
ECHEP UK progress meeting

fast exp and tanh for simpleNN

Manuel Schiller

University of Glasgow

June 19th, 2020

M. Schiller (Glasgow) fast exp and tanh for simpleNN June 19th, 2020 1 / 7

introduction

intro

last time, introduced simpleNN for fast NN evaluations
today:

after (auto-)vectorizing matrix multiplication, it’s time to turn to
activation functions which contain exp(𝑥) and tanh(𝑥)
micro-bechmark time and accuracy behaviour for long vectors of
floating point numbers

M. Schiller (Glasgow) fast exp and tanh for simpleNN June 19th, 2020 2 / 7

benchmarking method

benchmarking method

time benchmarking:
time the following code fragment for cacheline-aligned source and
destination
template <typename T, typename FN>

[[gnu ::noinline]] void bench(const T * first , const T * last , T * dest , FN && fn) noexcept

{

for (; last != first; ++first , ++dest) *dest = fn(* first);

}

time from std::chrono::high_resolution_clock::now()

array size 65536, take minimum time of 128 trials
subtract time it takes to copy source to destination

accuracy benchmarking
ULP (Unit in the Last Place): 𝑥 = 1.mmm…mmmu× 2exp (where m, …, u:
mantissa bits)

compiler flags: -std=c++14 -O2 -march=native -ftree-vectorize

(for Raspberry Pi 3B: -std=c++14 -O2 -march=armv8-a -mfloat-abi=hard

-mfpu=neon-fp-armv8)

M. Schiller (Glasgow) fast exp and tanh for simpleNN June 19th, 2020 3 / 7

computation method

computation method

generalities:
to vectorize well, control flow must not depend on input data
therefore: branchless if, abs, copysign, …
// almost (cond ? a : b)

float sel(bool cond , float a, float b)

{

int32_t mask = -int32_t(cond);

return bit_cast <float >((bit_cast <int32_t >(x) & mask) | (bit_cast <int32_t >(b) & ~mask))

}

exp(𝑥)
use exp(𝑥) = exp(𝑛/ ln(2) + 𝑟) = 2𝑛𝑃(𝑟)/𝑄(𝑟)

tanh(𝑥)
use 𝑥′ = 𝑥/8 to reduce argument magnitude
use tanh(𝑥′) ∼ 𝑃(𝑥′)/𝑄(𝑥′)
use argument doubling formula tanh(2𝑥) = 2 tanh(𝑥)

1+(tanh(𝑥))2 three times
to undo argument reduction

M. Schiller (Glasgow) fast exp and tanh for simpleNN June 19th, 2020 4 / 7

results

results for float

time:
[𝑛𝑠] Core i7-2640 Core i7-2640 Ryzen 7 2700U Ryzen 7 2700U ARM v8a ARM v8a

(BCM2837) (BCM2837)
gcc 10 clang 10 gcc 8 clang 10 gcc 8 clang 9

std::exp 6.84 6.87 2.41 2.39 49.42 50.08
vdt::fast_exp 10.55 2.48 4.14 1.09 77.22 76.65
my::exp 2.16 1.47 1.25 0.96 76.37 70.77
std::tanh 30.34 30.35 15.97 15.72 185.02 184.74
vdt::fast_tanh 22.77 5.30 4.16 1.14 83.07 83.29
my::tanh 5.44 5.31 1.07 0.84 83.07 79.99

accuracy (compare against std::…, argument uniformly distributed
over range for which finite result is expected)

[𝑈𝐿𝑃] min. max. RMS
vdt::fast_exp -1 4.9×106 185
my::exp -2 2 0.35
vdt::fast_tanh -6 6 0.83
my::tanh -6 7 0.83

VDT uses branchy version of my tanh code

vdt::exp has an overflow problem for large x where it gets quite
inaccurate

need to understand what’s happening with exp on ARM…
M. Schiller (Glasgow) fast exp and tanh for simpleNN June 19th, 2020 5 / 7

results

results for double

time:
[𝑛𝑠] Core i7-2640 Core i7-2640 Ryzen 7 2700U Ryzen 7 2700U ARM v8a ARM v8a

(BCM2837) (BCM2837)
gcc 10 clang 10 gcc 8 clang 10 gcc 8 clang 9

std::exp 15.87 15.91 8.58 8.22 94.77 93.25
vdt::fast_exp 11.66 4.42 5.13 3.25 99.29 85.50
my::exp 5.91 4.71 3.46 2.83 100.98 85.35
std::tanh 32.47 32.38 16.99 16.83 209.20 208.29
vdt::fast_tanh 35.22 16.98 5.86 3.21 134.38 128.81
my::tanh 17.27 16.99 3.16 2.70 137.79 125.30

accuracy (compare against std::…, argument uniformly distributed
over range for which finite result is expected)

[𝑈𝐿𝑃] min. max. RMS
vdt::fast_exp -6.7×1015 3.0×1016 0.37
my::exp -2 2 0.37
vdt::fast_tanh -6 6 0.60
my::tanh -6 6 0.60

VDT uses branchy version of my tanh code

vdt::exp has an overflow problem for large x where it gets quite
inaccurate

need to understand what’s happening with exp on ARM…
M. Schiller (Glasgow) fast exp and tanh for simpleNN June 19th, 2020 6 / 7

next steps

next steps

nice speedup possible for activation functions
(although still need to understand some things)

put this into simpleNN, and measure impact

maybe also look into Intel/AMD performance (math) libraries (but
not portable)

clean up code, and put onto gitlab

possibly: feed that back into some library

M. Schiller (Glasgow) fast exp and tanh for simpleNN June 19th, 2020 7 / 7

	
	introduction
	benchmarking method
	computation method
	results
	next steps

