
Sherpa W+Jet Profiling

Tim Martin, Warwick
June 19th 2020

Intro

Source CHRISTIAN
GÜTSCHOW ECHEP

Feb Workshop

● Noted in kickoff meeting that the largest CPU draw in ATLAS Event Generation
comes from Sherpa SM processes. (CMS dominated by MadGraph, to a lesser
extent)

● Investigate where this comes from, look for potential improvements.

https://indico.ph.ed.ac.uk/event/66/contributions/823/
https://indico.ph.ed.ac.uk/event/66/contributions/823/
https://indico.ph.ed.ac.uk/event/66/contributions/823/

Initial State

● Everything compiled out-the-box at O2
● Full ATLAS-representative W+Jets setup provided by Marek Schoenherr

○ W+0,1,2j@NLO+3,4,5j@LO
○ Including approximate virtual corrections and reweightings to different PDFs and scales

● Running 500 events EvGen
● Single-core
● Total time: 19,876 s (around 5h 30m)

Software and PC Details
● Local compilations of

○ Sherpa 2.2.8
○ OpenLoops 2.1.1
○ LHAPDF 6.2.3
○ HepMC 3.2.0
○ Intel(R) VTune(TM) Profiler 2020 (build 605129)

● Local software stack provides
○ gcc 5.5.0
○ Intel(R) icc 16.0.3 20160415
○ cmake 3.12.2
○ sqlite 3.24.0
○ root 6.1

CPU Details
vendor_id : GenuineIntel
cpu family : 6
model : 158
model name : Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz
stepping : 9
microcode : 0xd6
cpu MHz : 900.000
cache size : 8192 KB

Profiling data collected by vtune running in userspace.
Visualisations of vtune database via flamegraph.

https://github.com/brendangregg/FlameGraph

Vanilla CPU #1: log
● Unsurprisingly large call on transcendental functions. Two main callees

○ -> LHAPDF::LogBicubicInterpolator::_interpolateXQ2 ->

LHAPDF::Interpolator::interpolateXQ2 -> LHAPDF::GridPDF::_xfxQ2 -> LHAPDF::PDF::xfxQ2
-> PDF::LHAPDF_CPP_Interface::GetXPDF 1857.171s 0ms 0usec libLHAPDF.so
LHAPDF::LogBicubicInterpolator::_interpolateXQ2(LHAPDF::KnotArray1F const&, double,
unsigned long, double, unsigned long) const [Unknown] 0x453b0

○ -> MODEL::One_Running_AlphaS::AlphaSLam -> MODEL::One_Running_AlphaS::operator()
1101.581s 0ms 0usec libModelMain.so.0 MODEL::One_Running_AlphaS::AlphaSLam(double,
int) Running_AlphaS.C 0x221b0

Calls to __ieee754_log_avx

LHAPDF::LogBicubicInterpolator::_interpolateXQ2

MODEL::One_Running_AlphaS::AlphaSLam

Vanilla CPU #2: _interpolateXQ2
● As well as the time spent calling log, the function amasses a further 1,211 s

Calls to _interpolateXQ2

Vanilla CPU #3: exp
● Another transcendental takes the third slot at 1,174 s
● MCATNLO::CF_QCD::CplFac 1174.721s 0ms 0usec libMCatNLOCalculators.so.0

MCATNLO::CF_QCD::CplFac(double const&) const CF_QCD.C 0xb420

Calls to __ieee754_exp_avx

~100% called by MCATNLO::CF_QCD::CplFac

Vanilla CPU #4: _dxf_dlogx
● Like #1, #4 is a child of #2 _interpolateXQ2
● LHAPDF::LogBicubicInterpolator::_interpolateXQ2 -> LHAPDF::Interpolator::interpolateXQ2 -> LHAPDF::GridPDF::_xfxQ2 ->

LHAPDF::PDF::xfxQ2 -> PDF::LHAPDF_CPP_Interface::GetXPDF 920.770s

Calls to _dxf_dlogx

Vanilla CPU #5: ofred_reduction_dp_MOD_fourpoint_reduction_ol

● Top single CPU calling coming from Openloops at 832 s

Calls to __ofred_reduction_dp_MOD_fourpoint_reduction_ol

Vanilla O2 Summary
1. 98% of time spent under SHERPA::Matrix_Element_Handler::GenerateOneEvent

a. With 62.6% spent under PHASIC::MCatNLO_Process::OneSEvent
i. With 15.4% spent under MCATNLO::Shower::MakeKinematics
ii. With 44.5% spent under SHERPA::Variation_Weights::UpdateOrInitialiseWeights

b. With 31.6% spent under PHASIC::Process_Group::OneEvent
i. With 20.7% spent under AMEGIC::Single_Virtual_Correction::Partonic

● AMEGIC, OpenLoops: Deep call-stacks, resource usage spread among many calls.
● LHAPDF: Shallowe call-stack, large CPU cose from transcendental functions.
● MCatNLO: Somewhere in the middle between these two extremes.

