
HSF Simulation Meeting with Lightning
talks on accelerators in simulation

Simulation Notebook

The notebook here is for comments, questions, discussions and any issues that should be
raised at the meeting and could be followed up afterwards. Anyone is welcome to add their
comments and observations also during the meeting

If you wish to raise a question or discussion point here ​please give your name​ so that we know
who asked the question and give you the ‘microphone’. Questions listed here will be given the
priority in the discussion

Lightning talks on 10 June 2020 2
Prototyping simulation workflows on GPUs - an exploration phase 2
Pre-learning geometry on GPUs 3
EM physics with CUDA/portable APIs in the Excalibur-HEP project 4
e/γ calorimeter simulation using native GPU navigation libraries & shaders: a feasibility
study 5

GATE talks on 24 June 2020 5
Experience with hGATE on GPUs 5

Lightning talks on 24 June 2020 5
Porting the ATLAS fast calorimeter simulation to CUDA and SYCL 5
Geometry for GPUs 6
Prospects for RICH detector simulation using OptiX in GPUs 6
FNAL activities in Celeritas 6

Lightning talks on 10 June 2020

Prototyping simulation workflows on GPUs - an exploration phase
by Andrei Gheata

Q. Gloria Corti - The resources that will be available will be a combination of CPUs and GPUs.
Are you thinking about separate scheduling?

A: (Andrei Gheata) While we definitely need a CPU workload scheduler that is aware of GPUs, I
think we will also need a GPU-specific scheduler to handle processing full transportation steps
as a pipeline of kernels doing geometry, field propagation, physics and scoring.

Q: Should we investigate code specific to given architectures or use the performance portability
tools that are coming on the market for addressing different type of GPUs?
A: (AG) It looks like a prerequisite is adapting the data model/algorithms targeting a single
architecture/programming model (GPU/CUDA), but investigating portability tools can/should be
done meanwhile I think. Definitely we shouldn’t try to convert fully the simulation framework in
CUDA, but at least try to understand the workflow and data model, and use maybe portability
tools after that.

A: We need to adapt first the application to GPUs and then address the portability problem.
Expect to learn from the HEP-CCE project’s investigations on this.

Q. Witek Pokorski - We need to ‘flatten’ the geometry if we want to use vendor libraries like
Optix, however, if use VecGeom, navigation of hierarchical geometry seems to work fine, right?
Or to put it differently, do you see limitations of hierarchical geometries in VecGeom on GPU.

A: With deep hierarchies we may hit some limits (e.g. using recursions), but we have to
experiment them first.

Q. Ianna Osborne - What would you suggest Reducing geometry size by algorithmically placing
Assemblies?

A: Assemblies is one of the way of flattening the geometries, but are not solving the complexity
problem.

Comment : Simon Blyth, on Opticks geometry hierarchy

One thing I think I should clarify is about the hierarchy of the Opticks geometry. Although it is
very flat as you give it to
NVIDIA OptiX, it then constructs a BVH with a hierarchy designed to optimize traversal speed.

It makes sense for the hierarchy of the acceleration structure to be flexibly optimized for
traversal, rather than just being for the convenience of organization.

A: Clearly, the BVH hierarchy is OK as a fast geometry traversal for minimizing the number of
effective individual shape checks. The problem is the current deep logical volume hierarchy
based on containment that we use in our detector setups to describe the geometry, which
hinders on building an appropriate BVH w/o preliminary (potentially heavy) transformations for
flattening.

Pre-learning geometry on GPUs
By Vangelis Kourlitis

John A> Can you compare the number of arithmetic operations required for particular sets of
volumes with the number of operations for a NN (especially a DNN) ? It would seem that this
approach would be relevant only the most complex surfaces / sets of volumes might be of
interest, unless a small network is used.

Response/Walter Hopkins (WH): It is correct that we expect this only would probably be mainly
useful for a complex geometry. We have done some comparison for the calculation time with
simple geometries such as a box and found that Geant4 is quite fast and actually faster than a
NN. We want to test this for ATLAS or polycone geometries.

JA> Maybe the most interesting type of solid(s) would be the Twisted Solids, which are similar
to parts of the EMEC. ​TwistedTrap​ is one.

WH: Thanks, we will investigate the twisted solids example.

Q. Gloria Corti - I did not understand your comment that this may not be necessary if you are
inside a box: what about particles produced inside the box they would still need to know how far
they can go

Response/WH: that is correct. You have to calculate the distance to the nearest boundary for
every step you consider. On slide 4, B has also undergone the same calculation but the process
had a shorter step length than the geometric boundary.​ ​If I’m understanding the question
correctly.

https://geant4.kek.jp/lxr/source/geometry/solids/specific/include/G4TwistedTrap.hh

Response/VK: maybe my point was that if a particle stands in the center of a cube box, the step
shouldn't be really limited by geometry. Can we decide on this safely (e.g. based on position)
prior of doing the distance calculation? In this way we can save function/NN calls.

