
SOFTWARE SUSTAINABILITY :
ATLAS

EDWARD MOYSE

1

INTRODUCTION TO ATLAS

▸ Large international collaboration

▸ ~ 2’900 Scientific Authors

▸ ~ 1’200 Students

▸ Not unique to us (!), but poses some key challenges:

▸ Complexity of managing large distributed teams
of coders

▸ We often have to convince collaborators to
volunteer to help, because we have limited sticks
and carrots

▸ Much easier to get help with flashy new
project, than maintaining an old piece of code

2

SOFTWARE IN ATLAS

▸ Athena is ATLAS’s event processing framework

▸ >1 million lines of python and ~4 million
lines of C++

▸ Largest & most active repository in CERN
GitLab (by far)

▸ We also have many smaller repositories

▸ I don’t know the total, and am not sure it’s
possible to find out

▸ (Will come back to this!)

3

https://gitlab.cern.ch/atlas/athena
https://gitlab.cern.ch/atlas/athena

SOFTWARE SUSTAINABILITY

▸ Will now go through a few topics I think are relevant to sustainability, covering what I think
works and what doesn’t

▸ Includes

▸ Standard tools

▸ Open-sourcing our code

▸ Social coding

▸ Validation and testing, static analysis

▸ Documentation and training, minimising expertise loss

▸ (Large overlap in topics in some cases, so there will be some repetition)

4

USE STANDARD TOOLS (& LIBRARIES)
▸ Initially, ATLAS used many home-grown tools (or exclusive to HEP)

▸ Examples: CMT build system, TagCollector to manage releases, CLHEP etc etc

▸ Some advantage of handwritten solutions:

▸ We get a tool that (hopefully!) perfectly fits our use case

▸ Some problems:

▸ Ongoing maintenance load (which take resources from elsewhere)

▸ Dedicated training required

▸ Since then, made many efforts to move to industry standards:

▸ e.g. Git + CMake (2016/2017), Eigen (2014) etc

▸ Some advantages of industry standards:

▸ Generally better functionality (have real experts writing the code, rather than physicists with some fraction of their time)

▸ Many fantastic tutorials online beginners can use (and means they learn transferrable skills)

▸ Some problems

▸ Some older developers struggled to move e.g. to git, and in some cases, migration was a lot of work

5

http://www.cmtsite.net
http://www.cmtsite.net

USE STANDARD TOOLS (& LIBRARIES)
▸ Initially, ATLAS used many home-grown tools (or exclusive to HEP)

▸ Examples: CMT build system, TagCollector to manage releases, CLHEP etc etc

▸ Some advantage of handwritten solutions:

▸ We get a tool that (hopefully!) perfectly fits our use case

▸ Some problems:

▸ Ongoing maintenance load (which take resources from elsewhere)

▸ Dedicated training required

▸ Since then, made many efforts to move to industry standards:

▸ e.g. Git + CMake (2016/2017), Eigen (2014) etc

▸ Some advantages of industry standards:

▸ Generally better functionality (have real experts writing the code, rather than physicists with some fraction of their time)

▸ Many fantastic tutorials online beginners can use

▸ Learn transferable skills

▸ Some problems

▸ … in some cases, migration was a lot of work

6

REDUCING THE AMOUNT OF UNNECESSARY CODE WE NEED TO
MAINTAIN IS A HUGE STEP TOWARDS SOFTWARE SUSTAINABILITY

http://www.cmtsite.net
http://www.cmtsite.net

OPEN SOURCE
▸ Athena was open-sourced at the end of run-2, under an Apache 2.0 licence

▸ ATLAS is committed to opening all of its software (some exceptions e.g.
analysis)

▸ Our experience has been very positive - much easier to share with
interested outsiders

▸ One issue: CERN lightweight account is not enough to contribute to
GitLab.

