STXS MEETING EWK H+2j STXS

Alexander Karlberg<sup>(1)</sup>, Claudia Bertella<sup>(4)</sup>, Simon Plätzer<sup>(3)</sup>, Yacine Haddad<sup>(2)</sup>

Zurich University <sup>(1)</sup>, Northeastern University <sup>(2)</sup>, University of Vienna<sup>(3)</sup>, CERN<sup>(4)</sup>



### Northeastern University

# EWK H+2j STXS UNCERTAINTIES



## INTRODUCTION

- 10 QCD-nuisances accounted:
  - 1 yields uncertainty ("overall" NP) on the inclusive cross-section,  $\Delta_{tot}$
  - 9 migration uncertainties
    - $\Delta_{2jet}$ ,  $\Delta_{200}$  and  $\Delta_{25}$
    - 6 NPs to describe M<sub>ii</sub> spectrum
      - Estimated using ST method
  - So far we had:
    - Uncertainties extracted using FO calculations
    - Acceptances estimated using POWHEG + Py8
- Inclusion of VH hadronic
  - Checking validity of the VBF approximation
  - Updating uncertainties using full calculation of H+2jet and H+3jet production at NLO QCD
- **Electroweak Corrections** 
  - EWK @NLO correction applied for every STXS bin





Previous update: <u>https://indico.cern.ch/event/826136/contributions/3560473/</u> attachments/1927391/3191007/STXS-uncertainties-VBF.pdf

### Yacine Haddad (yhaddad@cern.ch)



| - | - | - | - | - | 1 |  |
|---|---|---|---|---|---|--|
|   | 2 | l | 2 | 2 | J |  |
|   | _ | _ | _ |   |   |  |
|   |   |   |   |   |   |  |
| 5 |   |   |   | C | x |  |

2

## LIMITS OF VBF APPROXIMATION

- Most the VBF generators in the market run with the VBF approximate (only t- and u-channel).
- More accurate EW Higgs + 2 jets requires the inclusion of the s-channel component
  - Studies already initiated

[Campanario, Figy, Plätzer, Sjödahl – PRL 111 (2013) 211802] [Campanario, Figy, Plätzer, Rauch, Schichtel, Sjödahl – PRD 98 (2018) 033]

 HJets++ provides full EW H+2jet and H+3jet calculation at NLO QCD (VBF+VHhad)

[Campanario, Figy, Plätzer, Sjödahl – PRL 111 (2013) 211802]

• Little impact for VBF selection, more significant changes  $m_{ii} < 350 \text{ GeV}$ 





![](_page_2_Picture_15.jpeg)

### H+2J EWK: ADDING THE S-CHANNEL

- Compared various combinations of ME+PS:
  - POWHEG: NLO-QCD (3rd jet LO from PS)
    - VBF approximated: only t/u-channels
    - Interfaced with Herwig7 and Pythia8 (with dipoleRecoil=on )
  - VBFNLO : NLO-QCD (3rd jet LO from PS)
    - VBF approximated: only t/u-channels
    - Interfaced with Herwig7
  - HJets++ : NLO-QCD (3rd jet LO from PS)
    - Full EWK H+2 jets calculation
    - Interfaced with Herwig7
- Stage 1.1 acceptances need to be updated to account for the s-channel contribution using HJet++

![](_page_3_Picture_12.jpeg)

![](_page_3_Figure_15.jpeg)

![](_page_3_Picture_17.jpeg)

## FIXED ORDER CALCULATION VS ME+PS

![](_page_4_Figure_1.jpeg)

٨I

n<sub>jets</sub>

ΛΙ

Njets

![](_page_4_Picture_3.jpeg)

- Compared ME+PS to FO calculation from proVBF-H (NNLO-QCD)
- FO-NNLO-QCD cross-section estimate is consistent with POWHEG
  - $\bullet$  Discrepancy at low  $m_{jj}$  is due to soft emissions present in the FO NNLO calculation
  - $\bullet$  Good agreement of at large  $m_{ii}$  values

Njets

![](_page_4_Picture_9.jpeg)

![](_page_5_Figure_1.jpeg)

![](_page_5_Picture_6.jpeg)

![](_page_5_Picture_8.jpeg)

## COMPARING UNCERTAINTIES VS m<sub>ii</sub>

• Hard process scale variations for every  $m_{ii}$  cut

![](_page_6_Figure_2.jpeg)

![](_page_6_Picture_3.jpeg)

![](_page_6_Figure_6.jpeg)

![](_page_6_Picture_8.jpeg)

## UNCERTAINTIES PROPAGATION SCHEME

- 9 migration uncertainties  $\Delta_{2jets}$ ,  $\Delta_{200}$  and  $\Delta_{25}$ 
  - $\Delta_{2jets}$ ,  $\Delta_{200}$  and  $\Delta_{25}$
  - 6 NPs to describe M<sub>ii</sub> spectrum
- 1 yield uncertainty on the inclusive cross-section,  $\Delta_{tot}$

$$\begin{split} \Delta_{tot} &= \sigma_{tot} \times \delta_{tot} \\ \Delta_{2j} &= \sigma_{2j} \times (\delta_{2j}^2 - \delta_{tot}^2)^{1/2} \\ \Delta_{60} &= \sigma_{m_{jj} > 60} \times (\delta_{m_{jj} > 60}^2 - \delta_{2j}^2)^{1/2} \\ \dots &= \dots \\ \Delta_{350} &= \sigma_{m_{jj} > 350} \times (\delta_{m_{jj} > 350}^2 - \delta_{m_{jj} > 120}^2)^{1/2} \\ \dots &= \dots \end{split}$$

![](_page_7_Picture_6.jpeg)

Yacine Haddad (yhaddad@cern.ch)

- Uncertainties computed by varying the QCD scales
  - Extracted using ME or FO NNLO
- Bins acceptance computed with ME+PS
  - Moved from the fraction of the  $\Delta$  distributed across STSX bins to  $\sigma$

undefined uncertainty (ex:  $\delta_{[350,\infty]} < \delta_{[120,\infty]}$ ) → Replace with:

$$\Delta_{350} = \sigma_{m_{jj}>350} \times \rho \cdot \delta_{m_{jj}>350}$$

value of 1/2 is assumed for the remaining talk

![](_page_7_Picture_15.jpeg)

