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General requirements for the Front-End 
tracker electronics for SLHC detectors

 Detector capacitance in the order of pico Farads
 Low power (<1mW/channel), low noise (S/N>15  ENC < 1500e-) 

 optimization of power for a minimum affordable noise level 
influence on the architecture (single ended)

 Collisions of particles every 25 ns  data time tagging to the given BCO 
(peaking times <25ns)

 Low input impedance  efficient charge collection and low cross talk 
signals

 Stability  required phase margin above 85 to 90 degree
 Optimum PSRR (large systems, difficult to provide clean power supply) 
 Radiation hardness – doses >2 1014 N/cm2 (1MeV) and >10MRad 

(CMOS front end preferred) 
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CMOS technology scaling

 Technology scaling ; formerly proportional reduction of all transistor 
features size (tox, L, W) scaled together with voltage supply and vt 
threshold voltage (constant field scaling). Smaller feature size  higher 
integration scale, lower power consumption/higher speed etc.

 Constant field scaling required proportional scaling of threshold voltage 
 this is limited by subthreshold  slope of the MOS transistor  (limit for 
minimum Vt >200mV)

 Scaling today ; constant voltage scaling introducing short channel effects

 mobility reduction(vertical and longitudinal field)

 degradation of output conductance (channel length modulation, 
Drain Induced Barrier Lowering (decreasing of Vt for higher Vds))
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Comparison of basic analogue parameters for 
three generations of IBM CMOS processes

IBM CMOS 250nm RF 130nm RF 90nm LP (low 
power)

tOX physical/effective 5nm/6.2nm 2.2nm/3.12nm 2.1nm/2.8nm

Ka (COX∙µ) NMOS 330 uA/V2 720 uA/V2 800 uA/V2

Vdd 2.5V 1.2V (1.5V) 1.2V

gm/gds Weak Inv. 70 30 18

Peak ft 35 GHz 94 GHz 105 GHz

Scaling advantages;  higher ft, higher Ka
Challenges for front end; lower Vdd (lower dynamic range), lower intrinsic transistor gain 
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Motivations to increase open loop gain

Optimizing feedback impedance (i.e. pulse 
gain of the preamplifier) versus input 
impedance

Lower input impedance of preamplifier; 
 better charge collection efficiency
 lower cross talk

 PSRR (all single ended stages)
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Charge collection from silicon strip detectors, 
cross talk signals
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Optimal open loop gain preamplifier designed for 5 to 20pF detector capacitance is 
around 70 to 80dB (in order to provide cross talk less than 5%)
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Motivations to increase open loop gain

 Optimizing feedback impedance (i.e. pulse gain of the preamplifier) versus 
input impedance

 Lower input impedance of preamplifier; 
 better charge collection efficiency
 lower cross talk

PSRR (all single ended stages)
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PSRR for single ended stage (1)
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PSRR for single ended stage (2)
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Loop gain

Driving KU improves PSRR.
All single ended stages should be designed as 
feedback amplifiers with high open loop gain.
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PSRR for single ended stage (3)

Power supply disturbance (1V) seen at cascode output working in open loop configuration 
(red) and in transimpedance preamplifier (blue). 130nm version of front end.
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Basic configurations for gain boosting

Intrinsic gain in 130nm ~30 V/V  we need 70 to 80dB (2000 to 10000 V/V)…
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Cascade
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 Two stage i.e. two pole circuit; needs to be stabilized
 Significant gain after first stage; Miller effect in case of 
driving from high impedance (as for silicon detector)  not 
used as an preamplifier stage
 PSRR defined by gain of first stage only
 In 90 nm the gain of cascade is significantly degraded 
because of intrinsic transistor gain, some circuits which 
works in 250nm version shows bad PSRR characteristic
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Cascode; common source – common gate 
amplifier

L
DSm

LDS
DS

m
U

g
gg

ggg

gK
+

+
+

−
=

22

2
1

1

 single stage amplifier; one dominant pole 
 good PSRR 
 no Miller effect (low gain of common source stage)
 If cascode load RL very high the overall gain KU comparable with cascade
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Regulated cascode
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 Cascode transistor controlled with common source amplifier
 Higher output conductance of cascode; possible higher gain 
 GBW the same as for simple cascode
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Boosting bandwidth and gain in cascode
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Active load for cascode stage (cascode 
load)

122 DSDSmOUT rrgr ⋅⋅≅

 Amplification of rDS1 by gm2
 For short SSD application; OK for 250nm, not sufficient for 130 & 90nm
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Active load for cascode stage (regulated 
cascode load)

13322 DSDSmDSmOUT rrgrgr ⋅⋅⋅⋅≅

 Amplification of rDS1 by gm2 and gm3
 Used in 130 & 90nm versions of preamplifiers
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Biasing transistors in weak inversion; 
motivations
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Biasing of the cascode

 All, four, transistors must be in the saturation (VDS ≥ VGS
– VT)
 Technology scaling  Vdd diminished from 2.5V in 
250nm to 1.2V in 130nm and 90nm CMOS  possible 
problems with dynamic range
 Solution  subthreshold operation (VGS ≈ VT)
 Minimum VDS SAT for weak inversion roughly 5 UT
(125mV)
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Noise optimization in CR-RCn filters for 
multi-channel FE electronics
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Transconductance in MOS transistor 
(EKV model)
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Transconductance:

gm in weak inversion

Specific current WI/SI interpolation for If=ID/IS

Weak inversion provides highest transconductance at a given bias current
 Some technologies report excess noise for devices in strong inversion
 Conclusion; weak inversion in input transistor is good from the standpoint of 
power consumption/noise optimization

IBM 130nm 
NMOS 
L=300nm



Comparing 130 and 90 nm for FE designs  intended for silicon strip detectors 23MUX 2010