▸ Examples of other open-source projects originating from ATLAS

▸ Rucio - data management

▸ GeoModel - geometry description language and tools

▸ ACTS - experiment agnostic tracking software

▸ Phoenix - experiment agnostic event display

▸ Open sourcing software allows us to share effort with other
experiments, and facilitates help from e.g. industry

▸ (It is also the right thing to do, IMO, with publicly funded projects)

7

GeoModelClash

https://rucio.github.io
http://geomodel.web.cern.ch/geomodel/home/
https://github.com/acts-project/acts
https://github.com/hsf/phoenix
https://rucio.github.io
http://geomodel.web.cern.ch/geomodel/home/
https://github.com/acts-project/acts
https://github.com/hsf/phoenix
https://rucio.github.io
https://rucio.github.io

SOCIAL CODING / MERGE REVIEWS
▸ Within ATLAS, we make extensive use of gitlab (and github) & make

extensive use of social coding feature, in particular: Merge(Pull) Reviews

▸ For Athena in particular this is very organised:

▸ Two levels of shifters, working morning and afternoon

▸ Review approximately 40 MRs per day (14k in 19 months)

▸ Check for :

▸ CI failures (see next slide)

▸ Known gotcha (e.g. memory leaks)

▸ Good code documentation

▸ Following ATLAS coding conventions (writing “good” code, but
also trying for some level of conformity)

▸ Comments added inline to code - can trigger many rounds of
updates

▸ IMO this is one of the most important improvements towards
sustainability we’ve made

▸ Continuous code review

▸ (Though balance between moving to latest and greatest feature,
and rapidly fixing important bugs)

8
MR WORKFLOW

INLINE REVIEW

HISTORICAL STAGES OF REVIEW

http://atlas-computing.web.cern.ch/atlas-computing/projects/qa/draft_guidelines.html
http://atlas-computing.web.cern.ch/atlas-computing/projects/qa/draft_guidelines.html

CONTINUOUS INTEGRATION

▸ On every MR, we run continuous integration

▸ Label MRs with software domain, so correct
experts are notified

▸ Compile code

▸ Run unit tests (ctests) for affected packages (or
all, if developer sets relevant gitlab label)

▸ Runs some simple jobs to test Athena

▸ Optionally: check to see if physics objects are
changed

▸ Currently runs on Jenkins, but investigating moving
to Gitlab CI.

▸ Vitally important to ensuring sustainability of our
code

▸ It is incredibly rare to lose a nightly because of a
coding mistake

9

NIGHTLIES

▸ We currently build ~20 branches per night

▸ On these we:

▸ run unit tests (as with CI)

▸ local longer tests, and

▸ grid-based large statistics test (from which plots can be made and compared with references)

▸ (Non-unit tests are controlled by ART, unit tests run by ctest)

▸ Longer tests check for regressions, subtle bugs missed by CI

▸ Aside: Compilers & heterogeneous platforms

▸ Our workhorse right now is gcc8 but we also compile nightly with clang8 (and developers run local builds with more exotic choices

▸ More compilers & platforms = more chances to find bugs in older code

10

https://twiki.cern.ch/twiki/bin/view/AtlasComputing/ART
https://gitlab.kitware.com/cmake/community/-/wikis/doc/ctest/Testing-With-CTest
https://twiki.cern.ch/twiki/bin/view/AtlasComputing/ART
https://gitlab.kitware.com/cmake/community/-/wikis/doc/ctest/Testing-With-CTest

REGULAR BUILDS AND VALIDATION CAMPAIGNS

▸ So, as demonstrated we build our software
every night, and run a battery of tests on it

▸ We also run larger validation campaigns

▸ Typically ~1 million events

▸ Primarily to measure physics
performance

▸ Also to find (very) rare bugs, and
measure technical performance

11

STATIC ANALYSIS TOOLS

▸ For large codebase in particular, running tools to look for
problems is very important

▸ Not feasible to do complete code review of our software

▸ Cppcheck

▸ Very static analysis useful tool

▸ >100 MRs to Athena handling cppcheck warnings

▸ Some false positives

▸ Coverity

▸ Used to use this. Struggled to get it working recently.