![](_page_7_Figure_16.jpeg)

![](_page_7_Figure_17.jpeg)

![](_page_7_Picture_18.jpeg)

![](_page_7_Picture_19.jpeg)

## UNCERTAINTIES PROPAGATION SCHEME

- 9 migration uncertainties  $\Delta_{2jets}$ ,  $\Delta_{200}$  and  $\Delta_{25}$ 
  - $\Delta_{2jets}$ ,  $\Delta_{200}$  and  $\Delta_{25}$
  - 6 NPs to describe M<sub>ii</sub> spectrum
- 1 yield uncertainty on the inclusive cross-section,  $\Delta_{tot}$

$$\begin{split} \Delta_{tot} &= \sigma_{tot} \times \delta_{tot} \\ \Delta_{2j} &= \sigma_{2j} \times (\delta_{2j}^2 - \delta_{tot}^2)^{1/2} \\ \Delta_{60} &= \sigma_{m_{jj} > 60} \times (\delta_{m_{jj} > 60}^2 - \delta_{2j}^2)^{1/2} \\ \dots &= \dots \\ \Delta_{350} &= \sigma_{m_{jj} > 350} \times (\delta_{m_{jj} > 350}^2 - \delta_{m_{jj} > 120}^2)^{1/2} \\ \dots &= \dots \end{split}$$

![](_page_8_Picture_6.jpeg)

Yacine Haddad (yhaddad@cern.ch)

- Total yield uncertainty taken from YR4 the  $\delta_{\text{tot}} \sim 0.38 \,\%$  (need to be updated)
- From  $\delta_{2iet}$  remove contribution from  $\delta_{tot}$
- The effect of each migration  $\Delta$  is anticorrelated for bins above/below

undefined uncertainty (ex:  $\delta_{[350,\infty]} < \delta_{[120,\infty]}$ ) → Replace with:

$$\Delta_{350} = \sigma_{m_{jj}>350} \times \rho \cdot \delta_{m_{jj}>350}$$

value of 1/2 is assumed for the remaining talk

![](_page_8_Picture_14.jpeg)

![](_page_8_Picture_15.jpeg)

![](_page_8_Picture_16.jpeg)

### DEFINITION OF ACCEPTANCES • Basic definition: bin cross-section divided by cross-section in the NP phase space

• Exception:  $\Delta_{XX}$  for bin with a cut :  $m_{ii} < X$ 

• The effect of each migration  $\Delta$  is anti-correlated for bins above/below

