CUORE

CUORE

Cryogenic Underground Observatory for Rare Events

Esperimento criogenico con rivelatore di scala ~1 ton Si utilizzano 988 cristalli in $^{\rm (nat)}{\rm TeO}_2$ operati a ~10 mK

- grande massa e alta segmentazione -

L'esperimento si trova ai Laboratori Nazionali del Gran Sasso (LNGS)

Sensibilità di CUORE per il decadimento 0v $\beta\beta$ di ¹³⁰Te : T^{0v}_{1/2} ~ 9 x 10²⁵ yr (90% C.L.) in 5 anni di live-time m_{$\beta\beta$} < 50-130 meV

Artusa D.R. et al. (CUORE Collaboration), Adv. High Energy Phys. 2015,879871,(2015) http://doi.org/10.1155/2015/879871

La sfida tecnologica dell'esperimento CUORE

Background goal: 10⁻² c/(keV · kg · yr)

nella regione di interesse (ROI) intorno a $Q_{\beta\beta}$ Underground, schermi in Pb, detector self-shielding, controlli di radio-purezza durante assemblaggio e costruzione

Target energy resolution 5 keV FWHM

nella regione di interesse (ROI) intorno a $Q_{\beta\beta}$ I rivelatori in TeO₂ devono essere utilizzati a T ~10 mK \rightarrow infrastruttura criogenica dedicata + minimizzazione delle vibrazioni meccaniche

Schermo di piombo romano (depleto in 210Pb) @ 4K

Macro-calorimetri in TeO₂ per la ricerca dello 0vββ

Calorimetri criogenici per la ricerca del decadimento doppio beta: da pochi grammi alla tonnellata

Ricerca di 0vββ con rivelatori in TeO₂

- ¹³⁰Te ha la più alta abbondanza isotopica naturale tra gli emettitori ββ (η = 34.167%); si crescono cristalli naturali, non sono necessari processi di arricchimento
- II Q-valore del processo, Q_{ββ} (¹³⁰Te) = 2527.518 keV, è più altro di gran parte dei fondi di radioattività naturale
- L'isotopo ¹³⁰Te è contenuto nel rivelatore/assorbitore in TeO₂ (alta efficienza di rivelazione, $\varepsilon \sim 90\%$)
- Crescita riproducibile di un altro numero di cristalli di alta purezza e qualità: rivelatori di grande massa (cristalli ~ 1 kg, ~1000 cristalli)
- Rivelatori a bassa temperature (~mK) in TeO₂: ottima risoluzione energetica Δ (~ 0.1-0.2 % a Q_{ββ}); migliore ricostruzione dello spettro di fondo e riduzione del fondo irriducibile del 2vββ attorno a Q_{ββ}

Proc. of Science (GSSI14), 004 (2015)

Rivelatori criogenici in TeO₂

I rivelatori in TeO₂ di CUORE sono utilizzati come calorimetri criogenici (conversione dell'energia depositata in fononi)

- Assorbitore a T~ 10 mK
- Deposizione di energia in assorbitore (Edep): scattering di particelle su nuclei o elettroni → produzione di fononi atermici → degradazione di energia → fononi termici/calore → ΔT *Modello termico semplificato:* Capacità termica del cristallo, C Link termico G tra cristallo e bagno termico

 $\Delta T \propto \frac{E_{dep}}{G} \qquad \tau = \frac{G}{C}$ Sensore di fononi - Termistor NTD: forte variazione di resistenza al variare di T (ΔR) \rightarrow generazione di segnale elettrico impulsivo proporzionale all'energia dei fononi in eccesso

Ampiezza dell'impulso ∝ ∆T ∝ Energia depositata

I rivelatori di CUORE

Caratterizzazione dei rivelatori di CUORE

Cristallo TeO₂

Capacità termica: $C \propto (V \cdot T^3)$ C ~ 2.3 x 10⁻⁹ J/K (@ 10 mK) $\Delta T_{crvstal} \sim 100 \,\mu K/MeV$

NTD

Resistenza: $R(T) = R_0 \exp \sqrt{(T_0/T)}$ $R_{wp} \sim 100 M\Omega - 1 GΩ$ $\Delta V_{NTD} \sim 400 \mu V/MeV (@10 mK)$

