VH STXS migration uncertainties

Aliya Nigamova, Adinda de Wit 25.06.2020, WG2: Higgs Properties subgroup meeting

Introduction

- o Maximum split scheme is used for flexibility
- POWHEG MINLO qqZH, <u>GENEVA NNLO + NNLL'</u> qqZH
- \circ Assign an uncertainty source for each STXS bin boundary: N-jet bin boundaries: $\Delta_{1,2}$ correspond to jet-bins boundaries

pT(V) bin boundaries: Δ_X , X= 75, 150, 250, 400 GeV

- $\circ~$ Each Δ_X is calculated as the maximal deviation from the nominal case under scale variations at the corresponding boundary
 - 1) $\mu_{R(F)}$ renormalization (factorization) scales in case of POWHEG MINLO samples:

 $[\mu_R/\mu_R^{nom}, \mu_F/\mu_F^{nom}]$: [1/2, 1][1, 1/2][2, 1][1, 2][1/2, 1/2][2, 2]

 for the <u>GENEVA NNLO + NNLL</u> the resummation and fixed order scales are used, described in <u>slide 13</u>

Uncertainty correlation scheme

- Migration unc. should drop out for the total cross-section
- $p_T(V)$ and jet-bins related migrations are calculated independently

	$p_{\rm T}^V$ bin [GeV]	Δ_{75}	Δ_{150}		Δ_{250}	Δ_{400}
Γ	[0, 75[$-\Delta_{75}/\sigma_{[0,75[}$	0		0	0
	[75, 150[$+\Delta_{75}/\sigma_{[75,\infty[}$	- $\Delta_{150}/\sigma_{[75,150[}$		0	0
	[150, 250[$+\Delta_{75}/\sigma_{[75,\infty[}$	+ $\Delta_{150}/\sigma_{[150,\infty[}$		$-\Delta_{250}/\sigma_{[150,250[}$	0
	[250, 400[$+\Delta_{75}/\sigma_{[75,\infty[}$	$+\Delta_{150}/\sigma_{[150,\infty[}$		$+\Delta_{250}/\sigma_{[250,\infty[}$	$-\Delta_{400}/\sigma_{[250,400[}$
	[400, ∞[$+\Delta_{75}/\sigma_{[75,\infty[}$	$+\Delta_{150}/\sigma_{[150,\infty[}$		$+\Delta_{250}/\sigma_{[250,\infty[}$	$+\Delta_{400}/\sigma_{[400,\infty[}$
				n_{iets} bin	Δ_1	Δ_2
	$\Delta_{1,2}$ calculated	in each p _T (V)	bin	0 jets	$-\Delta_1/\sigma_{n_{\text{jets}}=0}$	0
				1 jet	$\Delta_1/\sigma_{n_{\text{jets}}\geq 1}$	$-\Delta_2/\sigma_{n_{\rm jets}=1}$
				\geq 2 jets	$\Delta_1/\sigma_{n_{ m jets}\geq 1}$	$\Delta_2/\sigma_{n_{\text{jets}}\geq 2}$

POWHEG vs Geneva: $p_T(V)$, number of jets with $p_T > 30$ GeV

- p_T(V) distributions are very similar.
- Some difference in n_{jets}³⁰ distribution, possibly coming from jet kinematics differences.

POWHEG vs Geneva: additional leading jet p_T

A significant GENEVA vs POWHEG difference below 50 GeV, expected due to a different resummation accuracy affecting low p_T region. Results in disagreement in the n_{jets}^{30} distribution (previous slide)

Results: MiNLO vs NNLO + NNLL[•]

Compatible results, no effect on $p_T(V)$ distributions

Results: MiNLO vs NNLO + NNLL

Lower uncertainties for 0 and 1-jet bins in case of NNLO + NNLL, due to better a resummation sensitivity at low p_T^{jet}

Cross-check: GENEVA resummation jet-bins uncertainties

With the use of available fixed order and resummation weights in GENEVA samples it is possible to estimate the total jet-bins uncertainty:

 $\Delta_{tot} = \sqrt{\Delta_{FO}^2 + \Delta_{resum}^2}$, where Δ_{FO} (weights described in a). from <u>slide 13</u>), Δ_{resum} (weights described in b). from <u>slide 13</u>)

Jet-bins resummation uncertainties vs STXS GENEVA unc.