25/06/2020

|                                    | $\Delta_{tot}$                                                                      | $\Delta_{200}$                                                                                  | $\Delta_{60}$                                                                                     | $\Delta_{120}$ | $\Delta_{350}$ | $\Delta_{700}$ | $\Delta_{1000}$                                                                                | $\Delta_{1500}$ | $\Delta_{25}$                                                                       | $\Delta_{2jet}$      |
|------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------|----------------|----------------|------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------|----------------------|
| JET01                              | $rac{\sigma_{N_{jets} < 2}}{\sigma_{tot}}$                                         | 0                                                                                               | 0                                                                                                 | 0              | 0              | 0              | 0                                                                                              | 0               | 0                                                                                   | -1                   |
| MJJ_0_60_JET3                      | $\frac{\sigma_{0 < m_{jj} < 60 \& p_T^{Hjj} > 25}}{\sigma_{tot}}$                   | 0                                                                                               | $-\frac{\sigma_{0 < m_{jj} < 60 \& p_T^{Hjj} > 25}}{\sigma_{0 < m_{jj} < 60}}$                    |                | σ              | 0< n           | $n < 60 \ \& n^{Hjj} < 2$                                                                      | 5               | $\frac{n_{jj} < 60 \& p_T^{Hjj} > 25}{\sigma_{p_T^{Hjj} > 25}}$                     | $\sigma_{0 < m}$     |
| MJJ_0_60_JET3VETO                  | $\frac{\sigma_{0 < m_{jj} < 60 \& p_T^{Hjj} < 25}}{\sigma_{tot}}$                   | 0                                                                                               | $-\frac{\sigma_{0 < m_{jj} < 60 \& p_T^{Hjj} < 25}}{\sigma_{0 < m_{jj} < 60}}$                    |                |                |                | $l_{jj} < 00 \ \text{cm} p_T < 2.$                                                             |                 | $\frac{p_{jj}^{I} < 60 \& p_T^{Hjj} > 25}{\sigma_{p_T^{Hjj} > 25}}$                 | $\sigma_{0 < m_{i}}$ |
| MJJ_60_120_JET3                    | $\frac{\sigma_{60 < m_{jj} < 120\&p_T^{Hjj} > 25}}{\sigma_{tot}}$                   | 0                                                                                               | $\frac{\sigma_{60 < m_{jj} < 120\&p_T^{Hjj} > 25}}{\sigma_{m_{jj} > 60}}$                         |                |                |                | σ                                                                                              |                 | $\frac{m_{jj} < 120 \& p_T^{Hjj} > 25}{\sigma_{N_{jets} > 2}}$                      |                      |
| MJJ_60_120_JET3VETO                | $\frac{\sigma_{60 < m_{jj} < 120 \& p_T^{Hjj} < 25}}{\sigma_{tot}}$                 | 0                                                                                               | $\frac{\sigma_{60 < m_{jj} < 120\&p_T^{Hjj} < 25}}{\sigma_{m_{jj} > 60}}$                         |                |                |                | $V_0 < m_{jj} < 60$                                                                            |                 | 5                                                                                   |                      |
| MJJ_120_350_JET3                   | $\frac{\sigma_{120 < m_{jj} < 350\&p_T^{Hjj} > 25}}{\sigma_{tot}}$                  | 0                                                                                               | $\frac{\sigma_{120 < m_{jj} < 350\&p_T^{Hjj} > 25}}{\sigma_{m_{jj} > 60}}$                        |                |                |                | 0                                                                                              |                 |                                                                                     |                      |
| MJJ_120_350_JET3VETO               | $\frac{\sigma_{120 < m_{jj} < 350\&p_T^{Hjj} < 25}}{\sigma_{tot}}$                  | 0                                                                                               | $\frac{\sigma_{120 < m_{jj} < 350\&p_T^{Hjj} < 25}}{\sigma_{m_{jj} > 60}}$                        |                | σ              | ( )            | 100 0 Hii o                                                                                    | _               |                                                                                     |                      |
| MJJ_350_700_pTH_0_200_JET3         | $\frac{\sigma_{350 < m_{jj} < 700\&p_T^H < 200\&p_T^{Hjj} > 25}}{\sigma_{tot}}$     | $-\frac{\sigma_{350 < m_{jj} < 700 \& p_T^H < 200 \& p_T^{Hjj} > 25}}{\sigma_{p_T^H < 200}}$    | $\frac{\sigma_{350 < m_{jj} < 700\&p_T^H < 200\&p_T^{Hjj} > 25}}{\sigma_{m_{jj} > 60}}$           |                | U              | 50<1           | $n_{jj} < 120 \& p_T^{II_{jj}} < 2$                                                            | .5              | $\frac{<\!m_{jj}<\!700\&p_T^H<\!200\&p_T^{Hjj}\!>\!25}{\sigma_{_nHjj}\!>\!25}$      |                      |
| MJJ_350_700_pTH_0_200_JET3VETO     | $\frac{\sigma_{350 < m_{jj} < 700 \& p_T^H < 200 \& p_T^{Hjj} < 25}}{\sigma_{tot}}$ | $-\frac{\sigma_{350 < m_{jj} < 700 \& p_T^H < 200 \& p_T^{H_{jj}} < 25}}{\sigma_{H_{c} < 200}}$ | $\frac{\sigma_{350 < m_{jj} < 700\&p_T^H < 200\&p_T^{H_{jj}} < 25}}{\sigma_{m} \dots > 60}$       | -              | _              |                |                                                                                                |                 | $\frac{p_T}{50 < m_{jj} < 700 \& p_T^H < 200 \& p_T^{Hjj} > 25}{\sigma_{Hjj}}$      |                      |
|                                    |                                                                                     | $p_{\widetilde{T}}^{-} < 200$                                                                   |                                                                                                   |                |                |                | $O_{m_{ii} > 60}$                                                                              |                 | $p_T^{-3,3} > 25$                                                                   |                      |
| MII 700 1000 pTH 0 200 IFT3        | $\sigma_{700 < m_{jj} < 1000 \& p_T^H < 200 \& p_T^{Hjj} > 25}$                     | $\sigma_{700 < m_{jj} < 1000 \& p_T^H < 200 \& p_T^{Hjj} > 25}$                                 | $\sigma_{700 < m_{jj} < 1000 \& p_T^H < 200 \& p_T^{Hjj} > 25}$                                   |                |                |                | jjr c c                                                                                        |                 |                                                                                     |                      |
| W155_700_1000_p111_0_200_51115     | $\sigma_{tot}$                                                                      | $\sigma_{p_T^H < 200}$                                                                          | $\sigma_{m_{jj}>60}$                                                                              |                | •••            | •••            | $\sigma_{m_{jj} < 1000}$                                                                       | •••             | •••                                                                                 | •••                  |
| <br>MJJ 1500 pTH 0 200 JET3        | $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$          | $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                      | $\underbrace{\sigma_{m_{jj}>1500\&p_{T}^{H}<200\&p_{T}^{Hjj}>25}}_{$                              | •••            | •••            | •••            | $ \frac{\sigma_{m_{jj} > 1500\&p_T^H < 200\&p_T^{H_{jj}} > 25}}{$                              | •••             |                                                                                     | •••                  |
| 1100110001p11101_00101110          | $\sigma_{tot}$                                                                      | $\sigma_{p_T^H < 200}$                                                                          | $\sigma_{m_{jj}>60}$                                                                              |                |                |                | $\sigma_{m_{jj}>1000}$                                                                         |                 |                                                                                     |                      |
| <br>MJJ_350_700_pTH_gt200_JET3     | $\frac{\sigma_{350 < m_{jj} < 700 \& p_T^H > 200 \& p_T^{Hjj} > 25}}{\sigma_{tot}}$ | $\frac{\sigma_{350 < m_{jj} < 700 \& p_T^H > 200 \& p_T^{Hjj} > 25}}{\sigma_{n^H > 200}}$       | $\frac{\sigma_{350 < m_{jj} < 700\&p_T^H > 200\&p_T^{H_{jj} > 25}}}{\sigma_{m_{jj} > 60}}$        | •••            | •••            | •••            | <br>0                                                                                          | •••             |                                                                                     | •••                  |
| MJJ_350_700_pTH_gt200_JET3VETO     | $\frac{\sigma_{350 < m_{jj} < 700 \& p_T^H > 200 \& p_T^{Hjj} < 25}}{\sigma_{tot}}$ | $\frac{\sigma_{350 < m_{jj} < 700\&p_T^H > 200\&p_T^{H_{jj}} < 25}}{\sigma_{p_T^H > 200}}$      | $\frac{\sigma_{350 < m_{jj} < 700 \& p_T^H > 200 \& p_T^{H_{jj}} < 25}}{\sigma_{m_{jj} > 60}}$    |                |                |                | 0                                                                                              |                 |                                                                                     |                      |
|                                    |                                                                                     | 1<br>                                                                                           |                                                                                                   | •••            | •••            | •••            |                                                                                                | •••             |                                                                                     | •••                  |
| $MJJ\_700\_1000\_pTH\_gt200\_JET3$ | $\frac{\sigma_{700 < m_{jj} < 1000\&p_T^H > 200\&p_T^{H_{jj} > 25}}}{\sigma_{tot}}$ | $\frac{\sigma_{700 < m_{jj} < 1000\&p_T^H > 200\&p_T^{H_{jj}} > 25}}{\sigma_{p_T^H > 200}}$     | $\frac{\sigma_{700 < m_{jj} < 1000\&p_T^H > 200\&p_T^{H_{jj}} > 25}}{\sigma_{m_{jj} > 60}} \dots$ |                |                |                | $-\frac{\sigma_{700 < m_{jj} < 1000\&p_T^H > 200\&p_T^{H_{jj}} > 25}}{\sigma_{m_{jj} < 1000}}$ |                 | •••                                                                                 |                      |
|                                    |                                                                                     | 1<br>                                                                                           |                                                                                                   | •••            | •••            |                |                                                                                                | •••             |                                                                                     | •••                  |
| $MJJ\_1500\_pTH\_gt200\_JET3$      | $\frac{\sigma_{jj} > 1500 \& p_T^H > 200 \& p_T^{Hjj} > 25}{\sigma_{tot}}$          | $\frac{\sigma_{m_{jj}>1500\&p_T^H>200\&p_T^{H_{jj}>25}}}{\sigma_{p_T^H>200}}$                   | $\frac{\sigma_{m_{jj}>1500\&p_T^H>200\&p_T^{H_{jj}}>25}}{\sigma_{m_{jj}>60}}$                     | •••            |                | •••            | $\frac{\sigma_{m_{jj}>1500\&p_T^H>200\&p_T^{H_{jj}}>25}}{\sigma_{m_{jj}>1000}}$                |                 | $\frac{\sigma_{m_{jj}>1500\&p_T^H>200\&p_T^{H_{jj}}>25}}{\sigma_{p_T^{H_{jj}}>25}}$ | •••                  |
|                                    |                                                                                     | -                                                                                               |                                                                                                   | •••            | •••            | •••            |                                                                                                | •••             | •                                                                                   | •••                  |