Banda di segnale: ~(0 - 10) Hz

Variazione di forma e ampiezza impulsi al variare della T di base

- τ_{rise} ~ accoppiamento RC tra resistenza NTD, R(T), e capacità parassita dei link elettrici
- τ_{decay}~ Capacità termica dei cristalli, C(T) Ampiezza ~ E_{dep}/C guadagno intrinseco del cristallo a data T

Ottimizzare le performance in termini di scelta di T di lavoro, di caratteristiche cristalli, di caratteristiche NTDs

Caratterizzazione dei rivelatori di CUORE

Risoluzione energetica dei macro-calorimetri

 $FWHM^2 = FWHM^2_{thermal} + FWHM^2_{Noise} + FWHM^2_{Intr}$

- Fluttuazioni termodinamiche del sistema: FWHM_{thermal} $\propto \sqrt{(C + T^2)} \sim 30-100 \text{ eV}$
- FWHM_{noise}:
 - Rumore intrinseco su R_{load} di circuito bias NTD (< 1 keV)
 Rumore esterno (vibrazioni dell'apparato criogenico
 - Rumore esterno (vibrazioni dell'apparato criogenico trasmesse ai cristalli): frequenze caratteristiche presenti nella banda di segnale
- FWHM_{intr}: fluttuazioni intrinseche di deposizione energia e produzione/raccolta di fononi (?)

Caratterizzazione di rumore esterno e tecniche di riduzione hardware & software

FWHM_{Intr}: dominante nella risoluzione degli eventi di particella. Caratterizzare questo termine e capire se/dove si può agire per ridurlo

Caratterizzazione dei rivelatori di CUORE

Rivelatori di CUORE e setup similari (@MiB)

- Caratterizzazione statica degli NTD: misura di parametri caratteristici degli NTD, identificazione conduttanze principali
- Caratterizzazione dinamica di impulsi da macro-calorimetri letti con NTD: sviluppo di modello per ricostruire impulsi di particella/heater a diverse energie/temperature
- Analisi di risoluzione energetica e backgrounds

Costruzione di un modello elettro-termico predittivo per i macro-calorimetri

Setup MiB (nov-dic 2019) Cristalli TeO₂ 1 cm³ - diversi montaggi e NTDs

CUORE Data-taking

Exposure attuale di CUORE

Background exposure (TeO₂): 691.6 kg·yr Background exposure (TeO₂) analizzata: 372.5 kg·yr (103.6 kg·yr ¹³⁰Te) [PRL-2019]

Alduino C. et al. (CUORE collaboration), arXiv:1912.10966 [submitted to PRL] (2019) https://arxiv.org/abs/1912.10966

Acquisizione e analisi dati

La tensione su ogni cristallo viene misurata con una frequenza di 1 kHz e memorizzata sotto forma di *stream* di dati

Il ruolo della procedura di analisi è identificare gli impulsi, misurarne l'ampiezza (energia) e mantenere solo quelli formati correttamente

Identificazione degli impulsi: trigger

Ampiezza ed energia dell'impulso

L'ampiezza di ogni impulso viene determinata con un algoritmo analogo a quello di trigger (Optimum Filter)

Massimizza il rapporto segnale/rumore e da una stima precisa dell'ampiezza

La calibrazione è ottenuta usando righe γ di energia nota

Usiamo una combinazione di sorgenti di ²³²Th e ⁶⁰Co per calibrare lo spettro tra 500 e 2600 keV

Reiezione di eventi

Per migliorare la qualità dei dati vengono eliminati impulsi che non rispettano determinati criteri di qualità

Questi includono, ad esempio, pile-up o eventi non fisici

Analisi principali

<u>Ουββ del 130Te</u>

Obiettivo principale di CUORE

Ricerca di un picco all'energia corrispondente al Q-valore del decadimento

Background model

Determinazione delle principali sorgenti di fondo radioattivo influenti su CUORE

Permette la misura del decadimento $2\nu\beta\beta$ del ¹³⁰Te

Inoltre:

- Ricerca di altri decadimenti rari (decadimenti su stati eccitati, ¹²⁰Te, ¹²⁸Te, ...)
- Eventi di bassa energia (dark matter, assioni...)
- Ουββ con emissione di Majoroni, violazione CPT nel 2υββ, ...

