
Gaudi/Athena
Multithreaded Scheduling

B. Wynne

01/07/20



2

Introduction

The ATLAS software framework Athena(MT) is built on top of the multi-
experiment framework Gaudi

In particular, the (ongoing) migration to multithreaded operation relies on the 
Gaudi AvalancheScheduler
 - Single-threaded execution expected within algorithms
 - Parallel execution of multiple independent algorithms
 - Multiple events processed simultaneously, sharing thread pool and algorithm 
instances
 - The same premise as the GaudiHive prototype, but since extended with a 
number of features requested by ATLAS

Dependencies between algorithms determine what the scheduler will run next
 - The PrecedenceSvc evaluates our dependency graph

T
hr

ea
d 

2
T
hr

ea
d 

1

https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/AvalancheSchedulerSvc.cpp
https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/AvalancheSchedulerSvc.cpp#L905
https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/PrecedenceSvc.cpp


3

AvalancheScheduler

The PrecedenceSvc uses the states of algorithms in an event to determine which 
algorithms should be executed next

The AvalancheScheduler executes algorithms, and stores their states. 
It runs in a dedicated thread, using two thread-safe queues to communicate with 
the rest of the framework

Anything that will modify the state stored by the scheduler is performed by 
pushing a lambda function to the actions queue
 - Starting and ending an event
 - Handling the result of algorithm execution
 - HLT regional reconstruction in sub-events/views

Once the actions queue is emptied, the scheduler will query the PrecedenceSvc 
for the next set of algorithms to execute given the state of an event

All algorithms that can be executed are added to the scheduled queue
 - The queue is ordered by algorithm priority
 - Each algorithm has a corresponding event context to run in
 - TBB tasks pop the front of the queue, execute the algorithm, and push the 
result to the scheduler actions queue

https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/AvalancheSchedulerSvc.cpp#L93
https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/AlgTask.h#L112
https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/AvalancheSchedulerSvc.cpp#L905


4

TBB tasks

AvalancheScheduler

PrecedenceSvc

Scheduler

Scheduler thread

Scheduled
queue

Actions queue



5

Data dependencies

Most dependencies between algorithms are data dependencies: the output of 
Algorithm A becomes the input to Algorithm B

Algorithms use smart pointers – DataHandles – to record and retrieve data from 
the EventStore
 - DataHandles are digested at configuration time to build the dependency graph
 - Multiple different stores can all be accessed with this mechanism

The scheduler does not inspect the contents of the EventStore, it only stores the 
execution states of algorithms
 - If an algorithm has run for a particular event, assume that the outputs of that 
algorithm are now available
 - A data object with multiple possible creators is available if any one of them 
has finished execution

It is possible to access data without declaring a dependency
 - Some algorithms test to see if a data object is available, and adjust their 
behaviour accordingly
 - Legacy access methods still in the process of migration

https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/PrecedenceSvc.cpp#L64
https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/PRGraph/Visitors/Promoters.cpp#L68
https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/PRGraph/Visitors/Promoters.cpp#L68


6

Control flow

If data dependencies determine which algorithms can run, control flow allows us 
to impose extra rules on what may run

The basic units of control flow are sequences
 - Sequences have one or more algorithms as children



7

Control flow

If data dependencies determine which algorithms can run, control flow allows us 
to impose extra rules on what may run

The basic units of control flow are sequences
 - Sequences have one or more algorithms as children
 - Sequences can be nested, with a single “top” sequence for a whole event



8

Control flow

If data dependencies determine which algorithms can run, control flow allows us 
to impose extra rules on what may run

The basic units of control flow are sequences
 - Sequences have one or more algorithms as children
 - Sequences can be nested, with a single “top” sequence for a whole event
 - Children can be run sequentially or in parallel

Sequential

Parallel



9

Control flow

If data dependencies determine which algorithms can run, control flow allows us 
to impose extra rules on what may run

The basic units of control flow are sequences
 - Sequences have one or more algorithms as children
 - Sequences can be nested, with a single “top” sequence for a whole event
 - Children can be run sequentially or in parallel
 - Algorithms and sequences return PASS or FAIL decisions, with parent sequences 
returning logical operations of their childrens’ decisions

AND

OR

This algorithm will not run



10

PrecedenceSvc

On top of all of the control flow rules, we must also apply data dependencies

The combination of the two is called the PrecedenceRulesGraph, which is 
evaluated by the PrecedenceSvc

At the start of an event, the PrecedenceSvc traverses the graph starting at the 
root node, to identify all algorithms that can be scheduled

This algorithm is
CONTROLREADY

and
DATAREADY

(since it has no data 
inputs)

These algorithms are
CONTROLREADY

but not
DATAREADY

https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/PrecedenceSvc.cpp#L223


11

PrecedenceSvc

On top of all of the control flow rules, we must also apply data dependencies

The combination of the two is called the PrecedenceRulesGraph, which is 
evaluated by the PrecedenceSvc