![](_page_9_Figure_8.jpeg)

![](_page_9_Picture_9.jpeg)

## COMPARING UNCERTAINTIES

![](_page_10_Figure_1.jpeg)

### Acceptances updated using HJets + Herwig 7

### • What to use for the uncertainty sources (the bing $\Delta$ )?

• The 3rd jet is generated in HJets/Powheg at LO and from PS, Hence the HJets/Powheg QCD scale uncertainties in the 2j/3j bins are not reliable. FO estimation should be used to estimate the uncertainties  $\Delta_{25}$ 

### Hybrid sources solution:

- S-channel contributes only in the low Mjj region < 350 GeV, FO can be used for  $\Delta_{350-1500}$ , HJets for  $\Delta_{60-120}$  and  $\Delta_{2i}$
- $\Delta_{25}$  and  $\Delta_{200}$  from FO

| + | source [fb]   |        | +<br>  POWHEG NIO | +<br>  H]ots NIO | <br>I м' |
|---|---------------|--------|-------------------|------------------|----------|
| - | +             |        |                   |                  |          |
|   | Delta_tot     | 14.972 | 15.131            | 21.539           | 2.       |
|   | Delta_200     | 0.622  | 1.081             | 2.989            | 0        |
|   | Delta_Mjj60   | 8.057  | 9.511             | 8.003            | 8        |
|   | Delta_Mjj120  | 6.84   | 8.286             | 13.446           | 1        |
|   | Delta_Mjj350  | 7.389  | 5.025             | 5.385            | 7        |
|   | Delta_Mjj700  | 4.201  | 5.973             | 8.158            | 4        |
|   | Delta_Mjj1000 | 3.115  | 3.545             | 7.045            | 3        |
|   | Delta_Mjj1500 | 1.764  | 2.614             | 6.404            | 1        |
|   | Delta_25      | 27.387 | 2.674             | 35.46            | 2        |
|   | Delta_2jet    | 17.355 | 18.617            | 33.412           | 3        |
| 4 | ++            |        | +                 | +                |          |

![](_page_10_Figure_12.jpeg)

![](_page_10_Picture_13.jpeg)

11

COMPARING UNCERTAINTIES

![](_page_11_Figure_1.jpeg)

### Acceptances updated using HJets + Herwig 7

### • What to use for the uncertainty sources (the bing $\Delta$ )?

• The 3rd jet is generated in HJets/Powheg at LO and from PS, Hence the HJets/Powheg QCD scale uncertainties in the 2j/3j bins are not reliable. FO estimation should be used to estimate the uncertainties  $\Delta_{25}$ 

### • Hybrid sources solution:

- S-channel contributes only in the low Mjj region < 350 GeV, FO can be used for  $\Delta_{350-1500}$ , HJets for  $\Delta_{60-120}$  and  $\Delta_{21}$
- $\Delta_{25}$  and  $\Delta_{200}$  from FO

| + | source [fb]   |        | +<br>  POWHEG NIO | +<br>  H]ots NIO | <br>I м' |
|---|---------------|--------|-------------------|------------------|----------|
| - | +             |        | +                 |                  |          |
|   | Delta_tot     | 14.972 | 15.131            | 21.539           | 2.       |
|   | Delta_200     | 0.622  | 1.081             | 2.989            | 0        |
|   | Delta_Mjj60   | 8.057  | 9.511             | 8.003            | 8        |
|   | Delta_Mjj120  | 6.84   | 8.286             | 13.446           | 1        |
|   | Delta_Mjj350  | 7.389  | 5.025             | 5.385            | 7        |
|   | Delta_Mjj700  | 4.201  | 5.973             | 8.158            | 4        |
|   | Delta_Mjj1000 | 3.115  | 3.545             | 7.045            | 3        |
|   | Delta_Mjj1500 | 1.764  | 2.614             | 6.404            | 1        |
|   | Delta_25      | 27.387 | 2.674             | 35.46            | 2        |
|   | Delta_2jet    | 17.355 | 18.617            | 33.412           | 3        |
| 4 | ++            |        | +                 | +                |          |

![](_page_11_Figure_11.jpeg)

![](_page_11_Picture_12.jpeg)

![](_page_11_Picture_13.jpeg)

## ELECTROWEAK CORRECTIONS IN STXS BINS

• The state of the art calculation from HAWK 2.0

[Denner, Dittmaier, SK, Muck [arXiv:1412.5390]]

- Provides complete NLO QCD and EWK corrections and includes 1.3 s-channel and interferences
- provides predictions for partonic channels with incoming photons as part of NLO EW corrections
- EW corrections of 5-10% in VBF production
- Enhanced electroweak corrections at high energies: driven by Sudakov  $\log \alpha \rightarrow \alpha \log (Q/M_w)$  at Higgs p<sub>T</sub> tail [Ciccolini, Denner, Dittmaier [arXiv:0710.4749]]
- Uncertainty estimated following the same prescription as in the Yellow Report 4

$$\Delta_{\rm EW} = \max\{0.5\%, \delta_{\rm EW}^2, \sigma_{\gamma}/\sigma_{\rm VBF}\}$$