Q: Witek Pokorski: There is not only the calculation of the distance involved, but also the
navigation (finding out in which volume you are). I guess, your approach can provide more
speed up if you also take into account the navigation.

(comment/JA) In almost no cases can you ignore which volume is hit by a ‘ray’. If a particle
crosses that surface you must always be able to identify what volume / material (etc) is on the
other side of that surface.

Response/WH: currently we only calculate the distance to the next volume, given the starting
position and the direction proposed by a process. We don’t actually do the transportation to the
new volume. We found that the distance calculation is what takes a long time for a complex
geometry like the ATLAS EMEC. We have detailed profiling studies for ATLAS that we could
point you to.

EM physics with CUDA/portable APIs in the Excalibur-HEP
project
by Benjamin Morgan

Q: Witek Pokorski: so, you are going to implement those few physics processes in CUDA?

- Some ‘toy’ processes might still demonstrate key features. However, Mihaly has some
modernised EM physics code that might be more portable to GPU.

Q: Gloria Corti: how do you plan to make the outcome available? Even the inventory of what
work/doesn’t, what is out there would be useful

Q. Graeme Stewart: do you have particles of the same type in a structure that can execute on
the same warp?

- Fill warps at first, allow particles to deplete. At some point reorganising and garbage
collection would become worthwhile (but not every step!)

e/γ calorimeter simulation using native GPU navigation libraries &
shaders: a feasibility study
by John Apostolakis

Q: Gloria Corti - Extracting information from the GPUs: I agree that from a calorimeter ‘hits’
(what do you define as a hit?) are what you want with a reference to the particle originating the
shower. But what when you are transporting on a tracker? There you may also want the
secondary particles…

[Ioana Osborne: Are you planning to use realistic calorimeters as testbeds or simplified ones?]
John> Am seeking to evaluate realistic LHC calorimeters, and the ability of Optix / Opticks to
navigate in these. If only 1-2 extra types of solids are needed, one (or more) of these should
make a good benchmark geometry to use.

GATE talks on 24 June 2020

Experience with hGATE on GPUs
by Julien Bert

Q. Slide 9: why the speed up is going down to 2. What are the parts of the code which are not
run on GPUs?

A. Only the phantom voxel navigation is done on the GPU in hGATE.

Q. Can the current code be compiled for CPU as well?

A. No, GGEMS current code only runs on GPU; this was a significant drawback for
validation and motivates the move to OpenCL

Q. How did you measure the factor 7-10 speed up from C++ to CUDA/C

A. Running the cuda code on the CPU has significant inefficiencies so we made some
standalone prototype.

Q. Isn’t OpenCL no longer supported and thus a sub-optimal choice?

A. We really needs its ability to run on both CPU and GPU and the simplification in
maintenance. It also allows us to run on older cards.

Q. Did you look at different strategies for reducing thread divergence - not sorting everytime, but
only when the warp efficiency had dropped beneath a threshold?

A. Cost to sort (to reduce divergence) was higher than the gain (from less divergence). We
did not investigate variation on the sort granularity and frequency.

Q. Did you investigate the effect of occupancy/kernel size on performance?
A. Especially with hGATE (and older cards) we needed to optimized the kernel size as the

number of register available was very low. Also we have one generator per threads is
costly due to the size of the states (i.e. lots of memory operation for which random
number generation).

Lightning talks on 24 June 2020

Porting the ATLAS fast calorimeter simulation to CUDA and SYCL
by Vincent Pascuzzi

Q. Only part of the code is ported to the GPU. Do you do buffering to make efficient use of the
GPU?

A. This is the idea, but the initial samples only had single particles.

Q. What are the next steps?

A. Complete simulation (on SYCL) and perform benchmarks. Want to use new Intel cards
(non-shared memory).

Q. Is the geometry on the GPU flattened?

A. It’s read in from a text file on the host, then massaged and transferred. This is a ​read-out
geometry​, not a simulation geometry.

Geometry for GPUs
by ​Akanksha Vishwakarma

Q. Have you started looking at the possibility of tessellating the geometry yet?

A. Not yet.

Q. What is the timeframe of the project?

A. Funded for a couple of years from now.

Prospects for RICH detector simulation using OptiX in GPUs
by Sajan Easo

Q. Do you have any estimate of the speedup?

A. Not yet, this is one of the next things to come out.

Q. How difficult it will be to port the RICH geometry to Optix?

A. I don’t expect any major problems. Related LHCb is migrating to DD4Hep.