At the start of an event, the PrecedenceSvc traverses the graph starting at the 
root node, to identify all algorithms that can be scheduled

All subsequent updates start at the algorithm that last executed, to avoid re-
evaluating the whole tree

Graph-walking visitors perform the updates, e.g. DataReadyPromoter follows 
data dependencies, and Supervisor follows control flow

https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/PrecedenceSvc.cpp#L219
https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/PRGraph/Visitors/Promoters.cpp#L24
https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/PRGraph/Visitors/Promoters.cpp#L163


12

Algorithm states

Each algorithm in each concurrent event has a state value stored by the 
AvalancheScheduler

Algorithm state transitions are performed by the PrecedenceSvc, or by the 
scheduler

Results of execution are pass or fail decisions, or an error

INITIAL

CONTROLREADY

DATAREADY

SCHEDULED

RESOURCELESS

EVTREJECTED ERROREVTACCEPTED

Pr
ec

ed
en

ce
Sv

c

Where algorithms are not re-
entrant, there is a pool of 

available (cloned) instances. 
If all instances are in use, 
place alg in this state and 

retry scheduling later



13

Subtleties – duplicate algorithm CF

There might be several different reasons to run a specific algorithm (e.g. 
multiple muon triggers with different thresholds)

When traversing the precedence graph after that algorithm has run, we must 
test to ensure we don’t enter a CF node that should not be available

A graph visitor is sent back towards the root node from the point where we enter 
the graph, to ensure that there is a path via active nodes

The parent CF node is 
active, and so graph 

traversal may start here

This CF node is not active, 
and so there is no graph 

traversal amongst its 
children

https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/PRGraph/Visitors/Validators.cpp#L38


14
ConditionsStore

Subtleties – conditions algs

Conditions data has a lifespan longer than a single event, and is expected always 
to be available if needed

Algorithms that produce conditions data are executed on-demand if the data 
does not already exist for a particular interval of validity
 - They are not attached to the CF graph, since they should not run every event

The PrecedenceSvc will directly query the 
ConditionsStore to determine if data is 

available (unlike for event data)

https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/PRGraph/Visitors/Promoters.cpp#L106
https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/PRGraph/Visitors/Promoters.cpp#L91


15

Subtleties – sub-event processing

Offline reconstruction assumes all algorithms executed once per event, on the 
whole event

The ATLAS HLT uses regional reconstruction, with multiple (or zero) executions of 
some algorithms on subsections of event data

Algorithm states are stored independently for each sub-event, and data 
dependencies are resolved only within the regional context

The parent node returns a decision once all sub-events are processed

During the event loop, 
additional contexts are 

created for each sub-event 
region, and then associated 

with a given CF node

https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/PRGraph/Visitors/Promoters.cpp#L185
https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/AvalancheSchedulerSvc.cpp#L995


16

Subtleties – algorithm priority

Consider the following PR graph:

In a job with 3 available threads, naively executing algorithms in their order as 
children of the root CF node will lead to sub-optimal performance because of the 
data flow constraints:



17

Subtleties – algorithm priority

Consider the following PR graph:

The PrecedenceSvc has a number of strategies for ranking algorithms (e.g. 
number of downstream data clients) to improve thread utilisation:

In most real scenarios, we would expect to occupy idle threads with multiple 
events in flight. Nonetheless, this optimisation is a free win in applicable cases

This algorithm has highest 
priorty because others 

rely on its output

https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/PRGraph/Visitors/Rankers.cpp#L16


18

Subtleties – stalling

Given all these rules, it’s quite possible to configure a job where dependencies 
are not satisfied

Some errors can be caught outside the event loop, as the scheduler initialises:
 - Un-matched input dependencies
 - Cyclic data dependencies
 - Two algorithms guaranteed to produce the same output object (conditional ok)

Since there are many things that can change within the event loop, it is still 
possble to reach a state where no algorithms are currently running, no new 
algorithms can be scheduled, and yet the CF root node has not returned a 
decision: this is a stall

Examples:
 - Multiple algorithms might produce an output, conditional on independent 
filters. In a given event, none of the filters pass
 - Data flow from Alg A to Alg B is interrupted when Alg B is declared part of a 
sub-event
 - Alg A produces data required by Alg B, but CF demands that Alg B runs first
(this probably could be detected in advance, but we don’t currently do so)

Stalls are considered configuration errors, and should not occur in a real job. For 
the purposes of migration we have a (verbose) debug output from the scheduler

https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/AvalancheSchedulerSvc.cpp#L221
https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/AvalancheSchedulerSvc.cpp#L729


19

Isn’t this all a bit complicated?