### • **Proposition**:

- Since EW correction is driven by Sudakov log we can consider  $\delta^2_{EW}$  as the pure Sudakov nuisance:  $\Delta_{
  m sud}$
- $\delta_{\gamma}$  can be considered as a separate nuisance for non-Sudakov nuisance:  $\Delta_{\gamma}$

![](_page_12_Picture_12.jpeg)

![](_page_12_Figure_15.jpeg)

| ΗO           | W TO INCLUE              | DE THE                     | E E W C C           | $\mathbf{RREC}$                |               |
|--------------|--------------------------|----------------------------|---------------------|--------------------------------|---------------|
|              | STXS bin                 | $\sigma_{LO}(\mathrm{fb})$ | $(1 + \delta_{EW})$ | $\sigma_{\gamma}(\mathrm{fb})$ | $\Delta_{EW}$ |
|              | $0 < m_{jj} \le 60$      | 6.67                       | 0.981               | 0.081                          | 0.012         |
|              | $60 < m_{jj} \le 120$    | 601.78                     | 0.938               | 7.440                          | 0.012         |
|              | $120 < m_{jj} \le 350$   | 540.59                     | 0.981               | 6.567                          | 0.012         |
| 00           | $350 < m_{jj} \le 700$   | 659.75                     | 0.955               | 9.056                          | 0.014         |
| $\mathbf{C}$ | $700 < m_{jj} \le 1000$  | 318.83                     | 0.937               | 4.820                          | 0.015         |
|              | $1000 < m_{jj} \le 1500$ | 275.94                     | 0.921               | 4.481                          | 0.016         |
| d            | $m_{jj} > 1500$          | 251.33                     | 0.899               | 4.798                          | 0.019         |
| 00           | $350 < m_{jj} \le 700$   | 45.72                      | 0.927               | 0.807                          | 0.018         |
| ~<br>~       | $700 < m_{jj} \le 1000$  | 37.91                      | 0.907               | 0.647                          | 0.017         |
|              | $1000 < m_{jj} \le 1500$ | 44.03                      | 0.883               | 0.765                          | 0.017         |
| d            | $m_{jj} > 1500$          | 55.99                      | 0.851               | 1.165                          | 0.022         |

• Start with best QCD prediction for VBF and assume approximate factorisation of corrections:  $\sigma_{\rm VBF} = \sigma_{\rm best}(1 + \delta_{\rm EW}) + \sigma_{\rm gamma}$  with  $\sigma_{\rm EW} = \sigma_{\rm EW}/\sigma_{\rm LO}$ • These correction are now implanted in the VBF-uncertainty tool

25/06/2020

### NS ?

```
Yacine Haddad (yhaddad@cern.ch)
```

![](_page_13_Picture_5.jpeg)

14

## CONCLUSION

- Update uncertainties and acceptances are now available VBF uncertainty standalone tool [<u>here</u>]
  - The tool apply uncertainties as event weights (same strategy as ggH)
  - Acceptance and uncertainties updated with full EW H+2j calculation
  - Hybrid uncertainties using FO NNLO + HJets is set as default Other configuration with only FO/POWHEG/HJets++ also available
  - Large differences observed in  $p_{T}^{Hjj}$  observable:
- Values might change in the coming months depending on the PS authors inputs Electroweak correction have been estimated in STXS bins
  - Corrections of 5-10% in VBF production
  - Available in the VBF uncertainty tool
  - We still need input from EW expert on uncertainties

![](_page_14_Picture_17.jpeg)

# BACKUP

![](_page_15_Picture_1.jpeg)

## SETUP AND DEFINITIONS

- Extracted using QCD variations of the renormalisation and factorisation scales  $\mu_r$ ,  $\mu_f$  from POWHEG + PYTHIA 8
  - Keeping only variations with  $1/2 \le \mu_r$ ,  $\mu_f \le 2$ ,  $1/2 \le \mu_r/\mu_f \le 2$
  - Take uncertainty envelope
- Uncertainty propagation based on Stewart-Tackmann method [1]:  $C(\{\sigma_0, \sigma_{\geq 1}\}) = \begin{pmatrix} (\Delta_0^y)^2 & \Delta_0^y \Delta_2^y \\ \Delta_0^y \Delta_{\geq 1}^y & (\Delta_{\geq 1}^y) \end{pmatrix}$
- Jet definition :

  - Higgs decay products are ignored • Jets built using anti- $k_T R = 0.4$  from all stable particles
  - Only jet with pT > 30 GeV and  $|\eta| < 4.7$

![](_page_16_Picture_9.jpeg)

$$\begin{pmatrix} y \\ \geq 1 \\ (1)^2 \end{pmatrix} + \begin{pmatrix} \Delta_{cut}^2 & -\Delta_{cut}^2 \\ -\Delta_{cut}^2 & \Delta_{cut}^2 \end{pmatrix}$$

Yacine Haddad (yhaddad@cern.ch)

![](_page_16_Picture_13.jpeg)

17

### H+2J EWK: ADDING THE S-CHANNEL

![](_page_17_Figure_1.jpeg)

![](_page_17_Picture_3.jpeg)

### COMPARISON WITH DIPOLE SHOWER

![](_page_18_Figure_1.jpeg)

![](_page_18_Picture_2.jpeg)

![](_page_18_Figure_4.jpeg)

![](_page_18_Picture_5.jpeg)

## PARTON SHOWER UNCERTAINTIES

- $\mu_H$ : variation of the renormalisation and factorisation scales in the hard process (Matrix Element)
- $\mu_S$ : Shower scale, it is the argument of  $\alpha_s$  and PDFs in the PS.
  - The band also includes variations in the hard process as well as the variation in renormalisation and factorisation scales for the NLO Matching and Merging
- $\mu_Q$ : veto scale: the boundary of the hardness of emissions in the PS
- low  $p_T^{Hjj}$  the PS uncertainties are huge, but expected, reaching ~40%. This is also visible on the  $m_{jj}$  distribution where the PS variation gets larger in the low values where also soft emissions dominate. However, the discrepancy between Pythia8 and Herwig is till larger Thant the uncertainty.

