ECHEP UK progress meeting

fast exp and tanh for simpleNN

Manuel Schiller

University of Glasgow

June 19th, 2020

M. Schiller (Glasgow) fast exp and tanh for simpleNN June 19th, 2020 1/7 %

introduction

m last time, introduced simpleNN for fast NN evaluations
m today:
m after (auto-)vectorizing matrix multiplication, it’s time to turn to
activation functions which contain exp(x) and tanh(x)
m micro-bechmark time and accuracy behaviour for long vectors of
floating point numbers

M. Schiller (Glasgow) fast exp and tanh for simpleNN June 19th, 2020 2/7 %

benchmarking method

benchmarking method

m time benchmarking:

m time the following code fragment for cacheline-aligned source and
destination

template <typename T, typename FN>
[[gnu::noinlinell void bench(T = first, T = last, T = dest, FN& fn) noexcept
{

for (; last != first; ++first, ++dest) xdest = fn(xfirst);

}

| t|me from std::chrono::high_resolution_clocks:now()
m array size 65536, take minimum time of 128 trials
m subtract time it takes to copy source to destination
m accuracy benchmarking
m ULP (Unit in the Last Place): x = 1.mmm...mmmu X 2%® (where m, ..., u:
mantissa bits)
m compiler flags: -std=c++14 -02 -march=native -ftree-vectorize
(for Raspberry Pi 3B: -std=c++14 -02 -march=armv8-a -mfloat-abi=hard
-mfpu=neon-fp-armv8)

M. Schiller (Glasgow) fast exp and tanh for simpleNN June 19th, 2020 3/7 %

computation method

computation method

m generalities:

m to vectorize well, control flow must not depend on input data
m therefore: branchless if, abs, copysign, ...

// almost (cond ? a : b)
float sel(bool cond, float a, float b)
{
int32_t mask = -int32_t(cond);
return bit_cast<float>((bit_cast<int32_t>(x) & mask) | (bit_cast<int32_t>(b) & ~mask))
}

m exp(x)
m use exp(x) = exp(n/In(2) +r) =2"P(r)/Q ()
m tanh(x)

m use x' = x/8 to reduce argument magnitude

m use tanh(x’) ~ P(x')/Q(x")

m use argument doubling formula tanh(2x) =
to undo argument reduction

71f(ttz‘;l}ll((’;)))2 three times

M. Schiller (Glasgow) fast exp and tanh for simpleNN June 19th, 2020 4/7 %

results

results for float

H time:

[ns] Core i7-2640 Core i7-2640 Ryzen 7 2700U Ryzen 7 2700U ARM v8a ARM v8a
(BCM2837) (BCM2837)

gcc 10 clang 10 gcc 8 clang 10 gcc 8 clang 9

std:zexp 6.84 6.87 2.41 2.39 49.42 50.08

vdt::fast_exp 10.55 2.48 4.14 1.09 77.22 76.65

my::exp 2.16 1.47 1.25 0.96 76.37 70.77

std::tanh 30.34 30.35 15.97 15.72 185.02 184.74

vdt::fast_tanh 22.77 5.30 4.16 1.14 83.07 83.29

my::tanh 5.44 5.31 1.07 0.84 83.07 79.99

m accuracy (compare against std::..., argument uniformly distributed
over range for which finite result is expected)

[ULP] min. max. RMS
vdt::fast_exp -1 4.9x105 185
my::exp -2 2 0.35
vdt::fast_tanh -6 6 0.83
my::tanh -6 7 0.83

m VDT uses branchy version of my tanh code

m vdt::exp has an overflow problem for large x where it gets quite
inaccurate

m need to understand what’s happening with exp on ARM...

M. Schiller (Glasgow) fast exp and tanh for simpleNN June 19th, 2020 5/7 %

results

results for double

H time:

[ns] Core i7-2640 Core i7-2640 Ryzen 7 2700U Ryzen 7 2700U ARM v8a ARM v8a
(BCM2837) (BCM2837)

gcc 10 clang 10 gcc 8 clang 10 gcc 8 clang 9

std:zexp 15.87 15.91 8.58 8.22 94.77 93.25

vdt::fast_exp 11.66 4.42 5.13 3.25 99.29 85.50

my::exp 5.91 4.71 3.46 2.83 100.98 85.35

std::tanh 32.47 32.38 16.99 16.83 209.20 208.29

vdt::fast_tanh 35.22 16.98 5.86 3.21 134.38 128.81

my::tanh 17.27 16.99 3.16 2.70 137.79 125.30

m accuracy (compare against std::..., argument uniformly distributed
over range for which finite result is expected)

[ULP] min. max. RMS
vdt::fast_exp 6.7x101° 3.0x10'° 0.37
my::exp -2 2 0.37
vdt::fast_tanh -6 6 0.60
my::tanh -6 6 0.60

m VDT uses branchy version of my tanh code

m vdt::exp has an overflow problem for large x where it gets quite
inaccurate

m need to understand what’s happening with exp on ARM...

M. Schiller (Glasgow) fast exp and tanh for simpleNN June 19th, 2020 6/7 %

next steps

next steps

m nice speedup possible for activation functions
(although still need to understand some things)

m put this into simpleNN, and measure impact

m maybe also look into Intel/AMD performance (math) libraries (but
not portable)

m clean up code, and put onto gitlab
m possibly: feed that back into some library

M. Schiller (Glasgow) fast exp and tanh for simpleNN June 19th, 2020 7/7 %

	
	introduction
	benchmarking method
	computation method
	results
	next steps