Do we really need all 
these rules? For offline 
reconstruction, not 
really

Most of the complexity 
comes from the HLT use-
case, with conditional 
execution, regional 
reconstruction, and 
control flow both 
branching and merging

The diagram on the right 
(credit F. Pastore) is the 
“simplified” depiction 
of the HLT menu

One of the motivations 
of AthenaMT was to 
maximise code sharing 
between online and 
offline

https://gitlab.cern.ch/atlas/athena/-/tree/master/Trigger/TriggerCommon/TriggerMenuMT/python/HLTMenuConfig


20

Performance

I don’t have any recent, public performance figures for Athena workflows (sorry)

ATLAS internal link for HLT profiling: 
https://indico.cern.ch/.../20200511_Rafal.pdf

Qualitatively speaking, I can say that the memory scaling behaviour with number 
of concurrent events is far better than our existing multi-process forking

Throughput is currently limited by some bottlenecks that we expect to fix as we 
find them
 - in the tests linked above, we forgot to turn on cloning for non-re-entrant algs!

Gaudi itself has some synthetic 
benchmarks provided to mimic 
HEP workflows, so you can run 
some basic tests yourself

This rough set of results comes 
from my laptop, using the ATLAS 
MC reconstruction scenario

Suggests 2 threads per 
concurrent event as a sensible 
choice

https://indico.cern.ch/event/877008/contributions/3854948/attachments/2035833/3408748/20200511_Rafal.pdf
https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/options/AtlasMCRecoScenario.py


21

Offloading

A lot of current framework development targets offloading algorithms to GPUs 
and other accelerators

In the past Athena/Gaudi had no “first class” support for accelerators, and this 
was accomplished for the ATLAS HLT GPU demonstrator project using a 
separate server process called APE

The server provided a uniform interface for multiple different accelerators, 
assuming that appropriate code was compiled for the host machine

 - Supported >50 Athena CPU process clients with a single GPU, over network

 - Client algorithms synchronous, simply waiting for results to be returned

 - Performance suggested server itself may have been a bottleneck

https://cds.cern.ch/record/2229580/files/ATL-DAQ-SLIDE-2016-837.pdf
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerSoftwareUpgradePublicResults


22

CUDA support in Athena

It is now possible to compile CUDA code within Athena, and run device kernels 
from within an algorithm (SYCL also supported!)
 - Detect if CUDA is available, compile as C++ otherwise
 - Detect if GPU is available, execute on CPU otherwise
 - Creating compiler macros to standardise these options

New prototype has a hardware-specific implementation of an algorithm created 
by the OffloadFactory and returned to the Athena algorithm for execution, as 
shown in diagram below (credit D. Emeliyanov)

Current implementation of GPU track finding directly in AthenaMT MR !33485

https://indico.cern.ch/event/872910/contributions/3891716/attachments/2064313/3464015/2020.06.26_GaudiAllenWorkshop.pdf
https://gitlab.cern.ch/atlas/athena/-/merge_requests/33485


23

Offloading in the scheduler

The Gaudi scheduler executes algorithms in TBB tasks by default, sharing a pool 
of threads

An alternative method of scheduling allows you to mark an algorithm as 
“blocking,” meaning it will run in a detatched std::thread rather than a TBB task
 - Result of algorithm execution is still pushed to the scheduler action queue

Given recent improvements to CUDA/drivers this may not be necessary any 
more, and “blocking” may be sufficient
 - Synchronous offload leaves the host thread idle
 - Little enough background polling activity that it can be automatically recycled
 - Comparable performance to asynchronous offload

Task arena could be used to organise offloaded operations that require global 
device locking (e.g. CUDA malloc)

CMS uses an asynchronous scheduling 
approach for offloads, with the CPU 
thread freed and re-used while GPU 
execution occurs

Similar approach used in 
prototype variant for Gaudi scheduler

https://gitlab.cern.ch/gaudi/Gaudi/-/blob/master/GaudiHive/src/AvalancheSchedulerSvc.cpp#L918
https://gitlab.cern.ch/atlas/athena/-/blob/master/Control/AthCUDA/AthCUDACore/AthCUDACore/TaskArena.h
https://indico.cern.ch/event/872910/contributions/3891717/attachments/2064695/3464764/20200626-LHCb_Workshop_Heterogeneous_CMSSW.pdf
https://cds.cern.ch/record/2696368/files/ATL-SOFT-SLIDE-2019-809.pdf


24

Summary

The Gaudi AvalancheScheduler provides multi-threaded execution in AthenaMT 
by identifying independent algorithms and executing them in TBB tasks
 - Support for algorithms that are not re-entrant through cloning

Algorithm data dependencies are analysed at configuration time
 - Event data is available for consumers if a producer has run successfully
 - Conditions data availability is tested, and producer algs run on-demand

Control flow rules can be applied, may vary event-by-event workflow
 - Sequential execution, with algorithm true/false decisions
 - Independent processing of sub-event regions

Allows intra- and inter-event parallelism
 - Memory usage scales with multiple events in flight, better than MP forking
 - Improve throughput with multiple threads per event
 - All threads shared, so lack/surplus of work in given events can be balanced

GPU offloading supported in the framework
 - Recent development!
 - May not require significant change to scheduler


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