![](_page_19_Figure_6.jpeg)

![](_page_19_Picture_7.jpeg)

![](_page_19_Picture_8.jpeg)

## ELECTROWEAK UNCERTAINTIES

higher-order EW effects can be estimated by

 $\Delta_{\rm EW} = \max\{0\}$ 

The first entry represents the generic size of NNLO EW corrections, while the second accounts for potential enhancement effects. Note that the whole photon-induced cross-section contribution  $\sigma_{\gamma}$  is treated as uncertainty here, because the PDF uncertainty of  $\sigma_{\gamma}$  is estimated to be 100% with the NNPDF2.3QED PDF set. At present, this source, which is about 1.5%, dominates the EW uncertainty of the integrated VBF cross section

![](_page_20_Picture_4.jpeg)

The scale uncertainty,  $\Delta_{\text{scale}}$ , results from a variation of the factorization and renormalization scales (I.5.3) by a factor of 2 keeping  $\mu_{\rm F} = \mu_{\rm R}$ , as indicated above, and the combined PDF $\oplus \alpha_{\rm s}$  uncertainty  $\Delta_{PDF \oplus \alpha_s}$  is obtained following the PDF4LHC recipe [35]. Both  $\Delta_{scale}$  and  $\Delta_{PDF \oplus \alpha_s}$  are actually obtained from  $\sigma_{\text{NNLOQCD}}^{\text{DIS}}$ , but this QCD-driven uncertainties can be taken over as uncertainty estimates for  $\sigma^{VBF}$  as well. The theoretical uncertainties of integrated cross sections originating from unknown

$$.5\%, \delta_{\rm EW}^2, \sigma_{\gamma}/\sigma^{\rm VBF}\}.$$
 (I.5

### [HXSWG Yellow Report 4: CERN-2017-002-M]

![](_page_20_Figure_9.jpeg)

![](_page_20_Figure_10.jpeg)

![](_page_20_Picture_11.jpeg)

## PURITY OF EW qqH BINS

- Only ggF and VBF production considered so far
- Higher VBF purity obtained thanks to the high Mjj split

![](_page_21_Figure_3.jpeg)

![](_page_21_Picture_4.jpeg)

S o far gh Mjj split

![](_page_21_Figure_6.jpeg)

![](_page_21_Picture_7.jpeg)

### ACCEPTANCES

| //  | accept | ances for                                                                                                                                                      | r VBH+VH | Had: ex | tr                     | acted f  | rom NJets | s (NLO) | +   | H7      |
|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|------------------------|----------|-----------|---------|-----|---------|
| //  | it ind | cludes the                                                                                                                                                     | e full H | +2Jets  | E٨                     | IK calcu | lation    |         |     |         |
| sta | tic st | d::map <ir< th=""><th>nt, std:</th><th>:vector</th><th><b>-<d< b=""></d<></b></th><th>louble&gt;</th><th>&gt; stxs_a</th><th>cc =</th><th></th><th></th></ir<> | nt, std: | :vector | <b>-<d< b=""></d<></b> | louble>  | > stxs_a  | cc =    |     |         |
| { / | /stxs  | tot                                                                                                                                                            | ptH200   | mjj60   |                        | mjj120   | mjj350    | mjj700  |     | mjj1000 |
| {   | 200,   | {0.083 ,                                                                                                                                                       | 0.0 ,    | 0.0     | ,                      | 0.0 ,    | 0.0 ,     | 0.0     | , ( | 0.0 ,   |
| {   | 201,   | {0.0735 <b>,</b>                                                                                                                                               | 0.0 ,    | 0.0     | ,                      | 0.0 ,    | 0.0 ,     | 0.0     | , ( | 0.0 ,   |
| {   | 202,   | {0.3438,                                                                                                                                                       | 0.0 ,    | 0.0     | ,                      | 0.0 ,    | 0.0 ,     | 0.0     | , ( | 0.0 ,   |
| {   | 203,   | {0.0082,                                                                                                                                                       | 0.0 ,    | -0.4038 | ,                      | 0.0 ,    | 0.0 ,     | 0.0     | , ( | 0.0 ,   |
| {   | 204,   | <b>{</b> 0.0603 <b>,</b>                                                                                                                                       | 0.0 ,    | 0.1258  | ·,-                    | 0.5825,  | 0.0 ,     | 0.0     | , ( | 0.0 ,   |
| {   | 205,   | {0.0608 <b>,</b>                                                                                                                                               | 0.0 ,    | 0.1268  | ,                      | 0.1617,  | -0.5332,  | 0.0     | , ( | 0.0 ,   |
| {   | 206,   | {0.0121,                                                                                                                                                       | 0.0 ,    | -0.5962 | ,                      | 0.0 ,    | 0.0 ,     | 0.0     | , ( | 0.0 ,   |
| {   | 207,   | {0.0432,                                                                                                                                                       | 0.0 ,    | 0.0901  | ,-                     | 0.4175,  | 0.0 ,     | 0.0     | , ( | 0.0 ,   |
| {   | 208,   | <i>{</i> 0.0532 <i>,</i>                                                                                                                                       | 0.0 ,    | 0.111   | ,                      | 0.1416,  | -0.4668,  | 0.0     | , ( | 0.0 ,   |
| {   | 209,   | {0.0702,-                                                                                                                                                      | -0.3026, | 0.1465  | ,                      | 0.1868,  | 0.2682,   | -0.6504 | , ( | 0.0 ,   |
| {   | 210,   | {0.0289,-                                                                                                                                                      | -0.1247, | 0.0604  | ,                      | 0.077,   | 0.1105,   | -0.2681 | , ( | 0.0 ,   |
| {   | 211,   | {0.0366,-                                                                                                                                                      | -0.1576, | 0.0763  | ,                      | 0.0973,  | 0.1397,   | 0.2377  | ,-( | 0.6724, |
| {   | 212,   | {0.0118,-                                                                                                                                                      | -0.0509, | 0.0246  | ,                      | 0.0314,  | 0.0451,   | 0.0767  | ,-( | 9.217 , |
| {   | 213,   | {0.0335,-                                                                                                                                                      | -0.1445, | 0.07    | ,                      | 0.0892,  | 0.1281,   | 0.218   | , ( | 0.3371, |
| {   | 214,   | {0.0093,-                                                                                                                                                      | -0.04 ,  | 0.0193  | ,                      | 0.0247,  | 0.0354,   | 0.0603  | , ( | 0.0932, |
| {   | 215,   | {0.0348,-                                                                                                                                                      | -0.1498, | 0.0725  | ,                      | 0.0925,  | 0.1328,   | 0.226   | , ( | 0.3495, |
| {   | 216,   | {0.0069,-                                                                                                                                                      | -0.0298, | 0.0144  | ,                      | 0.0184,  | 0.0264,   | 0.045   | , ( | 0.0695, |
| {   | 217,   | {0.004 ,                                                                                                                                                       | 0.1332,  | 0.0083  | ,                      | 0.0106,  | 0.0152,   | -0.0368 | , ( | 0.0 ,   |
| {   | 218,   | {0.0048,                                                                                                                                                       | 0.1623,  | 0.0101  | ,                      | 0.0129,  | 0.0185,   | -0.0448 | , ( | 0.0 ,   |
| {   | 219,   | {0.0033,                                                                                                                                                       | 0.1118,  | 0.0069  | ,                      | 0.0089,  | 0.0127,   | 0.0216  | ,-( | 0.0612, |
| {   | 220,   | <b>{</b> 0.0027 <b>,</b>                                                                                                                                       | 0.0901,  | 0.0056  | ,                      | 0.0071,  | 0.0103,   | 0.0175  | ,-( | 0.0494, |
| {   | 221,   | {0.0041,                                                                                                                                                       | 0.1361,  | 0.0085  | ,                      | 0.0108,  | 0.0155,   | 0.0264  | , ( | 0.0408, |
| {   | 222,   | {0.0026,                                                                                                                                                       | 0.0879,  | 0.0055  | ,                      | 0.007,   | 0.01 ,    | 0.017   | , ( | 0.0263, |
| {   | 223,   | {0.0057 <b>,</b>                                                                                                                                               | 0.19 ,   | 0.0118  | ,                      | 0.0151,  | 0.0216,   | 0.0368  | , ( | 0.0569, |
| {   | 224,   | {0.0026,                                                                                                                                                       | 0.0886,  | 0.0055  | ί,                     | 0.007,   | 0.0101,   | 0.0172  | , ( | 0.0265, |