Compile Time Optimisations
● Multiple easy “slot in” optimisation strategies tried.

○ Memory allocation: preload Google’s TCMALLOC
○ Optimisation level: O2 vs. O3
○ Beyond O3: Minimum architecture (msse4.2) and unsafe maths optimisations
○ Link Time Optimisation
○ Fully static single-process builds (not managed successfully…)
○ Use of Intel icc compiler.

■ O3, minimum architecture and unsafe maths flags with icc

● Optimisations were tried only on Sherpa and on Sherpa+LHAPDF. In some
cases this resulted in a strange regression.

● TCMALLOC and VTune did not play nice.
● Working set of icc flags usable with both LHAPDF and Sherpa took some

iterations.
● Have not checked so far if physics were impacted by unsafe maths.
● See backup slides for full details.

Optimisation Timings
Optimisation On Sherpa On Sherpa+LHAPDF

None (O2) 19,876 s N/A

Memory Allocation 19,505 s (-2%) ~83,463 s (!)

O3 19,506 s (-2%) 20,280 s (+2%)

Architecture & Unsafe Maths 20,183 s (+2%) ~82,785 s (!)

Link Time Optimisation 20,371 s (+2%) ~80,935 s (!)

Intel compiler 18,122 s (-9%)

Intel compiler + O3, Arch,
Maths

18,598 s (-6%)

Intel savings look to come primarily through faster maths. C.f.
(gcc) __ieee754_log_avx = 3,025 s
(icc) __libm_log_l9 = 956 s

See also Manuel’s slides from
yesterday’s ECHEP Reco meeting.
Vectorisation can save much more.

https://indico.cern.ch/event/925077/

LHAPDF Load
● May have noted, a lot

of the areas noted so
far are actually calls
into the HEPMC
library.

● Integrated, it sums to
47.3% of all time.

Investigation into PDF Evaluation Calls
● Single event dumps of calls by Sherpa produced by Marek

○ <flavour>,<x>,<Q2> for some different types of events (pp->W+0j S/H, 1j S/H, 5j LO)

● Visualised by Andy

ME and PS are making
about as many PDF calls

ME larger

Caching in LHAPDF
● Investigating caching of values in LHAPDF

○ Some work carried out previously by Dima Konstantinov and Grigorii Latyshev
○ Additional work by Andy Buckley

● Iterations with implementing small thread-local caches (current size: 4).
○ Avoid re-interpolation when the same value is requested multiple times in a single event.

● May also benefit from revisiting how Sherpa structures its LHAPFD calls.
● May also benefit from caching over different grids in LHAPDF.

Tested:
With 6.2.4beta1
With 6.3.0beta1
With 6.3.0beta3

Version % in LHAPDF Total Time

6.2.4 47.3% 19876 s

6.2.4beta1 43.9% 20235 s

6.3.0beta1 44.3% 20505 s

6.3.0beta2 43.7% 19634 s

6.3.0beta3

Time spent in __getCacheQ2 and __getCacheX()
(Note: Also computes)

Summary

● Sherpa W+jets is a known huge CPU consumer on ATLAS
● CPU savings can be made by use of Intel’s maths library, more may be possible

via vectorized maths libraries.
● Better integration with LHAPDF could yield larger saving still.
● Flamegraphs at https://cernbox.cern.ch/index.php/s/9OK2W17XELp6Gmt

https://cernbox.cern.ch/index.php/s/9OK2W17XELp6Gmt

Backup

Optimisations #1: malloc

● malloc consumes 1.7% and operator new() consumes 0.9%
● TCMalloc : Thread-Caching Malloc
● “TCMalloc is Google's customized implementation of C's malloc() and C++'s

operator new used for memory allocation within our C and C++ code.
TCMalloc is a fast, multi-threaded malloc implementation.”

● Around 2.3x faster than malloc, used by ATLAS
● Unfortunately, TCMalloc did not play nice with VTune. Just timed with time
● Sherpa + TCMalloc: 19,505 s (-2%)

http://goog-perftools.sourceforge.net/doc/tcmalloc.html

Optimisations #2: -O3
● Effects of turning on higher levels of compiler optimisation in Sherpa.
● Very little change to call-graph, and to total time.
● Sherpa -O3: 19,506s (-2%).

