A Guaranteed Discovery at Future Muon Colliders (MuC)

Rodolfo Capdevilla
Perimeter Institute and University of Toronto

arXiv:2006.16277
RC, David Curtin, Yoni Kahn, Gordan Krnjaic

A no-lose theorem for a future muon collider program

If \((g-2)_{\mu} = \text{new physics}\),

- Fixed target experiments + MuC (E\text{cm} \sim \text{TeV} \text{ and } L \sim 10 \text{ ab}^{-1}) will cover models with \text{new SM singlets}.

- Higher energy MuC (E\text{cm} \sim 10-60 \text{ TeV}) will cover \text{nightmare scenario} models with \text{new heavy EW states}.
Muon g-2

- **Singlet Models**
 - Suppressed chirality flip and EWSB insertion

- **High-Scale EW Models**
 - Enhanced chirality flip
 - Enhanced EWSB insertion

\[\Delta a_{\mu} \sim \frac{\text{couplings}^n}{M_{BSM}^m} \]

Note: The only guaranteed coupling to SM fermions is to muons!
MuC Requirements

- **Singlet Models**

 - Fixed-target experiments
 - LHC ?
 - Violate Perturbative Unitarity
 - Large couplings
 - Unitarity violation
 - "Empirical" Fine tuning (Higgs and muon mass)

 - ~ 1 TeV Muon Collider
 - ~ 3 TeV (≤ 10 ab⁻¹)
 - ~ 10 TeV Muon Collider
 - ~ 30 TeV (≤ 100 ab⁻¹)

- **High-Scale EW Models**

 - Reasonable assumptions
 - $y_{BSM} \sim 1$
 - $N_{BSM} < 10$

 - ~ 1 TeV
 - ~ 30 TeV (≤ 100 ab⁻¹)
 - M_{BSM}

 - LHC

Rodolfo Capdevilla, Perimeter Institute and University of Toronto
BSM Masses

- **Neutral** states below ~ 15 TeV

- **Charged** states below ~ 25 TeV

Thanks!
Extra...
Muon g-2

\[\mathcal{L}_{\text{eff}} = C_{\text{eff}} \frac{v}{M^2} (\mu_L \sigma^{\nu \rho} \mu^c) F_{\nu \rho} + \text{h.c.} \]

• Singlet Models

 The Higgs provides both the chiral flip and the EWSB

\[\Delta a_\mu \sim \frac{g_*^2 m_\mu^2}{12 \pi^2 M^2} \sim 10^{-9} g_*^2 \left(\frac{300 \text{ GeV}}{M} \right)^2 \]

• EW Models

 Chiral enhanced

\[\Delta a_\mu \sim \frac{y^3 m_\mu v}{8 \pi^2 M^2} \sim 10^{-9} C_{\text{eff}} \left(\frac{20 \text{ TeV}}{M} \right)^2 \]

Naive: \(\sim \text{PeV} \)

Perturbative Unitarity: \(\sim 100 \text{ TeV} \)
BSM Masses

Charged lightest states: \(\sim 25 \text{ TeV} \)

Worse case scenario, to rely on Drell-Yan production. No needed.
As large masses implies large couplings.

\[\sigma_S \sim 1 \text{ fb} \]

Neutral lightest states: \(\sim 15 \text{ TeV} \)

Worse case scenario, invisible decay so signal = gamma + MET

\[\sigma_B \sim 1 \text{ pb} \rightarrow \sim 10 \text{ fb} \quad (p_T > 1 \text{ TeV}) \]

\[\sigma_S \sim 1 \text{ fb} \]

\[\sigma_S \sim \left(\frac{y^2}{M^2} \right) y^2 \]