Total comparison

Summary

- The STXS migration uncertainties for qqZH process were presented
- Estimated using POWHEG NLO sample and GENEVA NNLO + NNLL
 - The results are in agreement, the difference in jet-bins uncertainties can be explained by different orders of resummation
- The total jet-bins perturbative uncertainties were calculated using GENEVA samples as a cross-check to provide an estimate for comparison with the STXS uncertainties

Backup

GENEVA scales' description

$$\mu_{H} = \mu_{\text{NS}},$$

$$\mu_{S}(\mathcal{T}_{0}) = \mu_{\text{NS}}f_{\text{run}}(\mathcal{T}_{0}/Q),$$

$$\mu_{B}(\mathcal{T}_{0}) = \mu_{\text{NS}}\sqrt{f_{\text{run}}(\mathcal{T}_{0}/Q)},$$

$$f_{\text{run}}(x) = \begin{cases} x_{0}\left[1 + (x/x_{0})^{2}/4\right] & x \leq 2x_{0},$$

$$x = 2x_{0} \leq x \leq x_{1},$$

$$x + \frac{(2-x_{2}-x_{3})(x-x_{1})^{2}}{(2(x_{2}-x_{1})(x_{3}-x_{1})} & x_{1} \leq x \leq x_{2},$$

$$1 - \frac{(2-x_{1}-x_{2})(x-x_{3})^{2}}{(2(x_{3}-x_{1})(x_{3}-x_{2})} & x_{2} \leq x \leq x_{3},$$

$$1 - \frac{(2-x_{1}-x_{2})(x-x_{3})^{2}}{(2(x_{3}-x_{1})(x_{3}-x_{2})} & x_{3} \leq x.$$

$$x_{0} = 2.5 \text{ GeV}/Q, \quad \{x_{1}, x_{2}, x_{3}\} = \{0.2, 0.45, 0.7\}$$

$$= \text{nominal}$$
GENEVA provides 11 weights in total:
$$\text{Nominal (1)}$$
a) Fixed order scale variation
$$\mu_{\text{FO}} = 2Q, \ Q/2 \ (+2)$$
b) Resummation scale variations
$$- \mu_{\text{S}}, \ \mu_{\text{B}} \text{ up/down variations (+4)} = \mu_{\text{resumm}}^{1} \text{ up } - \mu_{\text{resumm}}^{1} \text{ down}$$

$$- \text{transition points } x_{1}, x_{2}, x_{3} \text{ are varied by } \pm 0.05 = \mu_{\text{resumm}}^{2} \text{ up } - \mu_{\text{resumm}}^{2} \text{ down}$$
c) Tuned FO scale variation (corrected for inclusive cross-section) (+2)
$$-\mu_{\text{overall}}^{1} \text{ up } - \mu_{\text{overall}}^{1} \text{ up } - \mu_{\text{overall}}^{2} \text{ down}$$

b

GENEVA scale variations

POWHEG scale variations

Total uncertainties

	GENEVA STXS	GENEVA resum.	POWHEG STXS
ZH_PTV_0_75_0J	0.036	0.021	0.045
ZH_PTV_0_75_1J	0.066	0.059	0.102
ZH_PTV_0_75_GE2J	0.143	0.136	0.152
ZH_PTV_75_150_0J	0.045	0.023	0.053
ZH_PTV_75_150_1J	0.07	0.06	0.10
ZH_PTV_75_150_GE2J	0.129	0.122	0.141
ZH_PTV_150_250_0J	0.059	0.026	0.061
ZH_PTV_150_250_1J	0.076	0.062	0.099
ZH_PTV_150_250_GE2J	0.012	0.011	0.125
ZH_PTV_250_400_0J	0.078	0.043	0.071
ZH_PTV_250_400_1J	0.079	0.064	0.096
ZH_PTV_250_400_GE2J	0.099	0.092	0.11
ZH_PTV_GT400_0J	0.112	0.059	0.086
ZH_PTV_GT400_1J	0.087	0.063	0.10
ZH_PTV_GT400_GE2J	0.10	0.08	0.11

Uncertainty distribution among STXS bins

(c) option from <u>slide 13</u>)