▸ Very slow (scans entire repository), complex licensing, requires
dedicated server … but probably better than cppcheck

▸ Lizard

▸ Cyclomatic Complexity Analyzer

▸ Potentially gives some interesting clues to ‘hotspots’

12

http://cppcheck.sourceforge.net
https://coverity.cern.ch
https://github.com/terryyin/lizard
http://cppcheck.sourceforge.net
https://coverity.cern.ch
https://github.com/terryyin/lizard

DOCUMENTATION

▸ ATLAS has historically documented
software using Twiki

▸ Search is awful, it decays fast, etc etc

▸ Lots is restricted to atlas users

▸ We now have some documentation,
atlassoftwaredocs, maintained by experts

▸ Public, searchable by google, cleaner
interface

▸ Problem is it is a lot of work for over-
burdened experts

13

https://atlassoftwaredocs.web.cern.ch
https://atlassoftwaredocs.web.cern.ch

TRAINING

▸ Every person joining ATLAS is encouraged to go to week
long induction

▸ Happen multiple times a year

▸ Software training is part of this

▸ Primarily aimed at analysts, not software
developers …

▸ … but they do learn e.g. CMake and git!

▸ Have some infrequent software specific training

▸ Merge request shifter training

▸ ATLAS software developer training

▸ Most recently GeoModelXML

▸ Have some very complete Coding guidelines

14

https://indico.cern.ch/event/924213/
http://atlas-computing.web.cern.ch/atlas-computing/projects/qa/draft_guidelines.html
https://indico.cern.ch/event/924213/
http://atlas-computing.web.cern.ch/atlas-computing/projects/qa/draft_guidelines.html

RETAINING OUR EXPERTS

▸ Big problem for us:

▸ Without retaining people who understand the software, maintaining (and training
the next generation of developers, is very hard)

▸ Unfortunately for many, focusing on SW development is perceived to damage their
career prospects

▸ And indeed, we lost some key people because they could not get a job(!)

▸ We have tried to combat this with

▸ Grants for SW development - paying people to become experts

▸ Institutional commitments - i.e. institute takes responsibility for a core task)

▸ Mixed results - the core problem is (IMO) funding agencies

▸ Some countries are MUCH worse than others

15

SUMMARY OF KNOWN SUSTAINABILITY ISSUES

▸ (Dark) code rot

▸ We don’t (typically) review untouched code - but it
might still run in production

▸ Fractured codebase

▸ Used to be that almost all production code was in
Athena

▸ Nowadays we have many, many repositories
(truthfully, I am not sure how many), not all of which
are in gitlab

▸ Some are not visible even to the SW coordinators

▸ Best we can do is to try to educate people about
best practices and concentrate on Athena

16

▸ Documentation & Training

▸ Could always do better

▸ Rapid turnover of personnel

▸ In some areas we have long term experts

▸ In others, code is written by young physicists who move
on

▸ No surprise which makes code easier to sustain (though of
course, longer term passing on knowledge is important
too)

▸ Size of codebase:

▸ Makes migrations e.g. Move to MT, Python 2 to Python 3
etc painful

▸ (however forces us to review code!)

CONCLUSIONS

▸ ATLAS’s experience with software sustainability:

▸ A hard problem given our large codebase, distributed users (without clear hierarchy), and
high turnover of experts

▸ What works:

▸ Use industry-standard tools (don’t re-invent the wheel)

▸ Open source

▸ Social coding: merge reviews

▸ Documentation, training and coding guidelines

▸ Where we could do better

▸ See previous slide!

17

BACKUP

18

NIGHTLY PERFORMANCE TESTS

▸ Track memory and CPU for each night

▸ Comparisons between nightlies

19