Biasing transistors in weak inversion; some 
consequences
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Impact of the inversion order on the speed 
of CMOS circuit

Transit frequency ft as a function of inversion order for 250nm CMOS technology *

For devices biased in weak inversion we never obtain highest possible speed of a 
given technology

* C.Enz, “MOS transistor modeling for RF IC design”, IEEE J.Solid-State Circ., vol. 35, no. 2, pp.186-201)
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Noise of the active load (1)

If all transistor in weak inversion the gm is defined only by current  all gm the same
Increase of input series noise by ~40%!
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Noise of the active load (2) 

Resistive degeneration of gm works
But we have to spend another ~100mV taken out from Vdd…
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Architecture of front ends implemented in 
130 & 90nm processes
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Front end channel in 130nm & 90nm 
technology (SCT short strips)

5.5 mV/fC
tp 8 ns

30 mV/fC
tp 18 ns

100 mV/fC
tp 22 ns
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Preamplifiers open loop gain

130nm, 80dB, GBW=2GHz
Iin=80uA

90nm, 70dB, GBW=3.5GHz
Iin=80uA
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Preamplifiers input impedances

90nm, 380Ω @25MHz
Iin=80uA

130nm, 330Ω @25MHz
Iin=80uA

In both cases the cross talk signals less than 3%
Detector 1.5 pF to bulk + 2x 1.6 pF to neighbor 
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PSRR *

* PSRR defined as the ratio of the 1V signal at the power supply line to the signal at the output. For two different front 
end one should also look at the charge gain!

130nm, -0.5dB @ 25MHz
Iin=80uA, Cin=5pF to GND

90nm, +0.5dB @ 25MHz
Iin=80uA, Cin=5pF to GND
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PSRR (2)

PSRR improves when:
 Cin decreases (also in case of real detector when part of the detector capacitance is 
connected to neighboring channel)
 Bias current increases (GBW increases  loop gain increases)
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PSRR (3)

PSRR might be broken by input protections:
 double diode structure not admitted
 preferable structure; silicide blocked NMOS

 drawback  higher capacitance

PSRR0; no ESD structure
PSRR1; ESD protection with NMOS
PSRR2; ESD protection with double diode 
(85fF capacitance to Vdd) 
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Phase margin

We want to have 90 degree for nominal input capacitance (5pF), this has 
impact on input impedance and PSRR but safety first.

130nm 90nm
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Linearity and dynamic range

In 130nm and 90nm versions dynamic range up to 6 fC (good linearity up to 4fC)
Same 1.2V Vdd *)

*) in 250nm version the dynamic range (limit in discriminator stage - might be adjusted) is about  12fC
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Results from 90nm front end (130nm version 
of Front End for short strips (ATLAS SCT 

upgrade) back in the end of 2010)
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Dynamic range and linearity (90nm)

Good linearity up to 4fC (400mV signal range)
Dynamic range up to 6fC (limit set by the bias of the differential stage).
Good agreement with simulation  the same estimates for 130nm version

Peaking time 22ns
Gain 100mV/fC
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Noise performance (90nm)

ENC at 0 input capacitance as simulated (470e-)
ENC at 5pF roughly 10% higher than simulated.
Estimates for 130nm version the same  data will be available next year
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Comparison of power consumption at constant 
ENC for Cdet=5pF and ENC = 800e-

250nm 130nm 90nm

Iinput 140uA* 100uA (*?) 100uA (*120uA)

Itotal 280uA* 180uA (*?) 180uA (*200uA)

Vdd 2.5V (2.2V) 1.2V 1.2V

* measured 
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First look at matching in 130 and 90nm 
IBM processes

 Detailed study of matching issues requires high statistics (engineering 
runs with high number of samples)

 In our circumstances we limit statistic to some number of multichannel 
chips submitted to one or two MPW

 Data for matching in 130nm available at the moment from GTK front 
end chip (130nm front end for short strips back from foundry at the 
end of 2010)

 One should stress that our architecture is sometimes sensitive to 
matching. 
 we rely on matching of devices placed over the whole chip area 
 for the presented designs generation of filling structures have been 

done by IBM.
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Matching data for 130nm process; GTK 
Front End

 Front end for silicon pixel 300x300um (250fF detector capacitance)
 Transimpedance preamplifier/shaper 5ns peaking time / ENC 180e-
 Comparator working in voltage mode
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Comparator for short strips (130 & 90nm)
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Matching, comparison between MC and 
measurements

Gain [mV/fC]
Measured/Simulated

RMS Gain [mV/fC]
Measured/MC

RMS Offset [mV]
Measured/MC

130nm FE GTK 72 70 1.5 1.5 11 6

90nm FE short SSD 97 100 6  2 11  3

 Architecture of 90nm comparator more sensitive to matching but final 
numbers for 90 and 130nm chips practically the same  is 90 nm 
process intrinsically better?

 Discrepancy between MC and data MC models are too optimistic or 
problems are related to non optimum layout?

 High mismatch for 90nm FE gains under investigation (non Gaussian 
distribution  pk-pk <18mV/fC.
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Conclusion

 Practically the same estimates for noise/power performance 
of 130nm and 90 nm processes

 Some improvements in AC characteristics due to higher 
bandwidth in 90nm process (better PSRR). 90nm shows 
higher bandwidth but lower gain than 130nm. This has slight 
impact on differences between input impedance and phase 
margin.

 The same dynamic range (related to gain and Vdd) in 90nm 
and 130nm. The 6fC range with gain of 100mV/fC is sufficient 
for tracking applications. 

 Visible discrepancies between simulated and measured 
comparator matching both in 130nm and 90nm processes 
this issue has to be investigated. 
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