0υββ del ¹³⁰Te

Ricerca di un picco all'energia corrispondente al Q-valore del decadimento (2527 keV)

Analisi *blind*: la regione di interesse (ROI) viene coperta con un picco fittizio, tutta la procedura di analisi è fatta senza sapere cosa c'è sotto

Summed Spectrum (Blinded)

Ουββ del ¹³⁰Te : risoluzione e lineshape

Determinazione della forma attesa per il picco del 0υββ (*lineshape*)

Necessario per massimizzare la capacità di identificare il picco al di sopra del fondo

Usiamo la riga y del ²⁰⁸Tl, a 2615 keV Vicina al Q-valore e molto intensa nelle misure di calibrazione

Descriviamo la lineshape con una combinazione di 3 gaussiane

I parametri della lineshape vengono riscalati per ottenere la forma attesa al Q-valore

Ουββ del ¹³⁰Te : efficienza

Efficienza: probabilità che, dato un evento da Ουββ, questo venga identificato correttamente

Ricostruzione Probabilità che un evento sia triggerato e ricostruito all'energia corretta	95.958 ± 0.003%
Anti-coincidenza Probabilità di identificare un evento che coinvolge più cristalli	98.954 ± 0.015 %
Pulse shape Reiezione di eventi deformati o non fisici	92.037 ± 0.108 %
Contenimento Probabilità che un evento 0υββ sia conteuto in un singolo cristallo	88.350 ± 0.090 %

0υββ del 130Te : unblinding

Dopo aver fissato la procedura di analisi lo spettro viene *sblindato*

Summed Spectrum

0υββ del ¹³⁰Te : fit della ROI

La regione di interesse (ROI) viene fittata con una combinazione di due picchi (0υββ e ⁶⁰Co), entrambi descritti dalla lineshape, e di un fondo piatto

Non c'è evidenza di un segnale

Possiamo definire un limite superiore per il rate di decadimento:

Obiettivo: identificare le principali sorgenti di fondo radioattivo

CUORE - Multiplicity 1

Obiettivo: identificare le principali sorgenti di fondo radioattivo

Perchè?

- Determinazione delle sorgenti di fondo nella ROI Ουββ
 - Necessario per pianificare esperimenti futuri
 - Spesso impossibile usare altri metodi: lo strumento più sensibile per misurare il fondo di CUORE è CUORE stesso
- Misura di decadimenti a spettro continuo
 - Processi che non generano picchi (e.g. decadimenti β, ββ...)
 - Parzialmente o totalmente "coperti" dagli spettri di altre contaminazioni

 $S_{0
u} \propto \eta \cdot \epsilon \cdot \eta$

Quante e quali sorgenti possiamo aspettarci?

Isotopi naturali (²³²Th, ²³⁸U, ⁴⁰K, ⁶⁰Co...), fallout (¹³⁷Cs...), ¹³⁰Te, ...

CUORE - Multiplicity 1

Lo stesso radioisotopo può contaminare diverse parti del criostato, producendo talvolta uno spettro osservato completamente diverso

Obiettivo: identificare le principali sorgenti di fondo radioattivo

Come?

- Identificazione delle potenziali sorgenti di fondo
 - Sorgente: combinazione di contaminazione e volume contaminato
- Simulazione Monte Carlo dei possibili contributi
 Modello dettagliato dell'intero criostato
- Fit combinato di tutte le simulazioni
 - Fit Bayesiano: possibile utilizzare misure precedenti per vincolare le contaminazioni
 - Risultato: migliore combinazione delle sorgenti simulate per ricostruire lo spettro osservati

Sorgenti:

60 sorgenti distinte, distribuite su tutti gli elementi del criostato

Volume	Туре	Components
TeO ₂	Bulk	2 <i>νββ</i> , ²¹⁰ Pb, ²³² Th, ²²⁸ Ra- ²⁰⁸ Pb, ²³⁸ U, ²³⁰ Th, ²³⁰ Th ²²⁶ Ra- ²¹⁰ Pb, ⁴⁰ K, ⁶⁰ Co ¹²⁵ Sb, ¹⁹⁰ Pt
TeO ₂	Surface (0.01 µm)	²³² Th, ²²⁸ Ra- ²⁰⁸ Pb, ²³⁸ U- ²³⁰ Th, ²²⁶ Ra ²¹⁰ Pb, ²¹⁰ Pb
TeO ₂	Surface (1 μ m)	²¹⁰ Pb
TeO ₂	Surface (10 µm)	²¹⁰ Pb, ²³² Th, ²³⁸ U
CuNOSV	Bulk	²³² Th, ²³⁸ U, ⁴⁰ K, ⁶⁰ Co, ⁵⁴ Mn
CuNOSV	Surface (0.01 µm)	²¹⁰ Pb, ²³² Th, ²³⁸ U
CuNOSV	Surface (1 μ m)	²¹⁰ Pb, ²³² Th, ²³⁸ U
CuNOSV	Surface (10 μ m)	²¹⁰ Pb, ²³² Th, ²³⁸ U
Roman lead	Bulk	²³² Th, ²³⁸ U, ¹⁰⁸ mAg
Top lead	Bulk	²³² Th, ²³⁸ U, ²¹⁰ Bi
Ext. lead	Bulk	²¹⁰ Bi
CuOFE	Bulk	²³² Th, ²³⁸ U, ⁶⁰ Co
External	-	Cosmic muons

Spettri:

Suddivisione in base a:

- *Molteplicità* degli eventi
- Posizione dei cristalli nel detector
 - Esterni: sensibili al criostato
 - Interni: sensibili a cristalli e frame

Nel layer più interno, sensibile alle contaminazioni dei cristalli, possiamo isolare il contributo del decadimento 2υββ del ¹³⁰Te

33

Background model: 2υββ

Nel layer più interno, sensibile alle contaminazioni dei cristalli, possiamo isolare il contributo del decadimento 2υββ del ¹³⁰Te

Multiplicity 1 - Inner Layer

Background model: 2υββ

Possiamo determinare con grande precisione la vita media per il decadimento 2υββ del ¹³⁰Te

Multiplicity 1 - Inner Layer

Conclusioni

- CUORE è il primo esperimento che utilizza rivelatori bolometrici di scala una tonnellata per la ricerca del decadimento 0vββ.
- Abbiamo presentato i risultati più recenti di CUORE per la ricerca del decadimento 0vββ di ¹³⁰Te. I dati di CUORE ci permettono inoltre di misurare con precisione la vita media del decadimento 2vββ di ¹³⁰Te e caratterizzare le sorgenti di background. CUORE ha inoltre il potenziale per la ricerca di altri eventi rari e/o fisica oltre il Modello Standard
- L'esperimento CUORE è attualmente in presa dati con l'obiettivo di raggiungere 5 anni di run-time
- CUORE dimostra la fattibilità di rivelatori bolometrici su larga scala. Questa stessa tecnologia e infrastruttura saranno utilizzate per CUPID → Seminario CUPID, 17 marzo ore 12.30, L.Pagnanini

Grazie per l'attenzione CSNSM Yale UCLA INFN SINAP UNIVERSITY OF SOUTH CAROLINA BERKELEY LAB CAL POLY Massachusetts SAN LUIS OBISPO DEGLI STUDI VirginiaTech Technology Lawrence Livermore National Laboratory **CUORE** SAPIENZA UNIVERSITÀ DI ROMA

37

Backup

CUORE optimization

Noise reduction

- Pulse Tubes induced vibrations: **Pulse Tube active noise cancellation**
- Linear Drives: precise control of the PTs motor-head rotation frequency
- Control the relative phases of the pressure oscillations in the Pulse Tubes and set the detectors minimum noise phase configuration

D'Addabbo A. et al., Cryogenics 93, 55-56, (2018) https://doi.org/10.1016/i.cryogenics.2018.05.001

CUORE optimization

Load Curves, Working Points & Temperature scans

Achieve high quality detector readout with a good signal-to-noise ratio

Dedicated procedures and algorithms in CUORE to automate the load curve measurement and the working point identification at each T_{base} .

0υββ del ¹³⁰Te : fit della ROI