25/06/2020

```
mjj1500 ptHjj25 jet2
0.0
       , 0.0 , 0.0
                       }}, // FWD
0.0
       , 0.0
              ,-0.1762 }}, // Jet0
0.0
              ,-0.8238 }}, // Jet1
       , 0.0
       ,-0.0256, 0.0164 }}, // Mjj 0-60,
0.0
                                              PTHjj 0-25
0.0
       ,-0.1876, 0.1206 }}, // Mjj 60-120,
                                              PTHjj 0-25
0.0
       ,-0.1891, 0.1216 }}, // Mjj 120-350,
                                              PTHjj 0-25
0.0
       , 0.0681, 0.0243 }}, // Mjj 350-700,
                                              PTHjj 0-25
                                                            , pTH 0-200
0.0
       , 0.2423, 0.0865 }}, // Mjj 700-1000,
                                             PTHjj 0-25
                                                            , pTH 0-200
0.0
       , 0.2986, 0.1065 }}, // Mjj 1000-1500, PTHjj 0-25
                                                            , pTH 0-200
0.0
       ,-0.2185, 0.1405 }}, // Mjj 1500-inf , PTHjj 0-25
                                                            , pTH 0-200
                                                             , pTH 200-inf
0.0
       , 0.1624, 0.0579 }}, // Mjj 350-700,
                                              PTHjj 0-25
       ,-0.1138, 0.0732 }}, // Mjj 700-1000,
                                                             , pTH 200-inf
0.0
                                             PTHjj 0-25
                                                            , pTH 200-inf
0.0
       , 0.0662, 0.0236 }}, // Mjj 1000-1500, PTHjj 0-25
-0.6777,-0.1043, 0.0671 }}, // Mjj 1500-inf , PTHjj 0-25
                                                             , pTH 200-inf
-0.1874, 0.052 , 0.0186 }}, // Mjj 0-60,
                                              PTHjj 25-inf
0.6955,-0.1082, 0.0696 }}, // Mjj 60-120,
                                              PTHjj 25-inf
                                              PTHjj 25-inf
0.1384, 0.0388, 0.0138 }}, // Mjj 120-350,
      ,-0.0123, 0.0079 }}, // Mjj 350-700,
                                              PTHjj 25-inf
0.0
                                                            , pTH 0−200
0.0
       , 0.0271, 0.0097 }}, // Mjj 700-1000,
                                             PTHjj 25-inf
                                                            , pTH 0-200
0.0
       ,-0.0104, 0.0067 }}, // Mjj 1000-1500, PTHjj 25-inf
                                                              pTH 0-200
0.0
       , 0.0151, 0.0054 }}, // Mjj 1500-inf , PTHjj 25-inf
                                                            , pTH 0-200
-0.082 ,-0.0126, 0.0081 }}, // Mjj 350-700,
                                              PTHjj 25-inf
-0.0529, 0.0147, 0.0052 }}, // Mjj 700-1000,  PTHjj 25-inf  , pTH 200-inf
0.1133,-0.0176, 0.0113 }}, // Mjj 1000-1500, PTHjj 25-inf , pTH 200-inf
0.0528, 0.0148, 0.0053 }} // Mjj 1500-inf , PTHjj 25-inf , pTH 200-inf
```

![](_page_22_Picture_6.jpeg)

![](_page_22_Figure_7.jpeg)

![](_page_22_Figure_8.jpeg)

![](_page_22_Figure_9.jpeg)