O2 O3

Optimisations #3: Architecture & Unsafe Maths
● -msse4.2 specifies to use the SSE4.2 CPU instruction set extension.

○ Available since Nehalem (initial core i5, i7), November 2008
○ LHCb reported having fully switched over to this instruction set.
○ ATLAS has recent experience of some grid nodes and user machines still not supporting it.

● -ffast-math applies a bunch of “unsafe”* operations, not applied by -O.
○ -fno-trapping-math, -fno-signaling-nans: User cannot trap /0 or overflow.
○ -funsafe-math-optimizations: This mode enables optimizations that allow arbitrary reassociations and

transformations with no accuracy guarantees. Due to roundoff errors the associative law of algebra do not necessary
hold for floating point numbers and thus expressions like (x + y) + z are not necessary equal to x + (y + z)

○ -ffinite-math-only: Assume that there will never be NaNs or +-Infs
○ -fno-errno-math: Disables setting of the errno variable as required by C89/C99 on calling math library routines.
○ -fno-rounding-math: IEEE has four rounding modes. This flag assumes that the rounding mode is round to

nearest.
○ -fcx-limited-range: Causes the range reduction step to be omitted when performing complex division. This

uses a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t) with t = br*br + bi*bi and might not work well on arbitrary ranges of the
inputs.

○ -fno-signed-zeros: Removes the ability to have signed 0

*IEEE 754 Violating

https://www.intel.co.uk/content/www/uk/en/support/articles/000005779/processors.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/wiki/FloatingPointMath

Optimisations #3: Architecture & Unsafe Maths
● Again, few changes to the call graph.
● Physics output not yet checked!
● Sherpa -msse4.2 -ffast-math: 20,839 s (+5%)

Relocation of
MCATNLO::Splitting_Function_Base::RejectionWeigh

O2 + Flags

Needs re-running, other cores were in use...

Optimisations #4: Link Time Optimisation
● -lto: Link time optimization is implemented as a GCC front end for a bytecode

representation of GIMPLE that is emitted in special sections of .o files.
● Additional data are generated by the compiler and passed via the .o files to the

linker in order to allow it to perform additional optimisaiton.
● Total time: 20,371s (+2%)

O2 +LTO

Highlighting log

https://en.wikipedia.org/wiki/Interprocedural_optimization

Other permutations:
● Trying to spread the flags also to LHAPDF encountered a serious regression!

○ O2: 40 s/event
○ Sherpa O3 + LHAPDF O3 + OPENLOOPS fortran O3: 40 s/event
○ Sherpa + TCMalloc , LHAPDF + TCMalloc: 167 s/event (!!!)
○ Sherpa LTO + LHAPDF LTO: 161 s/event (!!!), 150 s/event (!!!)
○ Sherpa Fast Maths flags + LHAPDF Fast Maths flags: 152 s/event (!!!)

O2 Sherpa LTO + LHAPDF LTO

Highlighting LHAPDF::PDF::xfxQ2

Other permutations:
● Trying a fully static build of Sherpa.

○ Tried to link Sherpa against minimal set of dependencies.
○ Build / combine static .a files for all required libraries.
○ Link them all together statically

● Managed to make a giant binary.
● Couldn’t get it to work… segfaults...

Intel
● Proprietary compiler, but licencing may be available through CERN
● Note: ATLAS preload the intel maths libraries
● Using icc 16.0.3 20160415 licenced by Warwick
● Total time: 18,025s

○ 10% faster than GCC

https://renenyffenegger.ch/notes/development/languages/C-C-plus-plus/GCC/create-libraries/index

CPU #1: LHAPDF::LogBicubicInterpolator::_interpolateXQ2

● Predominantly split over SF_Lorentz:JFI, JIF, JII

CPU #2: LHAPDF::KnotArray1F::ixbelow

CPU #3: __libm_log_l9

● Log takes the #3 slot, calls from
○ LHAPDF::Interpolator::interpolateXQ2

○ MODEL::One_Running_AlphaS::operator()

CPU #4: _dxf_dlogx

icc
Highlighting LHAPDF::LogBicubicInterpolator::_interpolateXQ2

icc
Highlighting LHAPDF::KnotArray1F::ixbelow

icc
Highlighting __libm_log_l9

Intel optmisations

● Intel have their own suite of optimisation flags
● Took a little effort to find a combination which would not cause compile errors

in either LHAPDF or Sherpa
○ Sherpa: -xSSE4.2 -O3 -no-prec-div -fp-model fast=2
○ LHAPDF: -xSSE4.2 -O3

● Not currently using link time optimisation (-flto), issues…
● Total 18,598 s

○ 6% faster than GCC