### ACCEPTANCES

| // bin ad | cceptances e                                | extracted from PO                                                                                                                           | WHEG VBFH                    | (NLO)     |          |                  |          |                  |            |
|-----------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|----------|------------------|----------|------------------|------------|
| static st | td <mark>::map<int< mark="">,</int<></mark> | std::vector <dou< td=""><td><mark>ble&gt; &gt; st</mark></td><td>xs_acc_po</td><td>wheg = {</td><td></td><td></td><td></td><td></td></dou<> | <mark>ble&gt; &gt; st</mark> | xs_acc_po | wheg = { |                  |          |                  |            |
| //stxs    | total                                       | ptH_200 mjj_60                                                                                                                              | mjj_120                      | mjj_350   | mjj_700  | mjj_1000         | mjj_1500 | ptHjj_25         | njets_30_2 |
| { 200     | , {0.0668,                                  | 0.0000, 0.0000,                                                                                                                             | 0.0000,                      | 0.0000,   | 0.0000,  | 0.0000,          | 0.0000,  | 0.0000,          | 0.0000}},  |
| { 201     | , {0.0765,                                  | 0.0000, 0.0000,                                                                                                                             | 0.0000,                      | 0.0000,   | 0.0000,  | 0.0000,          | 0.0000,  | 0.0000,          | -0.1821}}, |
| { 202     | , {0.3435,                                  | 0.0000, 0.0000,                                                                                                                             | 0.0000,                      | 0.0000,   | 0.0000,  | 0.0000,          | 0.0000,  | 0.0000,          | -0.8179}}, |
| { 203     | , {0.0048,                                  | 0.0000,-0.3761,                                                                                                                             | 0.0000,                      | 0.0000,   | 0.0000,  | 0.0000,          | 0.0000,  | -0.0126,         | 0.0093}},  |
| { 204     | , {0.0096,                                  | 0.0000, 0.0192,                                                                                                                             | -0.4400,                     | 0.0000,   | 0.0000,  | 0.0000,          | 0.0000,  | -0.0253,         | 0.0187}},  |
| { 205     | , {0.0782,                                  | 0.0000, 0.1564,                                                                                                                             | 0.1635,                      | -0.6859,  | 0.0000,  | 0.0000,          | 0.0000,  | -0.2056,         | 0.1525}},  |
| { 206     | , {0.0079,                                  | 0.0000,-0.6239,                                                                                                                             | 0.0000,                      | 0.0000,   | 0.0000,  | 0.0000,          | 0.0000,  | 0.0599,          | 0.0155}},  |
| { 207     | , {0.0122,                                  | 0.0000, 0.0245,                                                                                                                             | -0.5600,                     | 0.0000,   | 0.0000,  | 0.0000,          | 0.0000,  | 0.0923,          | 0.0239}},  |
| { 208     | , {0.0358,                                  | 0.0000, 0.0716,                                                                                                                             | 0.0749,                      | -0.3141,  | 0.0000,  | 0.0000,          | 0.0000,  | 0.2701,          | 0.0698}},  |
| { 209     | , {0.1061,                                  | -0.3265, 0.2121,                                                                                                                            | 0.2218,                      | 0.2912,   | -0.7233, | 0.0000,          | 0.0000,  | -0.2789 <b>,</b> | 0.2068}},  |
| { 210     | , {0.0306,                                  | -0.0940, 0.0611,                                                                                                                            | 0.0639,                      | 0.0838,   | -0.2083, | 0.0000,          | 0.0000,  | 0.2304,          | 0.0595}},  |
| { 211     | , {0.0545,                                  | -0.1678, 0.1090,                                                                                                                            | 0.1140,                      | 0.1497,   | 0.2505,  | -0.7179 <b>,</b> | 0.0000,  | -0.1434,         | 0.1063}},  |
| { 212     | , {0.0136,                                  | -0.0417, 0.0271,                                                                                                                            | 0.0283,                      | 0.0372,   | 0.0623,  | -0.1784 <b>,</b> | 0.0000,  | 0.1022,          | 0.0264}},  |
| { 213     | , {0.0504,                                  | -0.1550, 0.1007,                                                                                                                            | 0.1052,                      | 0.1382,   | 0.2313,  | 0.3553,          | -0.7105, | -0.1324,         | 0.0982}},  |
| { 214     | , {0.0111,                                  | -0.0341, 0.0222,                                                                                                                            | 0.0232,                      | 0.0305,   | 0.0510,  | 0.0783,          | -0.1566, | 0.0837,          | 0.0216}},  |
| { 215     | , {0.0507,                                  | -0.1560, 0.1013,                                                                                                                            | 0.1060,                      | 0.1391,   | 0.2328,  | 0.3576,          | 0.7154,  | -0.1333,         | 0.0988}},  |
| { 216     | , {0.0081,                                  | -0.0248, 0.0161,                                                                                                                            | 0.0168,                      | 0.0221,   | 0.0370,  | 0.0568,          | 0.1136,  | 0.0607,          | 0.0157}},  |
| { 217     | , {0.0058,                                  | 0.1466, 0.0116,                                                                                                                             | 0.0121,                      | 0.0159,   | -0.0394, | 0.0000,          | 0.0000,  | -0.0152,         | 0.0113}},  |
| { 218     | , {0.0042,                                  | 0.1076, 0.0085,                                                                                                                             | 0.0089,                      | 0.0117,   | -0.0290, | 0.0000,          | 0.0000,  | 0.0320,          | 0.0083}},  |
| { 219     | , {0.0050,                                  | 0.1273, 0.0100,                                                                                                                             | 0.0105,                      | 0.0138,   | 0.0231,  | -0.0661,         | 0.0000,  | -0.0132,         | 0.0098}},  |
| { 220     | , {0.0029,                                  | 0.0724, 0.0057,                                                                                                                             | 0.0060,                      | 0.0078,   | 0.0131,  | -0.0376,         | 0.0000,  | 0.0215,          | 0.0056}},  |
| { 221     | , {0.0064,                                  | 0.1628, 0.0128,                                                                                                                             | 0.0134,                      | 0.0176,   | 0.0295,  | 0.0453,          | -0.0906, | -0.0169,         | 0.0125}},  |
| { 222     | , {0.0030,                                  | 0.0763, 0.0060,                                                                                                                             | 0.0063,                      | 0.0083,   | 0.0138,  | 0.0212,          | -0.0424, | 0.0227,          | 0.0059}},  |
| { 223     | , {0.0089,                                  | 0.2249, 0.0177,                                                                                                                             | 0.0185,                      | 0.0243,   | 0.0408,  | 0.0626,          | 0.1252,  | -0.0233,         | 0.0173}},  |
| { 224     | , {0.0032,                                  | 0.0821, 0.0065,                                                                                                                             | 0.0068,                      | 0.0089,   | 0.0149,  | 0.0229,          | 0.0457,  | 0.0244,          | 0.0063}}   |

};

![](_page_23_Picture_6.jpeg)